About the divisors of $a^{n}+1$ and their interesting connection to prime numbers

Matthias Heinlein

05.09.2013

Workshop "'Probability, Analysis and Geometry"

Number theoretical basics

Convention

All numbers in this talk are natural numbers (1,2,3,4,.$)$.

Number theoretical basics

Convention

All numbers in this talk are natural numbers (1,2,3,4,.$)$.
Basics

Number theoretical basics

Convention

All numbers in this talk are natural numbers (1,2,3,4, ..).

Basics

- $a \mid b$ denotes that a is a divisor of b.

Number theoretical basics

Convention

All numbers in this talk are natural numbers (1,2,3,4, ...).

Basics

- $a \mid b$ denotes that a is a divisor of b.
- $\operatorname{gcd}(a, b)$ denotes the greatest common divisor of a and b, $\operatorname{gcd}(a, b) \geq 1$.

Number theoretical basics

Convention

All numbers in this talk are natural numbers (1,2,3,4, ...).

Basics

- $a \mid b$ denotes that a is a divisor of b.
- $\operatorname{gcd}(a, b)$ denotes the greatest common divisor of a and b, $\operatorname{gcd}(a, b) \geq 1$. If $\operatorname{gcd}(a, b)=1, a$ and b are coprime/relatively prime.

Number theoretical basics

Convention

All numbers in this talk are natural numbers (1,2,3,4, ...).

Basics

- $a \mid b$ denotes that a is a divisor of b.
- $\operatorname{gcd}(a, b)$ denotes the greatest common divisor of a and b, $\operatorname{gcd}(a, b) \geq 1$. If $\operatorname{gcd}(a, b)=1, a$ and b are coprime/relatively prime.
- Congruences:

Number theoretical basics

Convention

All numbers in this talk are natural numbers ($1,2,3,4, \ldots$).

Basics

- $a \mid b$ denotes that a is a divisor of b.
- $\operatorname{gcd}(a, b)$ denotes the greatest common divisor of a and b, $\operatorname{gcd}(a, b) \geq 1$. If $\operatorname{gcd}(a, b)=1, a$ and b are coprime/relatively prime.
- Congruences: $a \equiv b(\bmod c)$ denotes that $c \mid a-b$, read as " a is congruent to b modulo c ",

Number theoretical basics

Convention

All numbers in this talk are natural numbers (1,2,3,4, ...).

Basics

- $a \mid b$ denotes that a is a divisor of b.
- $\operatorname{gcd}(a, b)$ denotes the greatest common divisor of a and b, $\operatorname{gcd}(a, b) \geq 1$. If $\operatorname{gcd}(a, b)=1, a$ and b are coprime/relatively prime.
- Congruences: $a \equiv b(\bmod c)$ denotes that $c \mid a-b$, read as " a is congruent to b modulo c ", e.g. $17 \equiv 7(\bmod 5)$, since $5 \mid 10=17-7$.

Number theoretical basics

Convention

All numbers in this talk are natural numbers (1,2,3,4, ..).

Basics

- $a \mid b$ denotes that a is a divisor of b.
- $\operatorname{gcd}(a, b)$ denotes the greatest common divisor of a and b, $\operatorname{gcd}(a, b) \geq 1$. If $\operatorname{gcd}(a, b)=1, a$ and b are coprime/relatively prime.
- Congruences: $a \equiv b(\bmod c)$ denotes that $c \mid a-b$, read as " a is congruent to b modulo c ", e.g. $17 \equiv 7(\bmod 5)$, since $5 \mid 10=17-7$.
- If $\operatorname{gcd}(a, c)=1$, define $\operatorname{ord}_{c}(a):=\min \left\{n \mid a^{n} \equiv 1(\bmod c)\right\}$.

Number theoretical basics

Convention

All numbers in this talk are natural numbers (1,2,3,4, ...).

Basics

- $a \mid b$ denotes that a is a divisor of b.
- $\operatorname{gcd}(a, b)$ denotes the greatest common divisor of a and b, $\operatorname{gcd}(a, b) \geq 1$. If $\operatorname{gcd}(a, b)=1, a$ and b are coprime/relatively prime.
- Congruences: $a \equiv b(\bmod c)$ denotes that $c \mid a-b$, read as " a is congruent to b modulo c ", e.g. $17 \equiv 7(\bmod 5)$, since $5 \mid 10=17-7$.
- If $\operatorname{gcd}(a, c)=1$, define $\operatorname{ord}_{c}(a):=\min \left\{n \mid a^{n} \equiv 1(\bmod c)\right\}$.
e.g. $\operatorname{ord}_{7}(2)=3$, since $2^{1}=2 \not \equiv 1,2^{2}=4 \not \equiv 1,2^{3}=8 \equiv 1(\bmod 7)$.

P_{a}-numbers

P_{a}-numbers

Definition

P_{a}-numbers

Definition

For fixed number $a \geq 2$

$$
a^{n}+1
$$

P_{a}-numbers

Definition

For fixed number $a \geq 2$

$$
d \mid a^{n}+1
$$

P_{a}-numbers

Definition

For fixed number $a \geq 2$ we define

$$
P_{a}:=\left\{d|\exists n: d| a^{n}+1\right\}
$$

P_{a}-numbers

Definition

For fixed number $a \geq 2$ we define

$$
P_{a}:=\left\{d|\exists n: d| a^{n}+1\right\}=\left\{d \mid \exists n: a^{n} \equiv-1 \quad(\bmod d)\right\}
$$

P_{a}-numbers

Definition
For fixed number $a \geq 2$ we define

$$
P_{a}:=\left\{d|\exists n: d| a^{n}+1\right\}=\left\{d \mid \exists n: a^{n} \equiv-1 \quad(\bmod d)\right\}
$$

If $d \in P_{a}$, then d is called "good for a ", otherwise "bad".

P_{a}-numbers

Definition
For fixed number $a \geq 2$ we define

$$
P_{a}:=\left\{d|\exists n: d| a^{n}+1\right\}=\left\{d \mid \exists n: a^{n} \equiv-1 \quad(\bmod d)\right\}
$$

If $d \in P_{\mathrm{a}}$, then d is called "good for a", otherwise " bad".

Example $a=2$, what are the divisors of $2^{n}+1$?

P_{a}-numbers

Definition
For fixed number $a \geq 2$ we define

$$
P_{a}:=\left\{d|\exists n: d| a^{n}+1\right\}=\left\{d \mid \exists n: a^{n} \equiv-1 \quad(\bmod d)\right\}
$$

If $d \in P_{\mathrm{a}}$, then d is called "good for a", otherwise " bad".

Example $a=2$, what are the divisors of $2^{n}+1$?
$P_{2}=\{1$,

P_{a}-numbers

Definition
For fixed number $a \geq 2$ we define

$$
P_{a}:=\left\{d|\exists n: d| a^{n}+1\right\}=\left\{d \mid \exists n: a^{n} \equiv-1 \quad(\bmod d)\right\}
$$

If $d \in P_{\mathrm{a}}$, then d is called "good for a", otherwise " bad".

Example $a=2$, what are the divisors of $2^{n}+1$?
$P_{2}=\{1,2$

P_{a}-numbers

Definition
For fixed number $a \geq 2$ we define

$$
P_{a}:=\left\{d|\exists n: d| a^{n}+1\right\}=\left\{d \mid \exists n: a^{n} \equiv-1 \quad(\bmod d)\right\}
$$

If $d \in P_{\mathrm{a}}$, then d is called "good for a", otherwise " bad".

Example $a=2$, what are the divisors of $2^{n}+1$?
$P_{2}=\{1, \mathbf{\Sigma}$,

P_{a}-numbers

Definition
For fixed number $a \geq 2$ we define

$$
P_{a}:=\left\{d|\exists n: d| a^{n}+1\right\}=\left\{d \mid \exists n: a^{n} \equiv-1 \quad(\bmod d)\right\}
$$

If $d \in P_{\mathrm{a}}$, then d is called "good for a", otherwise " bad".

Example $a=2$, what are the divisors of $2^{n}+1$?
$P_{2}=\{1, \mathbf{\Sigma}, 3$,

P_{a}-numbers

Definition
For fixed number $a \geq 2$ we define

$$
P_{a}:=\left\{d|\exists n: d| a^{n}+1\right\}=\left\{d \mid \exists n: a^{n} \equiv-1 \quad(\bmod d)\right\}
$$

If $d \in P_{\mathrm{a}}$, then d is called "good for a", otherwise " bad".

Example $a=2$, what are the divisors of $2^{n}+1$?
$P_{2}=\{1, \mathbf{x}, 3,5$,

P_{a}-numbers

Definition
For fixed number $a \geq 2$ we define

$$
P_{a}:=\left\{d|\exists n: d| a^{n}+1\right\}=\left\{d \mid \exists n: a^{n} \equiv-1 \quad(\bmod d)\right\}
$$

If $d \in P_{\mathrm{a}}$, then d is called "good for a", otherwise " bad".

Example $a=2$, what are the divisors of $2^{n}+1$?
$P_{2}=\{1, \boldsymbol{Z}, 3,5,7$

P_{a}-numbers

Definition
For fixed number $a \geq 2$ we define

$$
P_{a}:=\left\{d|\exists n: d| a^{n}+1\right\}=\left\{d \mid \exists n: a^{n} \equiv-1 \quad(\bmod d)\right\}
$$

If $d \in P_{\mathrm{a}}$, then d is called "good for a", otherwise " bad".

Example $a=2$, what are the divisors of $2^{n}+1$?
$P_{2}=\{1, \boldsymbol{Z}, 3,5, \boldsymbol{Z}$

P_{a}-numbers

Definition
For fixed number $a \geq 2$ we define

$$
P_{a}:=\left\{d|\exists n: d| a^{n}+1\right\}=\left\{d \mid \exists n: a^{n} \equiv-1 \quad(\bmod d)\right\}
$$

If $d \in P_{\mathrm{a}}$, then d is called "good for a", otherwise " bad".

Example $a=2$, what are the divisors of $2^{n}+1$?
$P_{2}=\{1, \mathbf{Z}, 3,5, \mathbf{X}, 9,11,13,17,19,25,27,29,33, \ldots\}$

Criterias

Criterias

Task

For given a and d, we want to check if d is good for $a\left(d \in P_{a}\right)$.

Criterias

Task

For given a and d, we want to check if d is good for a $\left(d \in P_{a}\right)$.

Some criterias

Criterias

Task

For given a and d, we want to check if d is good for $a\left(d \in P_{a}\right)$.

Some criterias

- Divisors of good numbers are good. Multiples of bad numbers are bad.

Criterias

Task

For given a and d, we want to check if d is good for $a\left(d \in P_{a}\right)$.

Some criterias

- Divisors of good numbers are good. Multiples of bad numbers are bad.
- If d is an odd prime:

Criterias

Task

For given a and d, we want to check if d is good for $a\left(d \in P_{a}\right)$.

Some criterias

- Divisors of good numbers are good. Multiples of bad numbers are bad.
- If d is an odd prime: d is good $\Leftrightarrow \operatorname{ord}_{d}(a)$ is even.

Product of good numbers

Product of good numbers

Example
$3,5,11 \in P_{2}$.

Product of good numbers

Example
$3,5,11 \in P_{2}$.
$3 \cdot 11=33 \in P_{2}$.

Product of good numbers

Example
$3,5,11 \in P_{2}$.
$3 \cdot 11=33 \in P_{2}$.
$3 \cdot 5=15 \notin P_{2}$.

Product of good numbers

Example
$3,5,11 \in P_{2}$.
$3 \cdot 11=33 \in P_{2}$.
$3 \cdot 5=15 \notin P_{2}$.

Theorem

Product of good numbers

Example
$3,5,11 \in P_{2}$.
$3 \cdot 11=33 \in P_{2}$.
$3 \cdot 5=15 \notin P_{2}$.

Theorem
The product of two good numbers d and e is good again

Product of good numbers

Example
$3,5,11 \in P_{2}$.
$3 \cdot 11=33 \in P_{2}$.
$3 \cdot 5=15 \notin P_{2}$.

Theorem
The product of two good numbers d and e is good again if and only if $\operatorname{ord}_{d}(a)$ and $\operatorname{ord}_{e}(a)$ contain the same power of 2.

Product of good numbers

$$
\begin{aligned}
& \text { Example } \\
& 3,5,11 \in P_{2} . \\
& 3 \cdot 11=33 \in P_{2} . \\
& 3 \cdot 5=15 \notin P_{2} .
\end{aligned} \quad \operatorname{ord}_{3}(2)=2, \operatorname{ord}_{11}(2)=10 \text {, both contain } 2^{1} .
$$

Theorem
The product of two good numbers d and e is good again if and only if $\operatorname{ord}_{d}(a)$ and $\operatorname{ord}_{e}(a)$ contain the same power of 2.

Product of good numbers

Example

$3,5,11 \in P_{2}$.
$3 \cdot 11=33 \in P_{2}$.
$3 \cdot 5=15 \notin P_{2}$.
$\operatorname{ord}_{3}(2)=2, \operatorname{ord}_{11}(2)=10$, both contain 2^{1}
$\operatorname{ord}_{3}(2)=2, \operatorname{ord}_{5}(2)=4$, contain different powers of 2 .

Theorem
The product of two good numbers d and e is good again if and only if $\operatorname{ord}_{d}(a)$ and $\operatorname{ord}_{e}(a)$ contain the same power of 2.

Woodstone-Visualization

Woodstone-Visualization

Prime numbers

Woodstone-Visualization

Prime numbers

Square numbers

Woodstone-Visualization

Prime numbers

Square numbers

P_{2}-numbers

Connection with prime numbers

Large gaps in prime numbers

Gaps in prime numbers

2	3	5	7	11	13	17	19	23	29

Large gaps in prime numbers

Gaps in prime numbers

2	3		5		7		11		13		17		19		23	3	29
1		2		2		4		2		4		2		4		6	

Large gaps in prime numbers

Gaps in prime numbers

2	3		5		7		11		13		17		19		23	3	29
1		2		2		4		2		4		2		4		6	

Theorem
One can find abitrarily large gaps between consecutive primes.

Large gaps in prime numbers

Gaps in prime numbers

2	3		5		7		11		13		17		19		23	3	29
1		2		2		4		2		4		2		4		6	

Theorem
One can find abitrarily large gaps between consecutive primes.
Proof.
To find a gap of length $\geq n$, define $a:=(n+1)$!, so

Large gaps in prime numbers

Gaps in prime numbers

Theorem
One can find abitrarily large gaps between consecutive primes.
Proof.
To find a gap of length $\geq n$, define $a:=(n+1)$!, so
$2 \mid a+2 \Rightarrow$ no prime number
$3 \mid a+3 \Rightarrow$ no prime number

$$
(n+1) \mid a+(n+1) \Rightarrow \text { no prime number }
$$

Large gaps in P_{a}-numbers

Large gaps in P_{a}-numbers

Theorem

For every a there are infinitely many bad primes q_{1}, q_{2}, \ldots.

Large gaps in P_{a}-numbers

Theorem

For every a there are infinitely many bad primes q_{1}, q_{2}, \ldots.

Gaps in P_{a}

Large gaps in P_{a}-numbers

Theorem
For every a there are infinitely many bad primes q_{1}, q_{2}, \ldots.
Gaps in P_{a}
To find gaps of length n, find a number x which satisfies the conditions:

Large gaps in P_{a}-numbers

Theorem
For every a there are infinitely many bad primes q_{1}, q_{2}, \ldots.
Gaps in P_{a}
To find gaps of length n, find a number x which satisfies the conditions:

$$
\begin{aligned}
& x+1 \equiv 0\left(\bmod q_{1}\right) \\
& x+2 \equiv 0\left(\bmod q_{2}\right) \\
& \cdots \\
& x+n \equiv 0\left(\bmod q_{n}\right)
\end{aligned}
$$

Large gaps in P_{a}-numbers

Theorem

For every a there are infinitely many bad primes q_{1}, q_{2}, \ldots.

Gaps in P_{a}
To find gaps of length n, find a number x which satisfies the conditions:

$$
\begin{aligned}
& x+1 \equiv 0\left(\bmod q_{1}\right) \quad x \equiv-1\left(\bmod q_{1}\right) \\
& x+2 \equiv 0\left(\bmod q_{2}\right) \quad \text { or } \quad x \equiv-2\left(\bmod q_{2}\right) \\
& \text { or } \\
& x+n \equiv 0\left(\bmod q_{n}\right) \\
& x \equiv-n\left(\bmod q_{n}\right)
\end{aligned}
$$

Large gaps in P_{a}-numbers

Theorem

For every a there are infinitely many bad primes q_{1}, q_{2}, \ldots.

Gaps in P_{a}
To find gaps of length n, find a number x which satisfies the conditions:

$$
\begin{array}{rlrl}
x+1 & \equiv 0\left(\bmod q_{1}\right) & & x \equiv-1\left(\bmod q_{1}\right) \\
x+2 \equiv 0\left(\bmod q_{2}\right) & \text { or } & x \equiv-2\left(\bmod q_{2}\right) \\
\ldots & & \cdots \\
x+n \equiv 0\left(\bmod q_{n}\right) & & x \equiv-n\left(\bmod q_{n}\right)
\end{array}
$$

The Chinese Remainder Theorem guarantees a solution for x since q_{1}, \ldots, q_{n} are relatively prime. Then $x+1, \ldots, x+n$ are bad numbers.

Famous conjectures about prime numbers

Famous conjectures about prime numbers

Definition

A prime twin is a pair (p, q) of two consecutive prime numbers $p<q$ with $q-p=2$, e.g. $(3,5),(5,7),(11,13), \ldots)$.

Famous conjectures about prime numbers

Definition

A prime twin is a pair (p, q) of two consecutive prime numbers $p<q$ with $q-p=2$, e.g. $(3,5),(5,7),(11,13), \ldots)$.

Twin-prime-conjecture
There are infinitely many prime twins.

Famous conjectures about prime numbers

Definition

A prime twin is a pair (p, q) of two consecutive prime numbers $p<q$ with $q-p=2$, e.g. $(3,5),(5,7),(11,13), \ldots)$.

Twin-prime-conjecture
There are infinitely many prime twins.

Goldbach's conjecture (Goldbach, Euler 1742)
Every even number $n \geq 4$ can be expressed as sum of two prime numbers.

Twins in the sets P_{a}

Twins in the sets P_{a}

$\mathbf{a} \backslash \mathbf{n}$	$\mathbf{1 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 0 0 0 0}$	$\mathbf{1 0 0 0 0 0}$	$\mathbf{1 0 0 0 0 0 0}$	$\mathbf{1 0 0 0 0 0 0 0}$
$\mathbf{2}$	2	13	55	347	2439	17903	140888
$\mathbf{3}$	2	6	35	216	1438	10737	84069
$\mathbf{4}$	0	0	0	0	0	0	0
$\mathbf{5}$	1	7	33	228	1771	13522	109057
$\mathbf{6}$	0	4	24	142	978	7223	56651
$\mathbf{7}$	2	9	39	202	1397	10115	78652
$\mathbf{8}$	2	13	55	347	2439	17903	140888
$\mathbf{9}$	0	0	0	0	0	0	0
$\mathbf{1 0}$	0	5	27	178	1284	9346	74137
$\mathbf{1 1}$	1	8	60	317	2279	17229	136758
$\mathbf{1 2}$	1	5	27	156	1014	7256	55479
$\mathbf{1 3}$	1	6	30	179	1196	9030	71006
$\mathbf{1 4}$	2	15	65	404	2757	20449	159570
$\mathbf{1 5}$	1	5	28	189	1300	9998	79184
$\mathbf{1 6}$	0	0	0	0	0	0	0
$\mathbf{1 7}$	2	14	68	420	2984	22590	178247
$\mathbf{1 8}$	0	3	25	172	1213	8906	69981

Twins in the sets P_{a}

Twins in the sets P_{a}

Results

Twins in the sets P_{a}

Results

- P_{a} contains no twins if a is a perfect square

Twins in the sets P_{a}

Results

- P_{a} contains no twins if a is a perfect square (proven).

Twins in the sets P_{a}

Results

- P_{a} contains no twins if a is a perfect square (proven).
- P_{a} contains infinitely many twins if a is no perfect square

Twins in the sets P_{a}

Results

- P_{a} contains no twins if a is a perfect square (proven).
- P_{a} contains infinitely many twins if a is no perfect square (conjectured).

Goldbach's conjecture with P_{a}-numbers

Goldbach's conjecture with P_{a}-numbers

In certain cases there is a analogue of the Goldbach's conjecture for P_{a}-numbers.

Outlook

Outlook

Fermat prime numbers
Define $Q_{d}:=\left\{a|\exists n: d| a^{n}+1\right\}$ for every $d \geq 2$.

Outlook

Fermat prime numbers
Define $Q_{d}:=\left\{a|\exists n: d| a^{n}+1\right\}$ for every $d \geq 2$. Looking for those d with large sets Q_{d} leads to Fermat prime numbers $2^{2^{n}}+1$.

Soli Deo Gloria!

Thank you for your attention!

