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Description of CBP

particles move according to an irreducible
Markov chain η = {η(t), t ≥ 0} having the
state space S and generated by Q-matrix A
they branch at the presence of catalysts,
W = {w1, . . . , wN} ⊂ S is the catalysts set
having hit wk (k = 1, . . . , N), a particle, after
an exponentially distributed time with
parameter 1, either produces a random
number of offsprings ξk with probability αk

or leaves wk with probability 1− αk

newly born particles behave as
independent copies of their parent
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Multi-type Bellman-Harris Processes

A particle of type i has a life-length with
distribution Gi .
Just before the death the particle of type i
produces a random number of offsprings
according to a generating function gi ,
i = 1, . . . , L.
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Method of CBP study

V.A. Vatutin, V.A. Topchii, E.B. Yarovaya (2003)
auxiliary Bellman-Harris process (BHP)
with two types of particles for study of a
branching random walk with a single catalyst

E.Vl.Bulinskaya (2013)
auxiliary Bellman-Harris process with
≤ N(N + 1) types of particles for analysis
of a catalytic branching process with N catalysts
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Auxiliary Bellman-Harris Process

The particles located at time t at wi in CBP
are the particles of type i in BHP.

Each particle in CBP that has left wj at least
once within time interval [0, t ] and upon the last
leaving wj has not yet reached W by time t but
eventually will hit wk before possible hitting
W \ {wk} is of the (jN + k)-th type in BHP.

We have constructed a Bellman-Harris process
with ≤ N(N + 1) types of particles.
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Classification of CBP

Let M = (mij) be the mean matrix of BHP, i.e.
mij is the mean number of the offsprings of type
j produced by a particle of type i .

M is an irreducible matrix. Therefore,
according to the Perron-Frobenius theorem
M has a positive eigenvalue ρ(M) with maximal
modulus which is called the Perron root.

Definition by E.Vl. Bulinskaya (2013)
CBP is called supercritical, critical or subcritical
if ρ(M) > 1, ρ(M) = 1 or ρ(M) < 1, respectively.
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Structure of the Criticality Set
For Eξi = mi , i = 1, . . . , N,
the criticality set is
C = {(m1, . . . , mN) ∈ RN

+ : ρ(M) = 1}.
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Notation

Let µ(t ; y) be the number of particles at site y at
time t in CBP. In other words,
µ(t ; y) is the local particles number.

Set µ(t) =
∑

y∈S µ(t ; y), i.e.
µ(t) is the total number of particles at time t .

Put also

mn(t ; x , y)=Exµ(t ; y)(µ(t ; y)−1). . .(µ(t ; y)−n+1),

Mn(t ; x)=Exµ(t)(µ(t)−1). . .(µ(t)−n+1).
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Main results

Theorem (E.Vl. Bulinskaya (2013))
Let x , y ∈ S, n ∈ N and t →∞. If ρ(M) > 1 then
for some λ > 0 and an(x , y), An(x) > 0 one has
mn(t ; x , y) ∼ an(x , y)eλt , Mn(t ; x) ∼ An(x)eλt .

If ρ(M) = 1 then
mn(t ; x , y) ∼ bn(x , y)tn−1, Mn(t ; x) ∼ Bn(x)t2n−1.

If ρ(M) < 1 then
mn(t ; x , y) → 0, Mn(t ; x) → Cn(x),

for some bn(x , y), Bn(x), Cn(x) ≥ 0.
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Theorem (E.Vl. Bulinskaya (2013))
Let matrix A have uniformly bounded elements,
ρ(M) > 1 and Eξ2

i < ∞ for each i = 1, . . . , N.
Then the following relations hold true

µ(t ; y)e−λt → ν(y), µ(t)e−λt → ν a.s.,

as t →∞, where ν(y), y ∈ S, and ν are certain
non-trivial nonnegative random variables.

To prove the theorems we employ
results for the Bellman-Harris processes
(K.S. Crump (1970), Ch.J. Mode (1971),
N. Kaplan (1975))
and hitting times under taboo.
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Hitting Times under Taboo

Let τx be the first exit time from x on the set
{η(0) = x} and let H be the taboo set, H ⊂ S.
The hitting time of y under the taboo H is
Hτx ,y defined on the set {η(0) = x} as
inf{t ≥ τx : η(t) = y , η(u) /∈ H, τx < u < t}
(as usual, inf{t ∈ ∅} = ∞).

K.L. Chung (1960),
R.L. Tweedie (1974),
J.Kemeny, L.Snell, A.Knapp, D.Griffeath (1976),
A.M. Zubkov (1980),
R. Syski (1992), ...,
E.Vl. Bulinskaya (2013).
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