

ulm university universität **UUU**

(□) (圖) (E) (E) (E)

Trigonometry on groups

Żywilla Fechner | Sept. 2013 | Ulm University

Outline What is an exponential function. Examples

- **Basic definition**
- **Classical results**

Solutions of d'Alembert equation and spectral analysis

Gajda's results

A generalization of sine-cosine equation

Bibliography

At a (secondary) school: Put

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n, \quad \exp(x) := e^x.$$

At a (secondary) school: Put

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n, \quad \exp(x) := e^x.$$

• But what does it mean e.g. $exp(\sqrt{2})$???

At a (secondary) school: Put

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n, \quad \exp(x) := e^x.$$

- But what does it mean e.g. $exp(\sqrt{2})$???
- Analysis I: $\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for $x \in \mathbb{R}$.

At a (secondary) school: Put

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n, \quad \exp(x) := e^x.$$

- But what does it mean e.g. $exp(\sqrt{2})$???
- Analysis I: $\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for $x \in \mathbb{R}$.
- A solution of ODE:

$$f(x) = f'(x)$$
 with $f(0) = 1$

only for differentiable functions.

At a (secondary) school: Put

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n, \quad \exp(x) := e^x.$$

- But what does it mean e.g. $exp(\sqrt{2})$???
- Analysis I: $\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for $x \in \mathbb{R}$.
- A solution of ODE:

$$f(x) = f'(x)$$
 with $f(0) = 1$

only for differentiable functions.

A non-zero continuous solution of functional equation

$$m(x+y)=m(x)m(y)$$

with m(1) := e.

▶ We are going to work on a locally compact Abelian (LCA) group G.

Seite 9/64 What is an exponential function. Examples | Trigonometry on Groups | Sept. 2013

- We are going to work on a locally compact Abelian (LCA) group G.
- Examples: $(\mathbb{Z}_m, +)$, (\mathbb{T}, \cdot) with $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$.

Seite 10/64 What is an exponential function. Examples | Trigonometry on Groups | Sept. 2013

- We are going to work on a locally compact Abelian (LCA) group G.
- Examples: $(\mathbb{Z}_m, +)$, (\mathbb{T}, \cdot) with $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$.
- $(\mathbb{R}, +)$, $(\mathbb{Z}, +)$ are non-compact LCA groups.

Seite 11/64 What is an exponential function. Examples | Trigonometry on Groups | Sept. 2013

- We are going to work on a locally compact Abelian (LCA) group G.
- Examples: $(\mathbb{Z}_m, +)$, (\mathbb{T}, \cdot) with $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$.
- $(\mathbb{R}, +)$, $(\mathbb{Z}, +)$ are non-compact LCA groups.
- ▶ Bounded exponentials are called *characters of a group*.

Seite 12/64 What is an exponential function. Examples | Trigonometry on Groups | Sept. 2013

- We are going to work on a locally compact Abelian (LCA) group G.
- Examples: $(\mathbb{Z}_m, +)$, (\mathbb{T}, \cdot) with $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$.
- ▶ $(\mathbb{R}, +), (\mathbb{Z}, +)$ are non-compact LCA groups.
- Bounded exponentials are called *characters of a group*.
- $\blacktriangleright \ \mathsf{\Gamma} := \{ \gamma : \gamma \quad \text{character} \quad \text{on} \quad \mathbf{G} \}$

Seite 13/64 What is an exponential function. Examples | Trigonometry on Groups | Sept. 2013

- We are going to work on a locally compact Abelian (LCA) group G.
- Examples: $(\mathbb{Z}_m, +)$, (\mathbb{T}, \cdot) with $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$.
- ▶ $(\mathbb{R}, +), (\mathbb{Z}, +)$ are non-compact LCA groups.
- Bounded exponentials are called *characters of a group*.
- $\blacktriangleright \ \mathsf{\Gamma} := \{ \gamma : \gamma \quad \text{character} \quad \text{on} \quad \mathsf{G} \}$
- ► monomials in classical analysis ↔ exponentials in Fourier analysis.

Seite 14/64 What is an exponential function. Examples | Trigonometry on Groups | Sept. 2013

- We are going to work on a locally compact Abelian (LCA) group G.
- Examples: $(\mathbb{Z}_m, +)$, (\mathbb{T}, \cdot) with $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$.
- ▶ $(\mathbb{R}, +), (\mathbb{Z}, +)$ are non-compact LCA groups.
- Bounded exponentials are called *characters of a group*.
- $\blacktriangleright \ \mathsf{\Gamma} := \{ \gamma : \gamma \quad \text{character} \quad \text{on} \quad \mathbf{G} \}$
- ► monomials in classical analysis ↔ exponentials in Fourier analysis.
- ▶ From now on we consider *G* is an LCA group with a fixed Haar measure *k*.

Let $f, g \colon G \to \mathbb{C}$.

The function f satisfies d'Alembert's functional equation, if

$$f(x + y) + f(x - y) = 2f(x)f(y), \quad x, y \in G.$$
 (1)

The function f satisfies d'Alembert's functional equation, if

$$f(x+y)+f(x-y)=2f(x)f(y), \quad x,y\in G.$$
 (1)

Another name is the *cosine functional equation* since $f(x) = \cos x$ for $x \in G = \mathbb{R}$ satisfies (1).

The function f satisfies d'Alembert's functional equation, if

 $\cos(x+y) + \cos(x-y) = 2\cos(x)\cos(y), \quad x, y \in G.$ (1)

Another name is the *cosine functional equation* since $f(x) = \cos x$ for $x \in G = \mathbb{R}$ satisfies (1).

The function f satisfies d'Alembert's functional equation, if

$$f(x+y)+f(x-y)=2f(x)f(y), \quad x,y\in G.$$
 (1)

Another name is the *cosine functional equation* since $f(x) = \cos x$ for $x \in G = \mathbb{R}$ satisfies (1).

The function f satisfies d'Alembert's functional equation, if

$$f(x+y)+f(x-y)=2f(x)f(y), \quad x,y\in G.$$
 (1)

Another name is the *cosine functional equation* since $f(x) = \cos x$ for $x \in G = \mathbb{R}$ satisfies (1).

The pair (g, f) satisfies Wilson's functional equation, if

$$g(x + y) + g(x - y) = 2g(x)f(y), \quad x, y \in G.$$
 (2)

20/64

The function f satisfies d'Alembert's functional equation, if

$$f(x+y)+f(x-y)=2f(x)f(y), \quad x,y\in G.$$
 (1)

Another name is the *cosine functional equation* since $f(x) = \cos x$ for $x \in G = \mathbb{R}$ satisfies (1).

The pair (g, f) satisfies Wilson's functional equation, if

$$g(x+y)+g(x-y)=2g(x)f(y), \quad x,y\in G.$$

The model solutions of (2) is the pair $(g(x), f(x)) = (\sin x, \cos x)$ for $x \in G = \mathbb{R}$, thus (2) is also called the *sine - cosine equation*.

The function f satisfies d'Alembert's functional equation, if

$$f(x + y) + f(x - y) = 2f(x)f(y), \quad x, y \in G.$$
 (1)

Another name is the *cosine functional equation* since $f(x) = \cos x$ for $x \in G = \mathbb{R}$ satisfies (1).

The pair (g, f) satisfies Wilson's functional equation, if

 $sin(x + y) + sin(x - y) = 2 sin(x) cos(y), x, y \in G.$ (2)

The model solutions of (2) is the pair $(g(x), f(x)) = (\sin x, \cos x)$ for $x \in G = \mathbb{R}$, thus (2) is also called the *sine - cosine equation*.

The function f satisfies d'Alembert's functional equation, if

$$f(x + y) + f(x - y) = 2f(x)f(y), \quad x, y \in G.$$
 (1)

Another name is the *cosine functional equation* since $f(x) = \cos x$ for $x \in G = \mathbb{R}$ satisfies (1).

The pair (g, f) satisfies Wilson's functional equation, if

$$g(x+y)+g(x-y)=2g(x)f(y), \quad x,y\in G.$$

The model solutions of (2) is the pair $(g(x), f(x)) = (\sin x, \cos x)$ for $x \in G = \mathbb{R}$, thus (2) is also called the *sine - cosine equation*.

Theorem (PI. Kannappan, [5])

The function $f: G \to \mathbb{R}$ satisfies cosine equation iff there exists an exponential $m: G \to \mathbb{C}$ such that $f(x) = \frac{m(x)+m(-x)}{2}, \quad x \in G.$

Theorem (PI. Kannappan, [5])

The function $f: G \to \mathbb{R}$ satisfies cosine equation iff there exists an exponential $m: G \to \mathbb{C}$ such that $f(x) = \frac{m(x)+m(-x)}{2}, \quad x \in G.$

Theorem (L. Székelyhidi, [7], p. 109)

The pair (g, f) satisfies Wilson's functional equation iff $f \equiv 0$ and g arbitrary or $\exists m_1$ an exponential, $\exists a \colon G \to \mathbb{C}$ additive and $\exists \alpha \in \mathbb{C}$ such that $m_1^2 = 1$ and for $x \in G$:

$$f(x) = m_1(x), \quad g(x) = (\alpha + a(x))m_1(x),$$
 (3)

or $\exists m$ an exponential and constants $\alpha, \beta \in \mathbb{C}$ such that $m^2 \neq 1$ and for $x \in G$:

$$f(x) = \frac{m(x) + m(-x)}{2}, \quad g(x) = \alpha m(x) + \beta m(-x). \quad (4)$$

Seite 26/64 Solutions of d'Alembert equation and spectral analysis | Trigonometry on Groups | Sept. 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Wiener, (see Székelyhidi [7], p. 9))

If G is a locally compact abelian group, then any nonzero closed invariant subspace of $L^{\infty}(G)$ contains a character.

Theorem (Wiener, (see Székelyhidi [7], p. 9))

If G is a locally compact abelian group, then any nonzero closed invariant subspace of $L^{\infty}(G)$ contains a character.

Theorem (Wiener, (see Székelyhidi [7], p. 9))

If G is a locally compact abelian group, then any nonzero closed invariant subspace of $L^{\infty}(G)$ contains a character. We present special case of a reasoning from [7].

Example

Let $(\mathbb{Z}_m, +)$ be the additive group of all remainders from division by *m* equipped with the discrete topology. If $f: \mathbb{Z}_m \to \mathbb{C}$ is a bounded function satisfying d'Alembert functional equation for all $x, y \in \mathbb{Z}_m$, then there exists $I \in \mathbb{Z}$ such that

$$f(y) = \cos\left(rac{2\pi ly}{m}
ight), \quad y \in \mathbb{Z}_m.$$

Let *τ*(*f*) denote the minimal proper closed invariant subspace containing *f*.

- Let *τ*(*f*) denote the minimal proper closed invariant subspace containing *f*.
- If *f* is a solution of equation (1), then each function *g* ∈ τ(*f*) satisfies equation (2).

- Let *τ*(*f*) denote the minimal proper closed invariant subspace containing *f*.
- If *f* is a solution of equation (1), then each function *g* ∈ τ(*f*) satisfies equation (2).
 - Fix $x, z \in \mathbb{Z}_m$. From (1) applied for x z instead of x we have

$$f_z(x+y)+f_z(x-y)=2f_z(x)f(y), \quad y\in\mathbb{Z}_m.$$

- Let *τ*(*f*) denote the minimal proper closed invariant subspace containing *f*.
- If *f* is a solution of equation (1), then each function *g* ∈ τ(*f*) satisfies equation (2).
 - Fix $x, z \in \mathbb{Z}_m$. From (1) applied for x z instead of x we have

$$f_z(x+y)+f_z(x-y)=2f_z(x)f(y), \quad y\in\mathbb{Z}_m.$$

 Since a linear combination of solution of (2) is a solution of (2) we obtain

$$g(x+y)+g(x-y)=2g(x)f(y), \quad y\in\mathbb{Z}_m$$

for any function $g \in \tau(f)$.

▶ By Wiener theorem the space $\tau(f)$ contains a character.

- ▶ By Wiener theorem the space $\tau(f)$ contains a character.
- ► There exists an *I* ∈ {0, 1, ..., *m* − 1} such that the character

$$\chi(\mathbf{k}) = \mathbf{e}^{rac{2\pi i \mathbf{k} \mathbf{l}}{m}}, \quad \mathbf{k} \in \mathbb{Z}_m$$

is an element of $\tau(f)$ (cf. E. Hewitt and K. A. Ross, [4] p. 367), i.e.

$$\chi(\mathbf{x} + \mathbf{y}) + \chi(\mathbf{x} - \mathbf{y}) = 2\chi(\mathbf{x})f(\mathbf{y}), \quad \mathbf{y} \in \mathbb{Z}_m.$$

- ▶ By Wiener theorem the space $\tau(f)$ contains a character.
- ► There exists an *I* ∈ {0, 1, ..., *m* − 1} such that the character

$$\chi(\mathbf{k}) = \mathbf{e}^{rac{2\pi i \mathbf{k} \mathbf{l}}{m}}, \quad \mathbf{k} \in \mathbb{Z}_m$$

is an element of $\tau(f)$ (cf. E. Hewitt and K. A. Ross, [4] p. 367), i.e.

$$\chi(\mathbf{x}+\mathbf{y}) + \chi(\mathbf{x}-\mathbf{y}) = 2\chi(\mathbf{x})f(\mathbf{y}), \quad \mathbf{y} \in \mathbb{Z}_m.$$

• Dividing by $\chi(x) \neq 0$ we arrive at

$$f(y) = \frac{\chi(y) + \chi(-y)}{2} = \frac{e^{\frac{2\pi i l y}{m}} + e^{\frac{-2\pi i l y}{m}}}{2} = \cos\left(\frac{2\pi l y}{m}\right),$$

for $y \in \mathbb{Z}_m$.

For a (bounded regular) measure $\mu \colon \mathcal{B}(G) \to \mathbb{C}$ and $y \in G$ we put

$$\mu^-(A) := \mu(-A), \quad \mu_y(A) := \mu(A+y), \quad A \in \mathcal{B}(G);$$

For a (bounded regular) measure $\mu \colon \mathcal{B}(G) \to \mathbb{C}$ and $y \in G$ we put

$$\mu^-(\mathcal{A}) := \mu(-\mathcal{A}), \quad \mu_{\mathcal{Y}}(\mathcal{A}) := \mu(\mathcal{A} + \mathcal{Y}), \quad \mathcal{A} \in \mathcal{B}(\mathcal{G});$$

For $f: G \to \mathbb{C}$ and a (bounded) regular measure $\mu: \mathcal{B}(G) \to \mathbb{C}$ the *convolution* is given by

$$(f*\mu)(x)=\int_G f(x-t)d\mu(t), \quad x\in G;$$

For a (bounded regular) measure $\mu \colon \mathcal{B}(G) \to \mathbb{C}$ and $y \in G$ we put

$$\mu^-(\mathcal{A}) := \mu(-\mathcal{A}), \quad \mu_{\mathcal{Y}}(\mathcal{A}) := \mu(\mathcal{A} + \mathcal{Y}), \quad \mathcal{A} \in \mathcal{B}(\mathcal{G});$$

For $f: G \to \mathbb{C}$ and a (bounded) regular measure $\mu: \mathcal{B}(G) \to \mathbb{C}$ the *convolution* is given by

$$(f*\mu)(x)=\int_G f(x-t)d\mu(t), \quad x\in G;$$

The Fourier transform of a function $f \in L^1(G)$ and a bounded regular Borel measure μ are given by

$$\widehat{f}(\gamma) := \int_{G} f(x)\check{\gamma}(x)dm(x), \quad \widehat{\mu}(\gamma) := \int_{G}\check{\gamma}(x)d\mu(x), \quad \gamma \in \Gamma.$$

where $\check{\gamma}(x) := \gamma(-x)$.

Theorem (Z. Gajda)

Let $\mu \colon \mathcal{B}(G) \to \mathbb{C}$ be a regular bounded measure. Then a function $f \in L^{\infty}(G)$ which does not vanish *m*-l.a.e. satisfies equation

$$(f * \mu_y)(x) + (f * (\mu_y)^-)(x) = f(x)f(y), \quad x, y \in G,$$
 (5)

Theorem (Z. Gajda)

Let $\mu \colon \mathcal{B}(G) \to \mathbb{C}$ be a regular bounded measure. Then a function $f \in L^{\infty}(G)$ which does not vanish *m*-l.a.e. satisfies equation

$$(f * \mu_y)(x) + (f * (\mu_y)^-)(x) = f(x)f(y), \quad x, y \in G,$$
 (5)

Theorem (Z. Gajda)

Let $\mu \colon \mathcal{B}(G) \to \mathbb{C}$ be a regular bounded measure. Then a function $f \in L^{\infty}(G)$ which does not vanish *m*-l.a.e. satisfies equation

$$(f * \mu_y)(x) + (f * (\mu_y)^-)(x) = f(x)f(y), \quad x, y \in G,$$
 (5)

iff there exists a character $\gamma \in \Gamma$ such that

$$f(\mathbf{y}) = \widehat{\mu}(\gamma)\gamma(\mathbf{y}) + \widehat{\mu}(\check{\gamma})\check{\gamma}(\mathbf{y})$$
(6)
$$= \gamma(\mathbf{y})\int_{G}\gamma(-\mathbf{s})d\mu(\mathbf{s}) + \check{\gamma}(\mathbf{y})\int_{G}\gamma(\mathbf{s})d\mu(\mathbf{s})$$
(7)

for all $y \in G$. To get cosine eq. one can take μ given by $\mu(A) := \frac{1}{2}\delta_0(A)$ for $A \in \mathcal{B}(G)$. We discuss solutions of

$$(f_1 * \mu_y)(x) + (f_2 * (\mu_y)^-)(x) = g(x)h(y), \quad x, y \in G$$
 (8)

for $f_1, f_2, g, h: G \to \mathbb{C}$ s.t. convolutions are well-defined.

 Z.F. (2009) special case for bounded regular measure μ, *f*₁ = *f*₂ = *g* and *h* essentially bounded: then there exist a character γ ∈ Γ and constants *C*₁, *C*₂ ∈ C such that *g* is the form of (6) and

$$h(x) = C_1 \gamma(x) - C_2 \check{\gamma}(x), \quad x \in G.$$
(9)

Conversely, if $\gamma \in \Gamma$ is a character, $C_1, C_2 \in \mathbb{C}$ are constants and *g* is given by (6) and *h* by (9), then (g, g, g, h) fulfills (8).

We discuss solutions of

$$(f_1 * \mu_y)(x) + (f_2 * (\mu_y)^-)(x) = g(x)h(y), \quad x, y \in G$$
 (8)

for $f_1, f_2, g, h: G \to \mathbb{C}$ s.t. convolutions are well-defined.

 Z.F. (2009) special case for bounded regular measure μ, *f*₁ = *f*₂ = *g* and *h* essentially bounded: then there exist a character γ ∈ Γ and constants *C*₁, *C*₂ ∈ C such that *g* is the form of (6) and

$$h(x) = C_1 \gamma(x) - C_2 \check{\gamma}(x), \quad x \in G.$$
(9)

Conversely, if $\gamma \in \Gamma$ is a character, $C_1, C_2 \in \mathbb{C}$ are constants and g is given by (6) and h by (9), then (g, g, g, h) fulfills (8).

2. Z.F. (2011) **special case** for bounded regular measure μ , $f_1 = f_2 = h$ and g essentially bounded.

We discuss solutions of

$$(f_1 * \mu_y)(x) + (f_2 * (\mu_y)^-)(x) = g(x)h(y), \quad x, y \in G$$
 (8)

for $f_1, f_2, g, h: G \to \mathbb{C}$ s.t. convolutions are well-defined.

 Z.F. (2009) special case for bounded regular measure μ, *f*₁ = *f*₂ = *g* and *h* essentially bounded: then there exist a character γ ∈ Γ and constants *C*₁, *C*₂ ∈ C such that *g* is the form of (6) and

$$h(x) = C_1 \gamma(x) - C_2 \check{\gamma}(x), \quad x \in G.$$
(9)

Conversely, if $\gamma \in \Gamma$ is a character, $C_1, C_2 \in \mathbb{C}$ are constants and g is given by (6) and h by (9), then (g, g, g, h) fulfills (8).

- 2. Z.F. (2011) **special case** for bounded regular measure μ , $f_1 = f_2 = h$ and g essentially bounded.
- 3. Z.F. & L. Székelyhidi **general case** by means of spectral synthesis.

• A variety = nonzero closed invariant subspace C(G).

- A variety = nonzero closed invariant subspace C(G).
- ► A subset of V which is NOT in {{0}, C(G)} and which is a (right) variety is called a *proper (right) subvariety*.

- A variety = nonzero closed invariant subspace C(G).
- ► A subset of V which is NOT in {{0}, C(G)} and which is a (right) variety is called a *proper (right) subvariety*.
- A function which is a product of a polynomial and an exponential is called an *exponential monomial*.

- A variety = nonzero closed invariant subspace C(G).
- ► A subset of V which is NOT in {{0}, C(G)} and which is a (right) variety is called a *proper (right) subvariety*.
- A function which is a product of a polynomial and an exponential is called an *exponential monomial*.
- spectral synthesis holds in V, if all exponential monomials in V span a <u>dense</u> subvariety in V.

- A variety = nonzero closed invariant subspace C(G).
- ► A subset of V which is NOT in {{0}, C(G)} and which is a (right) variety is called a *proper (right) subvariety*.
- A function which is a product of a polynomial and an exponential is called an *exponential monomial*.
- spectral synthesis holds in V, if all exponential monomials in V span a <u>dense</u> subvariety in V.
- ► spectral synthesis holds on G spectral synthesis holds in every proper variety in C(G).

Spectral synthesis on specific groups

►
$$(f \in L^1(\mathbb{T}), p \in [1, \infty), g_r(\theta) = \sum_{n \in \mathbb{Z}} r^{|n|} \hat{f}(n) e^{-in\theta}) \Rightarrow$$

 $\|f - g_r\|_{L^p} \to 0, \quad r \to 1.$

51/64

Spectral synthesis on specific groups

52/64

Spectral synthesis on specific groups

$$g_{\mu}(x) := \int_{\mathbb{R}} e^{-itx} \hat{f}(t) \exp\left(-\frac{t^2 \mu}{2}\right) \frac{dt}{2\pi}.$$

If $f \in L^1 \cap L^p$ for $p \in [1, \infty)$, then

$$\|f-g_{\mu}\|_{L^p}
ightarrow 0, \quad \mu
ightarrow 0$$

Spectral synthesis tools

1. If $g(0) \neq 0$: the form of *h*, g_e and integral condition on f_1 and f_2 .

Spectral synthesis tools

- 1. If $g(0) \neq 0$: the form of *h*, g_e and integral condition on f_1 and f_2 .
- 2. If g(0) = 0: the general solution; tools: spectral synthesis

- If g(0) ≠ 0: the form of h, g_e and integral condition on f₁ and f₂.
- 2. If g(0) = 0: the general solution; tools: spectral synthesis
- 3. Remarks on solutions of special case with $f_1 = f_2 = g$ and *h* for wider class of groups.

Z. F., *A generalization of Gajda equation*, J. Math. Anal. Appl. 354 (2009) pp. 584-593

Z. F., *A generalization of Gajda equation*, J. Math. Anal. Appl. 354 (2009) pp. 584-593

Z. F., *A note on a modification of Gajda equation*, Aequationes Mathematicae 82 (2011), 135–141

- Z. F., *A generalization of Gajda equation*, J. Math. Anal. Appl. 354 (2009) pp. 584-593
- Z. F., A note on a modification of Gajda equation, Aequationes Mathematicae 82 (2011), 135–141
- Z. F., L. Székelyhidi, A generalization of Gajda equation on LCA group Manuscrip

- Z. F., *A generalization of Gajda equation*, J. Math. Anal. Appl. 354 (2009) pp. 584-593
- Z. F., A note on a modification of Gajda equation, Aequationes Mathematicae 82 (2011), 135–141

- Z. F., L. Székelyhidi, A generalization of Gajda equation on LCA group Manuscrip
- E. Hewitt and K. A. Ross, *Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representation*, 1963.

- Z. F., *A generalization of Gajda equation*, J. Math. Anal. Appl. 354 (2009) pp. 584-593
- Z. F., A note on a modification of Gajda equation, Aequationes Mathematicae 82 (2011), 135–141

- Z. F., L. Székelyhidi, A generalization of Gajda equation on LCA group Manuscrip
- E. Hewitt and K. A. Ross, *Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representation*, 1963.
- PI. Kannappan, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for groups, *Proc. Amer. Math. Soc.* 19 (1968), 69–74.

- Z. F., *A generalization of Gajda equation*, J. Math. Anal. Appl. 354 (2009) pp. 584-593
- Z. F., *A note on a modification of Gajda equation*, Aequationes Mathematicae 82 (2011), 135–141

- Z. F., L. Székelyhidi, A generalization of Gajda equation on LCA group Manuscrip
- E. Hewitt and K. A. Ross, *Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representation*, 1963.
- PI. Kannappan, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for groups, *Proc. Amer. Math. Soc.* 19 (1968), 69–74.
 - H. Stetkær, *Functional equations on groups*, *World Scientific* 2013

- Z. F., *A generalization of Gajda equation*, J. Math. Anal. Appl. 354 (2009) pp. 584-593
- Z. F., *A note on a modification of Gajda equation*, Aequationes Mathematicae 82 (2011), 135–141

- Z. F., L. Székelyhidi, A generalization of Gajda equation on LCA group Manuscrip
- E. Hewitt and K. A. Ross, *Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representation*, 1963.
- Pl. Kannappan, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for groups, Proc. Amer. Math. Soc. 19 (1968), 69–74.

H. Stetkær, *Functional equations on groups*, *World Scientific* 2013

L. Székelyhidi, Convolution Type Functional Equation on Topological Abelian Groups, World Scientific 1991.

- Z. F., *A generalization of Gajda equation*, J. Math. Anal. Appl. 354 (2009) pp. 584-593
- Z. F., *A note on a modification of Gajda equation*, Aequationes Mathematicae 82 (2011), 135–141

- Z. F., L. Székelyhidi, A generalization of Gajda equation on LCA group Manuscrip
- E. Hewitt and K. A. Ross, *Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representation*, 1963.
- Pl. Kannappan, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for groups, Proc. Amer. Math. Soc. 19 (1968), 69–74.

- H. Stetkær, *Functional equations on groups*, *World Scientific* 2013
- L. Székelyhidi, Convolution Type Functional Equation on Topological Abelian Groups,

World Scientific 1991.

L. Székelyhidi, Discrete Spectral Synthesis and Its Applications, Springer 2006.