About the divisors of $a^n + 1$ and their interesting connection to prime numbers

Matthias Heinlein

05.09.2013

Workshop "'Probability, Analysis and Geometry"

Convention

All numbers in this talk are natural numbers (1,2,3,4,...).

Convention

All numbers in this talk are natural numbers (1,2,3,4,...).

Convention

All numbers in this talk are natural numbers (1,2,3,4,...).

Basics

• $a \mid b$ denotes that a is a divisor of b.

Convention

All numbers in this talk are natural numbers (1,2,3,4,...).

- *a* | *b* denotes that *a* is a divisor of *b*.
- gcd(a, b) denotes the greatest common divisor of a and b, gcd(a, b) ≥ 1.

Convention

All numbers in this talk are natural numbers (1,2,3,4,...).

- *a* | *b* denotes that *a* is a divisor of *b*.
- gcd(a, b) denotes the greatest common divisor of a and b, gcd(a, b) ≥ 1. If gcd(a, b) = 1, a and b are coprime/relatively prime.

Convention

All numbers in this talk are natural numbers (1,2,3,4,...).

- *a* | *b* denotes that *a* is a divisor of *b*.
- gcd(a, b) denotes the greatest common divisor of a and b, gcd(a, b) ≥ 1. If gcd(a, b) = 1, a and b are coprime/relatively prime.
- Congruences:

Convention

All numbers in this talk are natural numbers (1,2,3,4,...).

- *a* | *b* denotes that *a* is a divisor of *b*.
- gcd(a, b) denotes the greatest common divisor of a and b, gcd(a, b) ≥ 1. If gcd(a, b) = 1, a and b are coprime/relatively prime.
- Congruences: a ≡ b (mod c) denotes that c | a b, read as "a is congruent to b modulo c",

Convention

All numbers in this talk are natural numbers (1,2,3,4,...).

- *a* | *b* denotes that *a* is a divisor of *b*.
- gcd(a, b) denotes the greatest common divisor of a and b, gcd(a, b) ≥ 1. If gcd(a, b) = 1, a and b are coprime/relatively prime.
- Congruences: a ≡ b (mod c) denotes that c | a b, read as "a is congruent to b modulo c", e.g. 17 ≡ 7 (mod 5), since 5 | 10 = 17 7.

Convention

All numbers in this talk are natural numbers (1,2,3,4,...).

- *a* | *b* denotes that *a* is a divisor of *b*.
- gcd(a, b) denotes the greatest common divisor of a and b, gcd(a, b) ≥ 1. If gcd(a, b) = 1, a and b are coprime/relatively prime.
- Congruences: a ≡ b (mod c) denotes that c | a b, read as "a is congruent to b modulo c", e.g. 17 ≡ 7 (mod 5), since 5 | 10 = 17 7.
- If gcd(a, c) = 1, define $ord_c(a) := min\{n \mid a^n \equiv 1 \pmod{c}\}$.

Convention

All numbers in this talk are natural numbers (1,2,3,4,...).

- *a* | *b* denotes that *a* is a divisor of *b*.
- gcd(a, b) denotes the greatest common divisor of a and b, gcd(a, b) ≥ 1. If gcd(a, b) = 1, a and b are coprime/relatively prime.
- Congruences: a ≡ b (mod c) denotes that c | a b, read as "a is congruent to b modulo c", e.g. 17 ≡ 7 (mod 5), since 5 | 10 = 17 7.
- If gcd(a, c) = 1, define $ord_c(a) := min\{n \mid a^n \equiv 1 \pmod{c}\}$. e.g. $ord_7(2) = 3$, since $2^1 = 2 \not\equiv 1, 2^2 = 4 \not\equiv 1, 2^3 = 8 \equiv 1 \pmod{7}$.

Definition

Definition

For fixed number $a \ge 2$

 $a^n + 1$

Definition

For fixed number $a \ge 2$

 $d \mid a^n + 1$

Definition

For fixed number $a \ge 2$ we define

 $P_a := \{d \mid \exists n : d \mid a^n + 1\}$

Definition

For fixed number $a \ge 2$ we define

$$P_a := \{d \mid \exists n : d \mid a^n + 1\} = \{d \mid \exists n : a^n \equiv -1 \pmod{d}\}$$

Definition

For fixed number $a \ge 2$ we define

$$P_a := \{d \mid \exists n : d \mid a^n + 1\} = \{d \mid \exists n : a^n \equiv -1 \pmod{d}\}$$

If $d \in P_a$, then d is called "good for a", otherwise "bad".

Definition

For fixed number $a \ge 2$ we define

$$P_a := \{d \mid \exists n : d \mid a^n + 1\} = \{d \mid \exists n : a^n \equiv -1 \pmod{d}\}$$

If $d \in P_a$, then d is called "good for a", otherwise "bad".

Example a = 2, what are the divisors of $2^n + 1$?

Definition

For fixed number $a \ge 2$ we define

$$P_a := \{d \mid \exists n : d \mid a^n + 1\} = \{d \mid \exists n : a^n \equiv -1 \pmod{d}\}$$

If $d \in P_a$, then d is called "good for a", otherwise "bad".

Example a=2, what are the divisors of 2^n+1 ? $P_2=\{1,$

Definition

For fixed number $a \ge 2$ we define

$$P_a := \{d \mid \exists n : d \mid a^n + 1\} = \{d \mid \exists n : a^n \equiv -1 \pmod{d}\}$$

If $d \in P_a$, then d is called "good for a", otherwise "bad".

Example a=2, what are the divisors of 2^n+1 ? $P_2=\{1,2$

Definition

For fixed number $a \ge 2$ we define

$$P_a := \{d \mid \exists n : d \mid a^n + 1\} = \{d \mid \exists n : a^n \equiv -1 \pmod{d}\}$$

If $d \in P_a$, then d is called "good for a", otherwise "bad".

Example a = 2, what are the divisors of $2^n + 1$? $P_2 = \{1, \mathbb{X}, \}$

Definition

For fixed number $a \ge 2$ we define

$$P_a := \{d \mid \exists n : d \mid a^n + 1\} = \{d \mid \exists n : a^n \equiv -1 \pmod{d}\}$$

If $d \in P_a$, then d is called "good for a", otherwise "bad".

Example a = 2, what are the divisors of $2^n + 1$? $P_2 = \{1, \mathbb{X}, 3, \}$

Definition

For fixed number $a \ge 2$ we define

$$P_a := \{d \mid \exists n : d \mid a^n + 1\} = \{d \mid \exists n : a^n \equiv -1 \pmod{d}\}$$

If $d \in P_a$, then d is called "good for a", otherwise "bad".

Example a = 2, what are the divisors of $2^n + 1$? $P_2 = \{1, \mathbb{X}, 3, 5,$

Definition

For fixed number $a \ge 2$ we define

$$P_a := \{d \mid \exists n : d \mid a^n + 1\} = \{d \mid \exists n : a^n \equiv -1 \pmod{d}\}$$

If $d \in P_a$, then d is called "good for a", otherwise "bad".

Example a = 2, what are the divisors of $2^n + 1$? $P_2 = \{1, \mathbb{X}, 3, 5, 7\}$

Definition

For fixed number $a \ge 2$ we define

$$P_a := \{d \mid \exists n : d \mid a^n + 1\} = \{d \mid \exists n : a^n \equiv -1 \pmod{d}\}$$

If $d \in P_a$, then d is called "good for a", otherwise "bad".

Example a = 2, what are the divisors of $2^n + 1$? $P_2 = \{1, \mathbb{X}, 3, 5, \mathbb{X}\}$

Definition

For fixed number $a \ge 2$ we define

$$P_a := \{d \mid \exists n : d \mid a^n + 1\} = \{d \mid \exists n : a^n \equiv -1 \pmod{d}\}$$

If $d \in P_a$, then d is called "good for a", otherwise "bad".

Example a = 2, what are the divisors of $2^n + 1$? $P_2 = \{1, \mathbb{X}, 3, 5, \mathbb{X}, 9, 11, 13, 17, 19, 25, 27, 29, 33, ...\}$

Criterias

For given a and d, we want to check if d is good for a $(d \in P_a)$.

For given a and d, we want to check if d is good for $a \ (d \in P_a)$.

Some criterias

For given a and d, we want to check if d is good for a $(d \in P_a)$.

Some criterias

• Divisors of good numbers are good. Multiples of bad numbers are bad.

For given a and d, we want to check if d is good for a $(d \in P_a)$.

Some criterias

- Divisors of good numbers are good. Multiples of bad numbers are bad.
- If *d* is an odd prime:

For given a and d, we want to check if d is good for a $(d \in P_a)$.

Some criterias

- Divisors of good numbers are good. Multiples of bad numbers are bad.
- If d is an odd prime: d is good \Leftrightarrow $\operatorname{ord}_d(a)$ is even.

Product of good numbers

Product of good numbers

Example $3, 5, 11 \in P_2$.

Product of good numbers

Example

 $3, 5, 11 \in P_2.$ $3 \cdot 11 = 33 \in P_2.$

Example

 $3, 5, 11 \in P_2.$ $3 \cdot 11 = 33 \in P_2.$ $3 \cdot 5 = 15 \notin P_2.$

Example

 $3, 5, 11 \in P_2.$ $3 \cdot 11 = 33 \in P_2.$ $3 \cdot 5 = 15 \notin P_2.$

Theorem

Example

 $3, 5, 11 \in P_2.$ $3 \cdot 11 = 33 \in P_2.$ $3 \cdot 5 = 15 \notin P_2.$

Theorem

The product of two good numbers d and e is good again

Example

 $3, 5, 11 \in P_2.$ $3 \cdot 11 = 33 \in P_2.$ $3 \cdot 5 = 15 \notin P_2.$

Theorem

The product of two good numbers d and e is good again if and only if $\operatorname{ord}_d(a)$ and $\operatorname{ord}_e(a)$ contain the same power of 2.

Example

 $\begin{array}{ll} 3,5,11\in P_2. & \text{ord}_3(2)=2, \ \text{ord}_{11}(2)=10, \ \text{both contain} \ 2^1\\ 3\cdot 11=33\in P_2. & \\ 3\cdot 5=15\not\in P_2. \end{array}$

Theorem

The product of two good numbers d and e is good again if and only if $\operatorname{ord}_d(a)$ and $\operatorname{ord}_e(a)$ contain the same power of 2.

Example

 $3, 5, 11 \in P_2.$ $\operatorname{ord}_3(2) = 2, \operatorname{ord}_{11}(2) = 10$, both contain 2^1 $3 \cdot 11 = 33 \in P_2.$ $\operatorname{ord}_3(2) = 2, \operatorname{ord}_5(2) = 4$, contain different pow- $3 \cdot 5 = 15 \notin P_2.$ ers of 2.

Theorem

The product of two good numbers d and e is good again if and only if $\operatorname{ord}_d(a)$ and $\operatorname{ord}_e(a)$ contain the same power of 2.

Prime numbers

Prime numbers

Square numbers

Prime numbers

Square numbers

P₂-numbers

Connection with prime numbers

Gaps in prime numbers 2 3 5 7 11 13 17 19 23 29

Gaps in prime numbers											
2		3	5	7	11	13	17	19	23	29	
	1	2	2	4	2	4	2	4	6	J	

Gaps in prime numbers										
2	3		5	7	11	13	17	19	23	29
1	L	2	2	4	2	4	2	4	6	I

Theorem

One can find abitrarily large gaps between consecutive primes.

Gaps in prime numbers 2 3 5 7 11 13 17 19 23 29 1 2 2 4 2 4 2 4 6

Theorem

One can find abitrarily large gaps between consecutive primes.

Proof.

```
To find a gap of length \geq n, define a := (n + 1)!, so
```

Gaps in prime numbers 2 3 5 7 11 13 17 19 23 29 1 2 2 4 2 4 2 4 6

Theorem

One can find abitrarily large gaps between consecutive primes.

Proof.

To find a gap of length
$$\geq n$$
, define $a := (n+1)!$, so

 $2 \mid a+2 \Rightarrow \text{ no prime number}$ $3 \mid a+3 \Rightarrow \text{ no prime number}$

$$(n+1) \mid a+(n+1) \Rightarrow$$
 no prime number

About the divisors of $a^n + 1$ and primes

. . .

Theorem

For every a there are infinitely many bad primes $q_1, q_2, ...$

Theorem

For every a there are infinitely many bad primes $q_1, q_2, ...$

Gaps in P_a

Theorem

For every a there are infinitely many bad primes $q_1, q_2, ...$

Gaps in P_a

To find gaps of length n, find a number x which satisfies the conditions:

Theorem

For every a there are infinitely many bad primes $q_1, q_2, ...$

Gaps in P_a

To find gaps of length n, find a number x which satisfies the conditions:

$$x + 1 \equiv 0 \pmod{q_1}$$
$$x + 2 \equiv 0 \pmod{q_2}$$
...

 $x + n \equiv 0 \pmod{q_n}$

Theorem

For every a there are infinitely many bad primes $q_1, q_2, ...$

Gaps in P_a

To find gaps of length n, find a number x which satisfies the conditions:

$$\begin{array}{ll} x+1 \equiv 0 \pmod{q_1} & x \equiv -1 \pmod{q_1} \\ x+2 \equiv 0 \pmod{q_2} & x \equiv -2 \pmod{q_2} \\ \dots & \dots & \dots \\ x+n \equiv 0 \pmod{q_n} & x \equiv -n \pmod{q_n} \end{array}$$

Theorem

For every a there are infinitely many bad primes $q_1, q_2, ...$

Gaps in P_a

To find gaps of length n, find a number x which satisfies the conditions:

$$\begin{array}{ll} x+1 \equiv 0 \pmod{q_1} & x \equiv -1 \pmod{q_1} \\ x+2 \equiv 0 \pmod{q_2} & x \equiv -2 \pmod{q_2} \\ \dots & \dots & \dots \\ x+n \equiv 0 \pmod{q_n} & x \equiv -n \pmod{q_n} \end{array}$$

The Chinese Remainder Theorem guarantees a solution for x since $q_1, ..., q_n$ are relatively prime. Then x + 1, ..., x + n are bad numbers.

About the divisors of $a^n + 1$ and primes

Definition

A prime twin is a pair (p, q) of two consecutive prime numbers p < q with q - p = 2, e.g. (3, 5), (5, 7), (11, 13), ...).

Definition

A prime twin is a pair (p, q) of two consecutive prime numbers p < q with q - p = 2, e.g. (3, 5), (5, 7), (11, 13), ...).

Twin-prime-conjecture

There are infinitely many prime twins.

Definition

A prime twin is a pair (p, q) of two consecutive prime numbers p < q with q - p = 2, e.g. (3, 5), (5, 7), (11, 13), ...).

Twin-prime-conjecture

There are infinitely many prime twins.

Goldbach's conjecture (Goldbach, Euler 1742)

Every even number $n \ge 4$ can be expressed as sum of two prime numbers.

a∖n	10	100	1000	10000	100000	1000000	1000000
2	2	13	55	347	2439	17903	140888
3	2	6	35	216	1438	10737	84069
4	0	0	0	0	0	0	0
5	1	7	33	228	1771	13522	109057
6	0	4	24	142	978	7223	56651
7	2	9	39	202	1397	10115	78652
8	2	13	55	347	2439	17903	140888
9	0	0	0	0	0	0	0
10	0	5	27	178	1284	9346	74137
11	1	8	60	317	2279	17229	136758
12	1	5	27	156	1014	7256	55479
13	1	6	30	179	1196	9030	71006
14	2	15	65	404	2757	20449	159570
15	1	5	28	189	1300	9998	79184
16	0	0	0	0	0	0	0
17	2	14	68	420	2984	22590	178247
18	0	3	25	172	1213	8906	69981

Results

Results

• P_a contains no twins if a is a perfect square

Results

• P_a contains no twins if a is a perfect square (proven).

Results

- P_a contains no twins if a is a perfect square (proven).
- P_a contains infinitely many twins if a is no perfect square

Results

- P_a contains no twins if a is a perfect square (proven).
- *P_a* contains infinitely many twins if *a* is no perfect square (conjectured).

Goldbach's conjecture with P_a -numbers

Goldbach's conjecture with P_a -numbers

In certain cases there is a analogue of the Goldbach's conjecture for $P_a\mbox{-}numbers.$

Outlook

Fermat prime numbers

Define $Q_d := \{a \mid \exists n : d \mid a^n + 1\}$ for every $d \ge 2$.

Fermat prime numbers

Define $Q_d := \{a \mid \exists n : d \mid a^n + 1\}$ for every $d \ge 2$. Looking for those d with large sets Q_d leads to Fermat prime numbers $2^{2^n} + 1$.

Soli Deo Gloria!

Thank you for your attention!