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What is an exponential function

I At a (secondary) school: Put

e := lim
n→∞

(
1 +

1
n

)n

, exp(x) := ex .

I But what does it mean e.g. exp(
√

2) ???
I Analysis I: exp(x) :=

∑∞
n=0

xn

n! for x ∈ R.
I A solution of ODE:

f (x) = f ′(x) with f (0) = 1

only for differentiable functions.
I A non-zero continuous solution of functional equation

m(x + y) = m(x)m(y)

with m(1) := e.
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I We are going to work on a locally compact Abelian (LCA)
group G.

I Examples: (Zm,+), (T, ·) with T := {z ∈ C : |z| = 1}.
I (R,+), (Z,+) are non-compact LCA groups.
I Bounded exponentials are called characters of a group.
I Γ := {γ : γ character on G}
I monomials in classical analysis↔ exponentials in Fourier

analysis.
I From now on we consider G is an LCA group with a fixed

Haar measure k .
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Let f ,g : G→ C.

The function f satisfies d’Alembert’s functional equation, if

cos(x + y) + cos(x−y) = 2 cos(x) cos(y), x , y ∈ G. (1)

Another name is the cosine functional equation since
f (x) = cos x for x ∈ G = R satisfies (1).

The pair (g, f ) satisfies Wilson’s functional equation, if

sin(x + y) + sin(x − y) = 2 sin(x) cos(y), x , y ∈ G. (2)

The model solutions of (2) is the pair
(g(x), f (x)) = (sin x , cos x) for x ∈ G = R, thus (2) is also
called the sine - cosine equation.
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Theorem (Pl. Kannappan, [5])
The function f : G→ R satisfies cosine equation iff there exists
an exponential m : G→ C such that
f (x) = m(x)+m(−x)

2 , x ∈ G.

Theorem (L. Székelyhidi, [7], p. 109)
The pair (g, f ) satisfies Wilson’s functional equation iff f ≡ 0
and g arbitrary or ∃m1 an exponential, ∃a : G→ C additive and
∃α ∈ C such that m2

1 = 1 and for x ∈ G:

f (x) = m1(x), g(x) = (α + a(x))m1(x), (3)

or ∃m an exponential and constants α, β ∈ C such that m2 6= 1
and for x ∈ G:

f (x) =
m(x) + m(−x)

2
, g(x) = αm(x) + βm(−x). (4)
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Theorem (Wiener, (see Székelyhidi [7], p. 9))
If G is a locally compact abelian group, then any nonzero
closed invariant subspace of L∞(G) contains a character.

We present special case of a reasoning from [7].

Example
Let (Zm,+) be the additive group of all remainders from division
by m equipped with the discrete topology. If f : Zm → C is a
bounded function satisfying d’Alembert functional equation for
all x , y ∈ Zm, then there exists l ∈ Z such that

f (y) = cos
(

2πly
m

)
, y ∈ Zm.
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Main steps of Székelyhidi reasonings

I Let τ(f ) denote the minimal proper closed invariant
subspace containing f .

I If f is a solution of equation (1), then each function g ∈ τ(f )
satisfies equation (2).

I Fix x , z ∈ Zm. From (1) applied for x − z instead of x we
have

fz(x + y) + fz(x − y) = 2fz(x)f (y), y ∈ Zm.

I Since a linear combination of solution of (2) is a solution of
(2) we obtain

g(x + y) + g(x − y) = 2g(x)f (y), y ∈ Zm

for any function g ∈ τ(f ).
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I By Wiener theorem the space τ(f ) contains a character.

I There exists an l ∈ {0,1, . . . ,m − 1} such that the
character

χ(k) = e
2πikl

m , k ∈ Zm

is an element of τ(f ) (cf. E. Hewitt and K. A. Ross, [4] p.
367), i.e.

χ(x + y) + χ(x − y) = 2χ(x)f (y), y ∈ Zm.

I Dividing by χ(x) 6= 0 we arrive at

f (y) =
χ(y) + χ(−y)

2
=

e
2πily

m + e
−2πily

m

2
= cos

(
2πly

m

)
,

for y ∈ Zm.
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For a (bounded regular) measure µ : B(G)→ C and y ∈ G
we put

µ−(A) := µ(−A), µy (A) := µ(A + y), A ∈ B(G);

For f : G→ C and a (bounded) regular measure
µ : B(G)→ C the convolution is given by

(f ∗ µ)(x) =

∫
G

f (x − t)dµ(t), x ∈ G;

The Fourier transform of a function f ∈ L1(G) and a
bounded regular Borel measure µ are given by

f̂ (γ) :=

∫
G

f (x)γ̌(x)dm(x), µ̂(γ) :=

∫
G
γ̌(x)dµ(x), γ ∈ Γ.

where γ̌(x) := γ(−x).
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Theorem (Z. Gajda)
Let µ : B(G)→ C be a regular bounded measure. Then a
function f ∈ L∞(G) which does not vanish m-l.a.e. satisfies
equation

(f ∗ µy )(x) + (f ∗ (µy )−)(x) = f (x)f (y), x , y ∈ G, (5)

iff there exists a character γ ∈ Γ such that

f (y) = µ̂(γ)γ(y) + µ̂ (γ̌) γ̌(y) (6)

= γ(y)

∫
G
γ(−s)dµ(s) + γ̌(y)

∫
G
γ(s)dµ(s)

(7)

for all y ∈ G. To get cosine eq. one can take µ given by
µ(A) := 1

2δ0(A) for A ∈ B(G).
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We discuss solutions of

(f1 ∗ µy )(x) + (f2 ∗ (µy )−)(x) = g(x)h(y), x , y ∈ G (8)

for f1, f2,g,h : G→ C s.t. convolutions are well-defined.
1. Z.F. (2009) special case for bounded regular measure µ,

f1 = f2 = g and h essentially bounded: then there exist a
character γ ∈ Γ and constants C1,C2 ∈ C such that g is
the form of (6) and

h(x) = C1γ(x)− C2γ̌(x), x ∈ G. (9)

Conversely, if γ ∈ Γ is a character, C1,C2 ∈ C are
constants and g is given by (6) and h by (9), then
(g,g,g,h) fulfills (8).

2. Z.F. (2011) special case for bounded regular measure µ,
f1 = f2 = h and g essentially bounded.

3. Z.F. & L. Székelyhidi general case by means of spectral
synthesis.
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Spectral synthesis tools

I A variety = nonzero closed invariant subspace C(G).

I A subset of V which is NOT in {{0}, C(G)} and which is a
(right) variety is called a proper (right) subvariety.

I A function which is a product of a polynomial and an
exponential is called an exponential monomial.

I spectral synthesis holds in V , if all exponential monomials
in V span a dense subvariety in V .

I spectral synthesis holds on G spectral synthesis holds in
every proper variety in C(G).
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Spectral synthesis on specific groups

I (f ∈ L1(T), p ∈ [1,∞), gr (θ) =
∑

n∈Z r |n| f̂ (n)e−inθ)⇒

‖f − gr‖Lp → 0, r → 1.

I f ∈ C(T)⇒ ‖f − gr‖C(T) → 0, r → 1.
I f ∈ L1(R),

gµ(x) :=

∫
R

e−itx f̂ (t) exp
(
− t2µ

2

)
dt
2π
.

If f ∈ L1 ∩ Lp for p ∈ [1,∞), then

‖f − gµ‖Lp → 0, µ→ 0
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Spectral synthesis tools

1. If g(0) 6= 0: the form of h, ge and integral condition on f1
and f2.

2. If g(0) = 0: the general solution; tools: spectral synthesis
3. Remarks on solutions of special case with f1 = f2 = g and

h for wider class of groups.
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