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Number theoretical basics

Convention

All numbers in this talk are natural numbers (1,2,3,4,...).

Basics

a | b denotes that a is a divisor of b.

gcd(a, b) denotes the greatest common divisor of a and b,
gcd(a, b) ≥ 1. If gcd(a, b) = 1, a and b are coprime/relatively prime.

Congruences:a ≡ b (mod c) denotes that c | a− b, read as ”a is
congruent to b modulo c”, e.g. 17 ≡ 7 (mod 5), since
5 | 10 = 17− 7.

If gcd(a, c) = 1, define ordc(a) := min{n | an ≡ 1 (mod c)}.
e.g. ord7(2) = 3, since 21 = 2 6≡ 1, 22 = 4 6≡ 1, 23 = 8 ≡ 1 (mod 7).
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Pa-numbers
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Pa-numbers

Definition

For fixed number a ≥ 2 we define

Pa := {d | ∃ n : d | an + 1} = {d | ∃ n : an ≡ −1 (mod d)}

If d ∈ Pa, then d is called ”good for a”, otherwise ”bad”.

Example a = 2, what are the divisors of 2n + 1?

P2 = {1, 2X, 3, 5, 7X, 9, 11, 13, 17, 19, 25, 27, 29, 33, ...}
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Criterias

Task

For given a and d , we want to check if d is good for a (d ∈ Pa).

Some criterias

Divisors of good numbers are good. Multiples of bad numbers are
bad.

If d is an odd prime: d is good ⇔ ordd(a) is even.
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Product of good numbers

Example

3, 5, 11 ∈ P2.
3 · 11 = 33 ∈ P2.
3 · 5 = 15 6∈ P2.

ord3(2) = 2, ord11(2) = 10, both contain 21

ord3(2) = 2, ord5(2) = 4, contain different pow-
ers of 2.

Theorem

The product of two good numbers d and e is good again if and only if
ordd(a) and orde(a) contain the same power of 2.
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Prime numbers Square numbers P2-numbers
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Connection with prime numbers
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Large gaps in prime numbers

Gaps in prime numbers

2 3 5 7 11 13 17 19 23 29

1 2 2 4 2 4 2 4 6

Theorem

One can find abitrarily large gaps between consecutive primes.

Proof.

To find a gap of length ≥ n, define a := (n + 1)!, so

2 | a + 2 ⇒ no prime number

3 | a + 3 ⇒ no prime number

...

(n + 1) | a + (n + 1) ⇒ no prime number
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Large gaps in Pa-numbers

Theorem

For every a there are infinitely many bad primes q1, q2, ....

Gaps in Pa

To find gaps of length n, find a number x which satisfies the conditions:

x + 1 ≡ 0 (mod q1)

x + 2 ≡ 0 (mod q2)

...

x + n ≡ 0 (mod qn)

or

x ≡ −1 (mod q1)

x ≡ −2 (mod q2)

...

x ≡ −n (mod qn)

The Chinese Remainder Theorem guarantees a solution for x since
q1, ..., qn are relatively prime. Then x + 1, ..., x + n are bad numbers.
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Famous conjectures about prime numbers

Definition

A prime twin is a pair (p, q) of two consecutive prime numbers p < q with
q − p = 2, e.g. (3, 5), (5, 7), (11, 13), ...).

Twin-prime-conjecture

There are infinitely many prime twins.

Goldbach’s conjecture (Goldbach, Euler 1742)

Every even number n ≥ 4 can be expressed as sum of two prime numbers.
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Twins in the sets Pa

a\n 10 100 1000 10000 100000 1000000 10000000
2 2 13 55 347 2439 17903 140888

3 2 6 35 216 1438 10737 84069

4 0 0 0 0 0 0 0

5 1 7 33 228 1771 13522 109057

6 0 4 24 142 978 7223 56651

7 2 9 39 202 1397 10115 78652

8 2 13 55 347 2439 17903 140888

9 0 0 0 0 0 0 0

10 0 5 27 178 1284 9346 74137

11 1 8 60 317 2279 17229 136758

12 1 5 27 156 1014 7256 55479

13 1 6 30 179 1196 9030 71006

14 2 15 65 404 2757 20449 159570

15 1 5 28 189 1300 9998 79184

16 0 0 0 0 0 0 0

17 2 14 68 420 2984 22590 178247

18 0 3 25 172 1213 8906 69981
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Twins in the sets Pa

Results

Pa contains no twins if a is a perfect square (proven).

Pa contains infinitely many twins if a is no perfect square
(conjectured).
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Goldbach’s conjecture with Pa-numbers

In certain cases there is a analogue of the Goldbach’s conjecture for
Pa-numbers.
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Outlook

Fermat prime numbers

Define Qd := {a | ∃ n : d | an + 1} for every d ≥ 2. Looking for those d
with large sets Qd leads to Fermat prime numbers 22

n
+ 1.

Matthias Heinlein About the divisors of an + 1 and primes 05.09.2013 15 / 17



Outlook

Fermat prime numbers

Define Qd := {a | ∃ n : d | an + 1} for every d ≥ 2.

Looking for those d
with large sets Qd leads to Fermat prime numbers 22

n
+ 1.

Matthias Heinlein About the divisors of an + 1 and primes 05.09.2013 15 / 17



Outlook

Fermat prime numbers

Define Qd := {a | ∃ n : d | an + 1} for every d ≥ 2. Looking for those d
with large sets Qd leads to Fermat prime numbers 22

n
+ 1.

Matthias Heinlein About the divisors of an + 1 and primes 05.09.2013 15 / 17



Soli Deo Gloria!
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Thank you for your attention!
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