Limit Theorems for Catalytic Branching Processes

Ekaterina VI. Bulinskaya

Lomonosov Moscow State University

Ulm, September 2, 2013

Ekaterina VI. Bulinskaya Catalytic Branching Processes

Introduction

- L. Doering, M. Roberts (2013) catalytic branching process with a single catalyst
 - many-to-few lemmas, renewal theory
- E.B. Yarovaya (2012) branching random walk with finitely many sources of particle generation spectral theory of operators
- E.VI. Bulinskaya (2013) catalytic branching process with finitely many catalysts (CBP) auxiliary multi-type Bellman-Harris process

Introduction

- L. Doering, M. Roberts (2013) catalytic branching process with a single catalyst
 - many-to-few lemmas, renewal theory
- E.B. Yarovaya (2012) branching random walk with finitely many sources of particle generation spectral theory of operators
- E.VI. Bulinskaya (2013) catalytic branching process with finitely many catalysts (CBP) auxiliary multi-type Bellman-Harris process

Introduction

 L. Doering, M. Roberts (2013) catalytic branching process with a single catalyst

many-to-few lemmas, renewal theory

- E.B. Yarovaya (2012) branching random walk with finitely many sources of particle generation spectral theory of operators
- E.VI. Bulinskaya (2013) catalytic branching process with finitely many catalysts (CBP) auxiliary multi-type Bellman-Harris process

- particles move according to an irreducible Markov chain η = {η(t), t ≥ 0} having the state space S and generated by Q-matrix A
- they branch at the presence of catalysts, $W = \{w_1, \ldots, w_N\} \subset S$ is the catalysts set
- having hit w_k (k = 1,..., N), a particle, after an exponentially distributed time with parameter 1, either produces a random number of offsprings ξ_k with probability α_k or leaves w_k with probability 1 – α_k

 newly born particles behave as independent copies of their parent

- particles move according to an irreducible Markov chain η = {η(t), t ≥ 0} having the state space S and generated by Q-matrix A
- they branch at the presence of catalysts, $W = \{w_1, \ldots, w_N\} \subset S$ is the catalysts set
- having hit w_k (k = 1,..., N), a particle, after an exponentially distributed time with parameter 1, either produces a random number of offsprings ξ_k with probability α_k or leaves w_k with probability 1 – α_k

 newly born particles behave as independent copies of their parent

- particles move according to an irreducible Markov chain η = {η(t), t ≥ 0} having the state space S and generated by Q-matrix A
- they branch at the presence of catalysts, $W = \{w_1, \ldots, w_N\} \subset S$ is the catalysts set
- having hit w_k (k = 1, ..., N), a particle, after an exponentially distributed time with parameter 1, either produces a random number of offsprings ξ_k with probability α_k or leaves w_k with probability $1 - \alpha_k$

 newly born particles behave as independent copies of their parent

- particles move according to an irreducible Markov chain η = {η(t), t ≥ 0} having the state space S and generated by Q-matrix A
- they branch at the presence of catalysts, $W = \{w_1, \ldots, w_N\} \subset S$ is the catalysts set
- having hit w_k (k = 1, ..., N), a particle, after an exponentially distributed time with parameter 1, either produces a random number of offsprings ξ_k with probability α_k or leaves w_k with probability $1 - \alpha_k$
- newly born particles behave as independent copies of their parent

Multi-type Bellman-Harris Processes

- A particle of type *i* has a life-length with distribution G_i.
- Just before the death the particle of type *i* produces a random number of offsprings according to a generating function g_i,
 - i = 1, ..., L.

V.A. Vatutin, V.A. Topchii, E.B. Yarovaya (2003) auxiliary Bellman-Harris process (BHP) with two types of particles for study of a branching random walk with a single catalyst

E.VI.Bulinskaya (2013) auxiliary Bellman-Harris process with $\leq N(N + 1)$ types of particles for analysis of a catalytic branching process with *N* catalysts

Auxiliary Bellman-Harris Process

The particles located at time t at w_i in CBP are the particles of type i in BHP.

Each particle in CBP that has left w_j at least once within time interval [0, t] and upon the last leaving w_j has not yet reached W by time t but eventually will hit w_k before possible hitting $W \setminus \{w_k\}$ is of the (jN + k)-th type in BHP.

We have constructed a Bellman-Harris process with $\leq N(N + 1)$ types of particles.

Classification of CBP

Let $M = (m_{ij})$ be the mean matrix of BHP, i.e. m_{ij} is the mean number of the offsprings of type *j* produced by a particle of type *i*.

M is an irreducible matrix. Therefore, according to the Perron-Frobenius theorem *M* has a positive eigenvalue $\rho(M)$ with maximal modulus which is called the Perron root.

Definition by E.VI. Bulinskaya (2013) CBP is called supercritical, critical or subcritical if $\rho(M) > 1$, $\rho(M) = 1$ or $\rho(M) < 1$, respectively.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Structure of the Criticality Set

For $\mathbb{E}\xi_i = m_i$, i = 1, ..., N, the criticality set is $C = \{(m_1, ..., m_N) \in \mathbb{R}^N_+ : \rho(M) = 1\}.$

Notation

Let $\mu(t; y)$ be the number of particles at site y at time t in CBP. In other words, $\mu(t; y)$ is the local particles number.

Set $\mu(t) = \sum_{y \in S} \mu(t; y)$, i.e. $\mu(t)$ is the total number of particles at time *t*.

Put also

 $m_n(t; \mathbf{x}, \mathbf{y}) = \mathbb{E}_{\mathbf{x}}\mu(t; \mathbf{y})(\mu(t; \mathbf{y}) - 1) \dots (\mu(t; \mathbf{y}) - n + 1),$

 $M_n(t; x) = \mathbb{E}_x \mu(t)(\mu(t) - 1) \dots (\mu(t) - n + 1).$

(本語) (本語) (二)

Theorem (E.VI. Bulinskaya (2013))

Let $x, y \in S$, $n \in \mathbb{N}$ and $t \to \infty$. If $\rho(M) > 1$ then for some $\lambda > 0$ and $a_n(x, y)$, $A_n(x) > 0$ one has $m_n(t; \mathbf{x}, \mathbf{y}) \sim a_n(\mathbf{x}, \mathbf{y}) \mathbf{e}^{\lambda t}, \quad M_n(t; \mathbf{x}) \sim A_n(\mathbf{x}) \mathbf{e}^{\lambda t}.$ If $\rho(M) = 1$ then $m_n(t; x, y) \sim b_n(x, y)t^{n-1}, \ M_n(t; x) \sim B_n(x)t^{2n-1}.$ If $\rho(M) < 1$ then $m_n(t; x, y) \rightarrow 0, \quad M_n(t; x) \rightarrow C_n(x),$ for some $b_n(x, y)$, $B_n(x)$, $C_n(x) > 0$.

▲ロ▶ ▲郡▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Theorem (E.VI. Bulinskaya (2013))

Let matrix A have uniformly bounded elements, $\rho(M) > 1$ and $\mathbb{E}\xi_i^2 < \infty$ for each i = 1, ..., N. Then the following relations hold true

 $\mu(t; \mathbf{y}) \mathbf{e}^{-\lambda t} \rightarrow \nu(\mathbf{y}), \quad \mu(t) \mathbf{e}^{-\lambda t} \rightarrow \nu \quad \text{a.s.},$

as $t \to \infty$, where $\nu(y)$, $y \in S$, and ν are certain non-trivial nonnegative random variables.

To prove the theorems we employ results for the Bellman-Harris processes (K.S. Crump (1970), Ch.J. Mode (1971), N. Kaplan (1975)) and hitting times under taboo.

Hitting Times under Taboo

Let τ_x be the first exit time from x on the set $\{\eta(0) = x\}$ and let H be the taboo set, $H \subset S$. The hitting time of y under the taboo H is $_{H\tau_{x,y}}$ defined on the set $\{\eta(0) = x\}$ as inf $\{t \ge \tau_x : \eta(t) = y, \ \eta(u) \notin H, \ \tau_x < u < t\}$ (as usual, inf $\{t \in \emptyset\} = \infty$).

K.L. Chung (1960),
R.L. Tweedie (1974),
J. Kemeny, L. Snell, A. Knapp, D. Griffeath (1976),
A.M. Zubkov (1980),
R. Syski (1992), ...,
E.VI. Bulinskaya (2013).