Trigonometry on groups

Outline
What is an exponential function. Examples
Basic definition
Classical results
Solutions of d'Alembert equation and spectral analysis
Gajda's results
A generalization of sine-cosine equation
Bibliography

What is an exponential function

- At a (secondary) school: Put

$$
e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}, \quad \exp (x):=e^{x}
$$

What is an exponential function

- At a (secondary) school: Put

$$
e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}, \quad \exp (x):=e^{x}
$$

- But what does it mean e.g. $\exp (\sqrt{2})$???

What is an exponential function

- At a (secondary) school: Put

$$
e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}, \quad \exp (x):=e^{x}
$$

- But what does it mean e.g. $\exp (\sqrt{2})$???
- Analysis I: $\exp (x):=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for $x \in \mathbb{R}$.

What is an exponential function

- At a (secondary) school: Put

$$
e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}, \quad \exp (x):=e^{x}
$$

- But what does it mean e.g. $\exp (\sqrt{2})$???
- Analysis I: $\exp (x):=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for $x \in \mathbb{R}$.
- A solution of ODE:

$$
f(x)=f^{\prime}(x) \quad \text { with } \quad f(0)=1
$$

only for differentiable functions.

What is an exponential function

- At a (secondary) school: Put

$$
e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}, \quad \exp (x):=e^{x} .
$$

- But what does it mean e.g. $\exp (\sqrt{2})$???
- Analysis I: $\exp (x):=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for $x \in \mathbb{R}$.
- A solution of ODE:

$$
f(x)=f^{\prime}(x) \quad \text { with } \quad f(0)=1
$$

only for differentiable functions.

- A non-zero continuous solution of functional equation

$$
m(x+y)=m(x) m(y)
$$

with $m(1):=e$.

- We are going to work on a locally compact Abelian (LCA) group G.
- We are going to work on a locally compact Abelian (LCA) group G.
- Examples: $\left(\mathbb{Z}_{m},+\right),(\mathbb{T}, \cdot)$ with $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$.
- We are going to work on a locally compact Abelian (LCA) group G.
- Examples: $\left(\mathbb{Z}_{m},+\right),(\mathbb{T}, \cdot)$ with $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$.
- $(\mathbb{R},+),(\mathbb{Z},+)$ are non-compact LCA groups.
- We are going to work on a locally compact Abelian (LCA) group G.
- Examples: $\left(\mathbb{Z}_{m},+\right),(\mathbb{T}, \cdot)$ with $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$.
- $(\mathbb{R},+),(\mathbb{Z},+)$ are non-compact LCA groups.
- Bounded exponentials are called characters of a group.
- We are going to work on a locally compact Abelian (LCA) group G.
- Examples: $\left(\mathbb{Z}_{m},+\right),(\mathbb{T}, \cdot)$ with $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$.
- $(\mathbb{R},+),(\mathbb{Z},+)$ are non-compact LCA groups.
- Bounded exponentials are called characters of a group.
- $\Gamma:=\{\gamma: \gamma$ character on $G\}$
- We are going to work on a locally compact Abelian (LCA) group G.
- Examples: $\left(\mathbb{Z}_{m},+\right),(\mathbb{T}, \cdot)$ with $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$.
- $(\mathbb{R},+),(\mathbb{Z},+)$ are non-compact LCA groups.
- Bounded exponentials are called characters of a group.
- $\Gamma:=\{\gamma: \gamma$ character on $G\}$
- monomials in classical analysis \leftrightarrow exponentials in Fourier analysis.
- We are going to work on a locally compact Abelian (LCA) group G.
- Examples: $\left(\mathbb{Z}_{m},+\right),(\mathbb{T}, \cdot)$ with $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$.
- $(\mathbb{R},+),(\mathbb{Z},+)$ are non-compact LCA groups.
- Bounded exponentials are called characters of a group.
- $\Gamma:=\{\gamma: \gamma$ character on $G\}$
- monomials in classical analysis \leftrightarrow exponentials in Fourier analysis.
- From now on we consider G is an LCA group with a fixed Haar measure k.

Let $f, g: G \rightarrow \mathbb{C}$.

Let $f, g: G \rightarrow \mathbb{C}$.
The function f satisfies d'Alembert's functional equation, if

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) f(y), \quad x, y \in G \tag{1}
\end{equation*}
$$

Let $f, g: G \rightarrow \mathbb{C}$.
The function f satisfies d'Alembert's functional equation, if

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) f(y), \quad x, y \in G \tag{1}
\end{equation*}
$$

Another name is the cosine functional equation since $f(x)=\cos x$ for $x \in G=\mathbb{R}$ satisfies (1).

Let $f, g: G \rightarrow \mathbb{C}$.
The function f satisfies d'Alembert's functional equation, if

$$
\cos (x+y)+\cos (x-y)=2 \cos (x) \cos (y), \quad x, y \in G
$$

Another name is the cosine functional equation since $f(x)=\cos x$ for $x \in G=\mathbb{R}$ satisfies (1).

Let $f, g: G \rightarrow \mathbb{C}$.
The function f satisfies d'Alembert's functional equation, if

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) f(y), \quad x, y \in G \tag{1}
\end{equation*}
$$

Another name is the cosine functional equation since $f(x)=\cos x$ for $x \in G=\mathbb{R}$ satisfies (1).

Let $f, g: G \rightarrow \mathbb{C}$.
The function f satisfies d'Alembert's functional equation, if

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) f(y), \quad x, y \in G \tag{1}
\end{equation*}
$$

Another name is the cosine functional equation since $f(x)=\cos x$ for $x \in G=\mathbb{R}$ satisfies (1).
The pair (g, f) satisfies Wilson's functional equation, if

$$
\begin{equation*}
g(x+y)+g(x-y)=2 g(x) f(y), \quad x, y \in G \tag{2}
\end{equation*}
$$

Let $f, g: G \rightarrow \mathbb{C}$.
The function f satisfies d'Alembert's functional equation, if

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) f(y), \quad x, y \in G \tag{1}
\end{equation*}
$$

Another name is the cosine functional equation since $f(x)=\cos x$ for $x \in G=\mathbb{R}$ satisfies (1).
The pair (g, f) satisfies Wilson's functional equation, if

$$
\begin{equation*}
g(x+y)+g(x-y)=2 g(x) f(y), \quad x, y \in G \tag{2}
\end{equation*}
$$

The model solutions of (2) is the pair $(g(x), f(x))=(\sin x, \cos x)$ for $x \in G=\mathbb{R}$, thus (2) is also called the sine - cosine equation.

Let $f, g: G \rightarrow \mathbb{C}$.
The function f satisfies d'Alembert's functional equation, if

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) f(y), \quad x, y \in G \tag{1}
\end{equation*}
$$

Another name is the cosine functional equation since $f(x)=\cos x$ for $x \in G=\mathbb{R}$ satisfies (1).
The pair (g, f) satisfies Wilson's functional equation, if

$$
\begin{equation*}
\sin (x+y)+\sin (x-y)=2 \sin (x) \cos (y), \quad x, y \in G \tag{2}
\end{equation*}
$$

The model solutions of (2) is the pair $(g(x), f(x))=(\sin x, \cos x)$ for $x \in G=\mathbb{R}$, thus (2) is also called the sine - cosine equation.

Let $f, g: G \rightarrow \mathbb{C}$.
The function f satisfies d'Alembert's functional equation, if

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) f(y), \quad x, y \in G \tag{1}
\end{equation*}
$$

Another name is the cosine functional equation since $f(x)=\cos x$ for $x \in G=\mathbb{R}$ satisfies (1).
The pair (g, f) satisfies Wilson's functional equation, if

$$
\begin{equation*}
g(x+y)+g(x-y)=2 g(x) f(y), \quad x, y \in G \tag{2}
\end{equation*}
$$

The model solutions of (2) is the pair $(g(x), f(x))=(\sin x, \cos x)$ for $x \in G=\mathbb{R}$, thus (2) is also called the sine - cosine equation.

Theorem (PI. Kannappan, [5])

The function $f: G \rightarrow \mathbb{R}$ satisfies cosine equation iff there exists an exponential $m: G \rightarrow \mathbb{C}$ such that $f(x)=\frac{m(x)+m(-x)}{2}, \quad x \in G$.

Theorem (PI. Kannappan, [5])

The function $f: G \rightarrow \mathbb{R}$ satisfies cosine equation iff there exists an exponential $m: G \rightarrow \mathbb{C}$ such that
$f(x)=\frac{m(x)+m(-x)}{2}, \quad x \in G$.
Theorem (L. Székelyhidi, [7], p. 109)
The pair (g, f) satisfies Wilson's functional equation iff $f \equiv 0$ and g arbitrary or $\exists m_{1}$ an exponential, $\exists \mathrm{a}: G \rightarrow \mathbb{C}$ additive and $\exists \alpha \in \mathbb{C}$ such that $m_{1}^{2}=1$ and for $x \in G$:

$$
\begin{equation*}
f(x)=m_{1}(x), \quad g(x)=(\alpha+a(x)) m_{1}(x) \tag{3}
\end{equation*}
$$

or $\exists m$ an exponential and constants $\alpha, \beta \in \mathbb{C}$ such that $m^{2} \neq 1$ and for $x \in G$:

$$
\begin{equation*}
f(x)=\frac{m(x)+m(-x)}{2}, \quad g(x)=\alpha m(x)+\beta m(-x) \tag{4}
\end{equation*}
$$

Theorem (Wiener, (see Székelyhidi [7], p. 9))
If G is a locally compact abelian group, then any nonzero closed invariant subspace of $L^{\infty}(G)$ contains a character.

Theorem (Wiener, (see Székelyhidi [7], p. 9))
If G is a locally compact abelian group, then any nonzero closed invariant subspace of $L^{\infty}(G)$ contains a character.

Theorem (Wiener, (see Székelyhidi [7], p. 9))

If G is a locally compact abelian group, then any nonzero closed invariant subspace of $L^{\infty}(G)$ contains a character.
We present special case of a reasoning from [7].

Example

Let $\left(\mathbb{Z}_{m},+\right.$) be the additive group of all remainders from division by m equipped with the discrete topology. If $f: \mathbb{Z}_{m} \rightarrow \mathbb{C}$ is a bounded function satisfying d'Alembert functional equation for all $x, y \in \mathbb{Z}_{m}$, then there exists $I \in \mathbb{Z}$ such that

$$
f(y)=\cos \left(\frac{2 \pi / y}{m}\right), \quad y \in \mathbb{Z}_{m} .
$$

Main steps of Székelyhidi reasonings

- Let $\tau(f)$ denote the minimal proper closed invariant subspace containing f.

Main steps of Székelyhidi reasonings

- Let $\tau(f)$ denote the minimal proper closed invariant subspace containing f.
- If f is a solution of equation (1), then each function $g \in \tau(f)$ satisfies equation (2).

Main steps of Székelyhidi reasonings

- Let $\tau(f)$ denote the minimal proper closed invariant subspace containing f.
- If f is a solution of equation (1), then each function $g \in \tau(f)$ satisfies equation (2).
- Fix $x, z \in \mathbb{Z}_{m}$. From (1) applied for $x-z$ instead of x we have

$$
f_{z}(x+y)+f_{z}(x-y)=2 f_{z}(x) f(y), \quad y \in \mathbb{Z}_{m}
$$

Main steps of Székelyhidi reasonings

- Let $\tau(f)$ denote the minimal proper closed invariant subspace containing f.
- If f is a solution of equation (1), then each function $g \in \tau(f)$ satisfies equation (2).
- Fix $x, z \in \mathbb{Z}_{m}$. From (1) applied for $x-z$ instead of x we have

$$
f_{z}(x+y)+f_{z}(x-y)=2 f_{z}(x) f(y), \quad y \in \mathbb{Z}_{m}
$$

- Since a linear combination of solution of (2) is a solution of (2) we obtain

$$
g(x+y)+g(x-y)=2 g(x) f(y), \quad y \in \mathbb{Z}_{m}
$$

for any function $g \in \tau(f)$.

- By Wiener theorem the space $\tau(f)$ contains a character.
- By Wiener theorem the space $\tau(f)$ contains a character.
- There exists an $I \in\{0,1, \ldots, m-1\}$ such that the character

$$
\chi(k)=e^{\frac{2 \pi i k k}{m}}, \quad k \in \mathbb{Z}_{m}
$$

is an element of $\tau(f)$ (cf. E. Hewitt and K. A. Ross, [4] p. 367), i.e.

$$
\chi(x+y)+\chi(x-y)=2 \chi(x) f(y), \quad y \in \mathbb{Z}_{m}
$$

- By Wiener theorem the space $\tau(f)$ contains a character.
- There exists an $I \in\{0,1, \ldots, m-1\}$ such that the character

$$
\chi(k)=e^{\frac{2 \pi i k k}{m}}, \quad k \in \mathbb{Z}_{m}
$$

is an element of $\tau(f)$ (cf. E. Hewitt and K. A. Ross, [4] p. 367), i.e.

$$
\chi(x+y)+\chi(x-y)=2 \chi(x) f(y), \quad y \in \mathbb{Z}_{m}
$$

- Dividing by $\chi(x) \neq 0$ we arrive at

$$
f(y)=\frac{\chi(y)+\chi(-y)}{2}=\frac{e^{\frac{2 \pi i l y}{m}}+e^{\frac{-2 \pi i l y}{m}}}{2}=\cos \left(\frac{2 \pi / y}{m}\right),
$$

for $y \in \mathbb{Z}_{m}$.

For a (bounded regular) measure $\mu: \mathcal{B}(G) \rightarrow \mathbb{C}$ and $y \in G$ we put

$$
\mu^{-}(A):=\mu(-A), \quad \mu_{y}(A):=\mu(A+y), \quad A \in \mathcal{B}(G)
$$

For a (bounded regular) measure $\mu: \mathcal{B}(G) \rightarrow \mathbb{C}$ and $y \in G$ we put

$$
\mu^{-}(A):=\mu(-A), \quad \mu_{y}(A):=\mu(A+y), \quad A \in \mathcal{B}(G)
$$

For $f: G \rightarrow \mathbb{C}$ and a (bounded) regular measure $\mu: \mathcal{B}(G) \rightarrow \mathbb{C}$ the convolution is given by

$$
(f * \mu)(x)=\int_{G} f(x-t) d \mu(t), \quad x \in G
$$

For a (bounded regular) measure $\mu: \mathcal{B}(G) \rightarrow \mathbb{C}$ and $y \in G$ we put

$$
\mu^{-}(A):=\mu(-A), \quad \mu_{y}(A):=\mu(A+y), \quad A \in \mathcal{B}(G)
$$

For $f: G \rightarrow \mathbb{C}$ and a (bounded) regular measure $\mu: \mathcal{B}(G) \rightarrow \mathbb{C}$ the convolution is given by

$$
(f * \mu)(x)=\int_{G} f(x-t) d \mu(t), \quad x \in G
$$

The Fourier transform of a function $f \in L^{1}(G)$ and a bounded regular Borel measure μ are given by
$\widehat{f}(\gamma):=\int_{G} f(x) \check{\gamma}(x) d m(x), \quad \widehat{\mu}(\gamma):=\int_{G} \check{\gamma}(x) d \mu(x), \quad \gamma \in \Gamma$.
where $\check{\gamma}(\boldsymbol{x}):=\gamma(-\boldsymbol{x})$.

Theorem (Z. Gajda)

Let $\mu: \mathcal{B}(G) \rightarrow \mathbb{C}$ be a regular bounded measure. Then a function $f \in L^{\infty}(G)$ which does not vanish m-l.a.e. satisfies equation

$$
\begin{equation*}
\left(f * \mu_{y}\right)(x)+\left(f *\left(\mu_{y}\right)^{-}\right)(x)=f(x) f(y), \quad x, y \in G, \tag{5}
\end{equation*}
$$

Theorem (Z. Gajda)

Let $\mu: \mathcal{B}(G) \rightarrow \mathbb{C}$ be a regular bounded measure. Then a function $f \in L^{\infty}(G)$ which does not vanish m-l.a.e. satisfies equation

$$
\begin{equation*}
\left(f * \mu_{y}\right)(x)+\left(f *\left(\mu_{y}\right)^{-}\right)(x)=f(x) f(y), \quad x, y \in G, \tag{5}
\end{equation*}
$$

Theorem (Z. Gajda)

Let $\mu: \mathcal{B}(G) \rightarrow \mathbb{C}$ be a regular bounded measure. Then a function $f \in L^{\infty}(G)$ which does not vanish m-l.a.e. satisfies equation

$$
\begin{equation*}
\left(f * \mu_{y}\right)(x)+\left(f *\left(\mu_{y}\right)^{-}\right)(x)=f(x) f(y), \quad x, y \in G \tag{5}
\end{equation*}
$$

iff there exists a character $\gamma \in \Gamma$ such that

$$
\begin{align*}
f(y) & =\widehat{\mu}(\gamma) \gamma(y)+\widehat{\mu}(\check{\gamma}) \check{\gamma}(y) \tag{6}\\
& =\gamma(y) \int_{G} \gamma(-s) d \mu(s)+\check{\gamma}(y) \int_{G} \gamma(s) d \mu(s) \tag{7}
\end{align*}
$$

for all $y \in G$. To get cosine eq. one can take μ given by $\mu(A):=\frac{1}{2} \delta_{0}(A)$ for $A \in \mathcal{B}(G)$.

We discuss solutions of

$$
\begin{equation*}
\left(f_{1} * \mu_{y}\right)(x)+\left(f_{2} *\left(\mu_{y}\right)^{-}\right)(x)=g(x) h(y), \quad x, y \in G \tag{8}
\end{equation*}
$$

for $f_{1}, f_{2}, g, h: G \rightarrow \mathbb{C}$ s.t. convolutions are well-defined.

1. Z.F. (2009) special case for bounded regular measure μ, $f_{1}=f_{2}=g$ and h essentially bounded: then there exist a character $\gamma \in \Gamma$ and constants $C_{1}, C_{2} \in \mathbb{C}$ such that g is the form of (6) and

$$
\begin{equation*}
h(x)=C_{1} \gamma(x)-C_{2} \check{\gamma}(x), \quad x \in G . \tag{9}
\end{equation*}
$$

Conversely, if $\gamma \in \Gamma$ is a character, $C_{1}, C_{2} \in \mathbb{C}$ are constants and g is given by (6) and h by (9), then (g, g, g, h) fulfills (8).

We discuss solutions of

$$
\begin{equation*}
\left(f_{1} * \mu_{y}\right)(x)+\left(f_{2} *\left(\mu_{y}\right)^{-}\right)(x)=g(x) h(y), \quad x, y \in G \tag{8}
\end{equation*}
$$

for $f_{1}, f_{2}, g, h: G \rightarrow \mathbb{C}$ s.t. convolutions are well-defined.

1. Z.F. (2009) special case for bounded regular measure μ, $f_{1}=f_{2}=g$ and h essentially bounded: then there exist a character $\gamma \in \Gamma$ and constants $C_{1}, C_{2} \in \mathbb{C}$ such that g is the form of (6) and

$$
\begin{equation*}
h(x)=C_{1} \gamma(x)-C_{2} \check{\gamma}(x), \quad x \in G . \tag{9}
\end{equation*}
$$

Conversely, if $\gamma \in \Gamma$ is a character, $C_{1}, C_{2} \in \mathbb{C}$ are constants and g is given by (6) and h by (9), then (g, g, g, h) fulfills (8).
2. Z.F. (2011) special case for bounded regular measure μ, $f_{1}=f_{2}=h$ and g essentially bounded.

We discuss solutions of

$$
\begin{equation*}
\left(f_{1} * \mu_{y}\right)(x)+\left(f_{2} *\left(\mu_{y}\right)^{-}\right)(x)=g(x) h(y), \quad x, y \in G \tag{8}
\end{equation*}
$$

for $f_{1}, f_{2}, g, h: G \rightarrow \mathbb{C}$ s.t. convolutions are well-defined.

1. Z.F. (2009) special case for bounded regular measure μ, $f_{1}=f_{2}=g$ and h essentially bounded: then there exist a character $\gamma \in \Gamma$ and constants $C_{1}, C_{2} \in \mathbb{C}$ such that g is the form of (6) and

$$
\begin{equation*}
h(x)=C_{1} \gamma(x)-C_{2} \check{\gamma}(x), \quad x \in G . \tag{9}
\end{equation*}
$$

Conversely, if $\gamma \in \Gamma$ is a character, $C_{1}, C_{2} \in \mathbb{C}$ are constants and g is given by (6) and h by (9), then (g, g, g, h) fulfills (8).
2. Z.F. (2011) special case for bounded regular measure μ,
$f_{1}=f_{2}=h$ and g essentially bounded.
3. Z.F. \& L. Székelyhidi general case by means of spectral synthesis.

Spectral synthesis tools

- A variety $=$ nonzero closed invariant subspace $\mathcal{C}(G)$.

Spectral synthesis tools

- A variety $=$ nonzero closed invariant subspace $\mathcal{C}(G)$.
- A subset of V which is NOT in $\{\{0\}, \mathcal{C}(G)\}$ and which is a (right) variety is called a proper (right) subvariety.

Spectral synthesis tools

- A variety $=$ nonzero closed invariant subspace $\mathcal{C}(G)$.
- A subset of V which is NOT in $\{\{0\}, \mathcal{C}(G)\}$ and which is a (right) variety is called a proper (right) subvariety.
- A function which is a product of a polynomial and an exponential is called an exponential monomial.

Spectral synthesis tools

- A variety $=$ nonzero closed invariant subspace $\mathcal{C}(G)$.
- A subset of V which is NOT in $\{\{0\}, \mathcal{C}(G)\}$ and which is a (right) variety is called a proper (right) subvariety.
- A function which is a product of a polynomial and an exponential is called an exponential monomial.
- spectral synthesis holds in V, if all exponential monomials in V span a dense subvariety in V.

Spectral synthesis tools

- A variety $=$ nonzero closed invariant subspace $\mathcal{C}(G)$.
- A subset of V which is NOT in $\{\{0\}, \mathcal{C}(G)\}$ and which is a (right) variety is called a proper (right) subvariety.
- A function which is a product of a polynomial and an exponential is called an exponential monomial.
- spectral synthesis holds in V, if all exponential monomials in V span a dense subvariety in V.
- spectral synthesis holds on G spectral synthesis holds in every proper variety in $\mathcal{C}(G)$.

Spectral synthesis on specific groups

$$
\begin{aligned}
\quad\left(f \in L^{1}(\mathbb{T}), p \in[1, \infty), g_{r}(\theta)\right. & \left.=\sum_{n \in \mathbb{Z}} r^{|n|} \hat{f}(n) e^{-i n \theta}\right) \Rightarrow \\
\left\|f-g_{r}\right\|_{L^{\rho}} & \rightarrow 0, \quad r \rightarrow 1 .
\end{aligned}
$$

Spectral synthesis on specific groups

- $\left(f \in L^{1}(\mathbb{T}), p \in[1, \infty), g_{r}(\theta)=\sum_{n \in \mathbb{Z}} r^{n \mid} \hat{f}(n) e^{-i n \theta}\right) \Rightarrow$

$$
\left\|f-g_{r}\right\|_{L p} \rightarrow 0, \quad r \rightarrow 1 .
$$

- $f \in \mathcal{C}(\mathbb{T}) \Rightarrow\left\|f-g_{r}\right\|_{\mathcal{C}(\mathbb{T})} \rightarrow 0, \quad r \rightarrow 1$.

Spectral synthesis on specific groups

- $\left(f \in L^{1}(\mathbb{T}), p \in[1, \infty), g_{r}(\theta)=\sum_{n \in \mathbb{Z}} r^{|n|} \hat{f}(n) e^{-i n \theta}\right) \Rightarrow$

$$
\left\|f-g_{r}\right\|_{L p} \rightarrow 0, \quad r \rightarrow 1 .
$$

- $f \in \mathcal{C}(\mathbb{T}) \Rightarrow\left\|f-g_{r}\right\|_{\mathcal{C}(\mathbb{T})} \rightarrow 0, \quad r \rightarrow 1$.
- $f \in L^{1}(\mathbb{R})$,

$$
g_{\mu}(x):=\int_{\mathbb{R}} e^{-i t t} \hat{f}(t) \exp \left(-\frac{t^{2} \mu}{2}\right) \frac{d t}{2 \pi} .
$$

If $f \in L^{1} \cap L^{p}$ for $p \in[1, \infty)$, then

$$
\left\|f-g_{\mu}\right\|_{L p} \rightarrow 0, \quad \mu \rightarrow 0
$$

Spectral synthesis tools

1. If $g(0) \neq 0$: the form of h, g_{e} and integral condition on f_{1} and f_{2}.

Spectral synthesis tools

1. If $g(0) \neq 0$: the form of h, g_{e} and integral condition on f_{1} and f_{2}.
2. If $g(0)=0$: the general solution; tools: spectral synthesis

Spectral synthesis tools

1. If $g(0) \neq 0$: the form of h, g_{e} and integral condition on f_{1} and f_{2}.
2. If $g(0)=0$: the general solution; tools: spectral synthesis
3. Remarks on solutions of special case with $f_{1}=f_{2}=g$ and h for wider class of groups.
I. Z. F., A generalization of Gajda equation,
J. Math. Anal. Appl. 354 (2009) pp. 584-593

1
Z. F.,A generalization of Gajda equation,
J. Math. Anal. Appl. 354 (2009) pp. 584-593Z. F., A note on a modification of Gajda equation, Aequationes Mathematicae 82 (2011), 135-141
Z. F.,A generalization of Gajda equation,
J. Math. Anal. Appl. 354 (2009) pp. 584-593Z. F., A note on a modification of Gajda equation, Aequationes Mathematicae 82 (2011), 135-141
Z. F., L. Székelyhidi, A generalization of Gajda equation on LCA group Manuscrip
Z. F.,A generalization of Gajda equation,
J. Math. Anal. Appl. 354 (2009) pp. 584-593

Z. F., A note on a modification of Gajda equation, Aequationes Mathematicae 82 (2011), 135-141

Z. F., L. Székelyhidi, A generalization of Gajda equation on LCA group Manuscrip
E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representation, 1963.

Z. F.,A generalization of Gajda equation,
J. Math. Anal. Appl. 354 (2009) pp. 584-593

Z. F., A note on a modification of Gajda equation, Aequationes Mathematicae 82 (2011), 135-141

Z. F., L. Székelyhidi, A generalization of Gajda equation on LCA group Manuscrip
R- E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representation, 1963.PI. Kannappan, The functional equation $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y)$ for groups, Proc. Amer. Math. Soc. 19 (1968), 69-74.
Z. F.,A generalization of Gajda equation,
J. Math. Anal. Appl. 354 (2009) pp. 584-593

Z. F., A note on a modification of Gajda equation, Aequationes Mathematicae 82 (2011), 135-141

Z. F., L. Székelyhidi, A generalization of Gajda equation on LCA group Manuscrip
R E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representation, 1963.

PI. Kannappan, The functional equation $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y)$ for groups, Proc. Amer. Math. Soc. 19 (1968), 69-74.
H. Stetkær, Functional equations on groups,

World Scientific 2013
Z. F.,A generalization of Gajda equation,
J. Math. Anal. Appl. 354 (2009) pp. 584-593

R- Z. F., A note on a modification of Gajda equation, Aequationes Mathematicae 82 (2011), 135-141

Z. F., L. Székelyhidi, A generalization of Gajda equation on LCA group Manuscrip
R- E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representation, 1963.
R PI. Kannappan, The functional equation $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y)$ for groups, Proc. Amer. Math. Soc. 19 (1968), 69-74.
Fin. Stetkær, Functional equations on groups, World Scientific 2013L. Székelyhidi, Convolution Type Functional Equation on Topological Abelian Groups,
World Scientific 1991.

Z．F．，A generalization of Gajda equation，
J．Math．Anal．Appl． 354 （2009）pp．584－593

Z．F．，A note on a modification of Gajda equation， Aequationes Mathematicae 82 （2011），135－141

Z．F．，L．Székelyhidi，A generalization of Gajda equation on LCA group Manuscrip
R－E．Hewitt and K．A．Ross，Abstract harmonic analysis．Vol．I：Structure of topological groups．Integration theory，group representation， 1963.
R PI．Kannappan，The functional equation $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y)$ for groups， Proc．Amer．Math．Soc． 19 （1968），69－74．
Fin．Stetkær，Functional equations on groups， World Scientific 2013

L．Székelyhidi，Convolution Type Functional Equation on Topological Abelian Groups，
World Scientific 1991.
䍰 L．Székelyhidi，Discrete Spectral Synthesis and Its Applications， Springer 2006.

