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First-passage percolation (lattice models)

I introduced by Hammersley and Welsh (1965)

I simple model for a spreading fluid in a random porous medium
I medium: nearest-neighbor lattice Zd = (V ,E)

I iid non-negative random variables {τ(e)}e∈E (edge passage times)
I ⇒ random metric on Zd

I `(u, v) = infu=z0∼z1∼...∼zn=v
∑n

i=1 τ({zi−1, zi})
I asymptotic behavior of shortest-path lengths `n = `(o,ne1) for large n?
I related to notion of tortuosity in materials science
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Related models

I (Howard & Newman, 2001). first-passage percolation on
homogeneous Poisson point process with powers of Euclidean
distance as edge-passage times

⇒ dependencies in geometry

I (Pimentel, 2007/2011). first-passage percolation on Poisson-Delaunay
graph with iid edge-passage times

⇒ dependencies in topology

I this talk. first-passage percolation on random geometric graphs with
Euclidean distance as edge-passage times

⇒ dependencies in both geometry and topology
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Model assumptions

I X ⊂ Rd stationary, isotropic and m-dependent point process
I N,G : family of locally finite sets of points, resp. smooth curves in Rd

I g : N→ G motion-equivariant, i.e., g(α(ϕ)) = α(g(ϕ)) for all ϕ ∈ N and
all rigid motions α : Rd → Rd

I (Aa)a≥1 family of events. Say Aa occurs with high probability (whp) if
there exists c1 > 0 with P (Ac

a) ≤ 3 exp (−ac1 ) for all a ≥ 1

GSC conditions

I growth condition. {ν1 (g(X ) ∩Q1(o)) ≤ a} ∩ {g(X ) ∩Qa(o) 6= ∅} occur whp,
Qa(o) = [−a/2, a/2]d .

I stabilization condition. g (X ) ∩Q1(o) = g (X ∩Qa(o) ∪ ψ) ∩Q1(o) for all locally
finite ψ ⊂ Rd \Qa(o) whp.

I connectivity condition. g(X ) ∩Qa/2(o) contained in a connected component of
g(X ) ∩Qa(o) whp.
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Examples I

I X ⊂ Rd = homogeneous Poisson point process
I Voronoi graph Vor(X ). edge system of tessellation with cells (Ci )i≥1,

where Ci = {y ∈ Rd : |y − Xi | ≤
∣∣y − Xj

∣∣ for all j ≥ 1}

I Delaunay graph Del(X ). dual graph of Voronoi graph

Poisson-Voronoi tessellation

Poisson-Delaunay tessellation
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Examples II
I Creek-crossing graphs Gn(X ). for fixed n ≥ 2 define Gn(X ) = (V ,E),

where V = X
I {x , y} ∈ E if 6 ∃m ≤ n, x = x0, . . . , xm = y ∈ X such that
|xi − xi+1| < |x − y | for all 0 ≤ i ≤ m − 1

n = 2 n = 5 n = 10
I framework extendable to further examples, e.g., Johnson-Mehl

tessellation, dead leaves model
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Tail bounds for shortest-path lengths
I nearest point on graph: q(x) = argminy∈G |x − y |
I length of shortest Euclidean path on G: `(x1, x2) = `(q(x1),q(x2))

Theorem

I let X ⊂ Rd and G = g(X ) be as above.
I then `(o, re1) ≤ ur whp uniformly over all ur with u ≥ u0, i.e.

∃c1, c2 > 0 with P (`(o, re1) ≥ ur) ≤ c1 exp (−(ur)c2 ) for all u ≥ u0, r ≥ 1

I proof uses techniques of Deuschel & Pisztora (1996)
I see Aldous (2010) for related results in the case X=Poisson and d = 2
I also true for other ergodic graphs G, e.g. Poisson line tessellation
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Applications: boundedness of cells & shape theorem

Corollary
I G ⊂ R2 as above
I then a.s. all cells of G are bounded

Corollary
I G ⊂ Rd as above
I ⇒ ∃µ ≥ 1 such that for all ε > 0 with probability 1:

B(1−ε)µ−1r (o) ⊂ BG
r (o) = {x ∈ Rd : `(o, x) ≤ r} ⊂ B(1+ε)µ−1r (o)

for all sufficiently large r ≥ 0

I first-passage metric behaves asymptotically as a scalar multiple of
Euclidean metric
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Concentration result for moderate deviations

I additional assumptions
I X = homogeneous Poisson point process (for simplicity)
I g(X ) = Vor(X ), Del(X ) or Gn(X )

Theorem
I for every ε > 0 the events |`(o, re1)− µr | ≤ r1/2+ε occur whp
I where µ = limr→∞ r−1E`(o, re1)
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Idea of proof: martingale approach

I fix δ > 0, enumeration Zd = {z1, z2, . . .}
I (Ω,F ,P) = canonical probability space associated with X

I consider filtration
(
F (r)

k

)
k≥1

of F and martingale
(

M(r)
k

)
k≥1

, where

F (r)
k = σ

(
X ∩

⋃k
i=1 Qrδ

(
r δzi

))
and M(r)

k = E
(
`(o, re1) | F (r)

k

)

Qrδ (z1)

Qrδ (z2)

Qrδ (z3)

I apply suitable martingale concentration result (Kesten, 1993)
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Concentration result for geodesics

I ρr ⊂ G: shortest path from q(o) to q(re1)

Corollary
ρr ⊂ [o, re1]⊕Qr3/4+ε(o) occurs whp for all ε > 0

o re1ρr

r 3/4+ε
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Shortest-path tree

I consider the graph G∗ obtained from G by placing the origin at random
on the edge set G(1)

I formally, G∗ is the Palm version of G

I consider distance peaks
M = {x ∈ G∗ | shortest path from x to o not unique}

I define the shortest-path tree T = G∗ \M by elimination of distance
peaks

I then, for any x ∈ T : the path from x to o in T equals shortest path from
x to o in G∗
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Poisson-Delaunay graph (cutout)
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Competition interface

I (Howard & Newman, 2001). concentration result for ρr ⇒ existence of
asymptotic directions (AD) for all semi-infinite paths γ ⊂ T

I i.e. for xk/ |xk | → θ ∈ Sd−1, where γ = 〈x1, x2, . . .〉

I d = 2
I write T1,T2 for subtrees at o (observe degT (o) = 2 a.s.)
I define competition interface I = T1 ∩ T2

I if ν1(T1) = ν1(T2) =∞, then I = I1 ·∪I2 where I1 and I2 admit AD
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Competition interface: pathological realization
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Model assumptions and examples

Main results and applications
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Open problems

I d = 2
I two unbounded half-trees occur with positive probability
I non-existence of bi-infinite geodesics with fixed asymptotic directions
I coalescence of semi-infinite geodesics with same fixed asymptotic

directions



24 FPP of random geometric graphs | September 3, 2013 | Open problems

Thank you for your attention!
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Bivariate distribution of backbone lengths

I Z (i)(λH) = supx∈S∗λH
∩Ti

`(o, x), i ∈ {1,2}

Theorem
I X ⊂ R2. homogeneous Poisson point process with intensity γ

I then, ∃ random vector
(
Z (1),Z (2)

)
(

Z (1) (λH)
√
λH ,Z (2) (λH)

√
λH

)
d−→
(

Z (1),Z (2)
)
,

as λH → 0, conditioned on simultaneous unboundedness of T1 and T2



27 FPP of random geometric graphs | September 3, 2013 | Open problems

Bivariate distribution of backbone lengths

I Z (i)(λH) = supx∈S∗λH
∩Ti

`(o, x), i ∈ {1,2}

Theorem
I X ⊂ R2. homogeneous Poisson point process with intensity γ
I then, ∃ random vector

(
Z (1),Z (2)

)
(

Z (1) (λH)
√
λH ,Z (2) (λH)

√
λH

)
d−→
(

Z (1),Z (2)
)
,

as λH → 0, conditioned on simultaneous unboundedness of T1 and T2



28 FPP of random geometric graphs | September 3, 2013 | Open problems

Bivariate distribution of backbone lengths (II)

I explicit interpretation of
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Z (1),Z (2)
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I explicit interpretation of
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Bivariate distribution of backbone lengths (II)

I explicit interpretation of
(
Z (1),Z (2)

)
I find most distant point in each part and put Z (i) = ξ · ζ(i), i = 1,2

ζ(1)

ζ(2)
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A moderate deviation result

Theorem (Alexander, Kesten, 1993)
I if P(τ = 0) < pc(Zd ) and E

(
τ2
)
<∞, then ∃C1,C2,C3,C4,C5 > 0

such that ∀n ≥ 1

I C1n−2 ≤ 1
nE`n − µ ≤ C2n−1/2 log(n)

I P
(
|`n − E`n| ≥

√
nx
)
≤ C3 exp(−C4x) for all x ≤ C5n

I P
(
`n − nµ ≤ −

√
nx
)
≤ C3 exp(−C4x) for all x ≤ C5n

I P
(
`n − nµ ≥ 2C2n1/2 log(n) + xn1/2

)
≤ C3 exp(−C4x) for all x ≤ C5n

I variance of `n conjectured to be of order n2/3

I best upper-bound by (Benjamini, Kalai & Schramm, 2003) is
O(n/log(n))

I no CLT known for `n; limiting distribution conjectured to be of
Tracy-Widom type
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Main result

Theorem
I X ⊂ Rd homogeneous Poisson point process
I let G = Vor(X ) or G = Del(X )

I then for all ε > 0 the events |`r − µr | ≤ r1/2+ε occur whp
I where µ = limr→∞ r−1E`r



30 FPP of random geometric graphs | September 3, 2013 | Open problems

Main result

Theorem
I X ⊂ Rd homogeneous Poisson point process
I let G = Vor(X ) or G = Del(X )

I then for all ε > 0 the events |`r − µr | ≤ r1/2+ε occur whp
I where µ = limr→∞ r−1E`r



31 FPP of random geometric graphs | September 3, 2013 | Open problems

Concentration Result

Lemma (Kesten, 1993)
I (Ω,F ,P) probability space with filtration (Fk )k≥0

I ∆k = Mk −Mk−1 for some (Fk )k≥0-martingale (Mk )k≥0, M0 = 0.
I (Uk )k≥1 sequence of F-measurable rvs with

E(∆2
k | Fk−1) ≤ E(Uk | Fk−1) a.s.

I S =
∑∞

k=1 Uk and assume ∃C′1 > 0, 0 < γ ≤ 1, c ≥ 1 and x0 ≥ c2 with

|∆k | ≤ c a.s. and P(S > x) ≤ C′1 exp(−xγ) for all x ≥ x0

I then limk→∞Mk = M <∞ a.s. and ∃C2 = C2(C′1, γ) and
C3 = C3(γ) > 0 such that

P
(
|M| ≥ x

√
x0
)
≤ C2 exp(−C3x) for all x ≤ xγ0



31 FPP of random geometric graphs | September 3, 2013 | Open problems

Concentration Result

Lemma (Kesten, 1993)
I (Ω,F ,P) probability space with filtration (Fk )k≥0

I ∆k = Mk −Mk−1 for some (Fk )k≥0-martingale (Mk )k≥0, M0 = 0.

I (Uk )k≥1 sequence of F-measurable rvs with
E(∆2

k | Fk−1) ≤ E(Uk | Fk−1) a.s.
I S =

∑∞
k=1 Uk and assume ∃C′1 > 0, 0 < γ ≤ 1, c ≥ 1 and x0 ≥ c2 with

|∆k | ≤ c a.s. and P(S > x) ≤ C′1 exp(−xγ) for all x ≥ x0

I then limk→∞Mk = M <∞ a.s. and ∃C2 = C2(C′1, γ) and
C3 = C3(γ) > 0 such that

P
(
|M| ≥ x

√
x0
)
≤ C2 exp(−C3x) for all x ≤ xγ0



31 FPP of random geometric graphs | September 3, 2013 | Open problems

Concentration Result

Lemma (Kesten, 1993)
I (Ω,F ,P) probability space with filtration (Fk )k≥0

I ∆k = Mk −Mk−1 for some (Fk )k≥0-martingale (Mk )k≥0, M0 = 0.
I (Uk )k≥1 sequence of F-measurable rvs with

E(∆2
k | Fk−1) ≤ E(Uk | Fk−1) a.s.

I S =
∑∞

k=1 Uk and assume ∃C′1 > 0, 0 < γ ≤ 1, c ≥ 1 and x0 ≥ c2 with

|∆k | ≤ c a.s. and P(S > x) ≤ C′1 exp(−xγ) for all x ≥ x0

I then limk→∞Mk = M <∞ a.s. and ∃C2 = C2(C′1, γ) and
C3 = C3(γ) > 0 such that

P
(
|M| ≥ x

√
x0
)
≤ C2 exp(−C3x) for all x ≤ xγ0



31 FPP of random geometric graphs | September 3, 2013 | Open problems

Concentration Result

Lemma (Kesten, 1993)
I (Ω,F ,P) probability space with filtration (Fk )k≥0

I ∆k = Mk −Mk−1 for some (Fk )k≥0-martingale (Mk )k≥0, M0 = 0.
I (Uk )k≥1 sequence of F-measurable rvs with

E(∆2
k | Fk−1) ≤ E(Uk | Fk−1) a.s.

I S =
∑∞

k=1 Uk and assume ∃C′1 > 0, 0 < γ ≤ 1, c ≥ 1 and x0 ≥ c2 with

|∆k | ≤ c a.s. and P(S > x) ≤ C′1 exp(−xγ) for all x ≥ x0

I then limk→∞Mk = M <∞ a.s. and ∃C2 = C2(C′1, γ) and
C3 = C3(γ) > 0 such that

P
(
|M| ≥ x

√
x0
)
≤ C2 exp(−C3x) for all x ≤ xγ0



32 FPP of random geometric graphs | September 3, 2013 | Open problems

Application to shortest-path problem

I first approach. F (n)
k = σ

(
X ∩

⋃k
i=1 Qnδ

(
nδzi

))
and

M(n)
k = E

(
`n | F (n)

k

)
− E`n

I however, ∆
(n)
k not bounded by a constant uniformly in k !

I solution. consider regularization X
(
nδ
)

of X

I identify (potentially) malicious local configurations X ∩Qnδ (n
δzi)

I replace X ∩Qnδ (n
δzi) by Zd ∩Qnδ (n

δzi) (where E |X ∩Q1(o)| = 1)

I show `g(X)(o,ne1) = `g(X(nδ))(o,ne1) whp
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Straightness

I for x ∈ T write Tx ⊂ T for descendant tree at x
I consider cone C(x , δ) = {y ∈ Rd : |∠(x , y)| ≤ δ}

I MD⇒ ∀ε > 0 we have Tx ⊂ C(x , |x |−1/4+ε) for all x ∈ T with |x | � 0

q(o)
x

C(x , |x |−1/4+ε)

∠ = |x |−1/4+ε

Tx
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Implications of straightness

I existence of asymptotic directions (AD) for all semi-infinite paths γ ⊂ T
I i.e. for γ = 〈x1, x2, . . .〉 we have xk/ |xk | → θ ∈ Sd−1

I ∀θ ∈ Sd−1 there exists a semi-infinite path in γ ⊂ T with AD θ

I the set of those θ ∈ Sd−1 for which there exists more than one
semi-infinite path in T with AD θ is dense in Sd−1

θ
γ
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Outlook

I application in telecommunication networks
I asymptotic description for joint distribution for the lengths of longest

branches in both of the two subtrees at the origin

I enlarge class of examples for which MD-result holds (e.g. dead-leaves
model, Johnson-Mehl tessellations, creek-crossing graphs)

I non-existence of bi-infinite geodesics (d = 2)
I coalescence of semi-infinite geodesics with same asymptotic

directions (d = 2)
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Further developments

I FPP on random geometric graphs: studied by Vahidi-Asl & Wierman
(1990), Baccelli, Błaszczyszyn & Haji-Mirsadeghi (2011), Pimentel
(2011)

I mostly iid edge passage times (e.g. hopcounts)

I Baccelli, Tchoumatchenko & Zuyev (2000), Aldous (2009):
FPP on random geometric graphs with euclidean length as edge
passage time

I example: Delaunay graph/relative neighborhood graph on a
homogeneous PPP in dimension d = 2
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First step: block construction

I follow approach proposed by Deuschel & Pisztora (1996)
I consider discretization of Rd into cubes of side length L > 0
I define site percolation process of good cubes with the properties

I good paths correspond to paths in G⇒ essential connectivity
I probability of goodness→ 1 as L→∞
I total length inside good cubes bounded from above
I finite range of dependence⇒ stabilization

I ⇒ stochastically dominates supercritical Bernoulli percolation process
[2]
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Construction of global & local routes

I ⇒ global path close to o, re1 not intersecting bad clusters between o
and re1

I final step. construction of local routes from o, re1 to global path
I choose any path leaving bad clusters close to o
I whp these clusters are not too large and length of local path length

bounded from above by total edge length inside certain bad clusters
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Stochastic Subscriber Network

simulated main roads

I main roads
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Stochastic Subscriber Network

simulated side streets

I main roads
I side streets
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Stochastic Subscriber Network

network components along roads

I main roads
I side streets
I network components:

I higher-level components
(green)

I lower-level components (blue)
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Stochastic Subscriber Network

serving zones

I main roads
I side streets
I network components:

I higher-level components
(green)

I lower-level components (blue)
I serving zones of higher-level

components
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Shortest-path trees

I consider segment system S∗H of a typical serving zone

I construct tree T from S∗H by moving along shortest paths to o
I goal. asymptotic characteristics of backbone lengths in unboundedly

dense networks?
I asymptotic marginal distribution of longest-branch length?
I asymptotic joint distribution of longest-branch lengths in both subtrees?

o

A2

A3
A4

A5

A6

A7

A8

A9

A10
A11

o

A2

A3
A4

A5A6A7
A8 A9

A10A11

A2
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dense networks?

I asymptotic marginal distribution of longest-branch length?
I asymptotic joint distribution of longest-branch lengths in both subtrees?

o
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Applications: boundedness of cells & shape theorem

Corollary
I G ⊂ R2 as above
I then a.s. all cells of G are bounded

I idea: use theorem to construct closed curve of edges around the origin
I consider annulus of squares of side length

√
r at distance r2 from o and

distance r from each other
I by the thm: points in neighboring squares can be connected by a path

far away from o whp
I ⇒ claim follows from Borel-Cantelli lemma
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Stochastic Subscriber Network

serving zones

I main roads
I side streets
I network components:

I higher-level components
(green)

I lower-level components (blue)
I serving zones of higher-level

components
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Description of the model

I G = random geometric graph in R2 as above
I G∗ = Palm version of G

I informally: shifting o to random location on the edge set of G

I Yλ = Cox process on G∗ with intensity λ > 0
I S∗λ = {x ∈ G∗ : |x | ≤ |x − y | for all y ∈ Yλ}

I Z (λ) = supx∈S∗λ
`(o, x)
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Asymptotic result

Theorem
I Ξ = typical Poisson-Voronoi cell based on homogeneous Poisson point

process with intensity Eν1 (G ∩Q1(o))

I R = random radius of smallest ball BR(o) with Ξ ⊂ BR(o)

I then, as λ→ 0,
Z (λ)

√
λ

d−→ ξR,

where ξ = limn→∞ n−1E`(o,ne1)

I `(o,ne1) = length of the shortest path on G∗ from q(o) to q(ne1)

I distribution of R explicitly known, see Calka 2002
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Idea of proof

I by the shape theorem: length of longest branch ≈ ξ· Euclidean distance
from most distant point in the serving zone to the origin

I furthermore: scaled typical serving zone converges asymptotically to
typical Poisson-Voronoi cell

I ⇒ scaled length of longest branch ≈ ξ· radius of circumcircle of typical
Poisson-Voronoi cell

≈ ξ · RR
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Concentration Result

Lemma (Kesten, 1993)
I (Ω,F ,P) probability space with filtration (Fk )k≥1

I ∆k = Mk −Mk−1 for some (Fk )k≥1-martingale (Mk )k≥1, M0 = 0.
I (Uk )k≥1 sequence of F-measurable rvs with

E(∆2
k | Fk−1) ≤ E(Uk | Fk−1) a.s.

I S =
∑∞

k=1 Uk and assume ∃c ≥ 1 and x0 ≥ c2 with

|∆k | ≤ c a.s. and S ≤ x0 a.s.

I then limk→∞Mk = M <∞ a.s. and ∃C1,C2 > 0 such that

P
(
|M| ≥ x

√
x0
)
≤ C1 exp(−C2x) for all x ≤ x0
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Moderate deviations of shortest-patht lengths

I tail bound can be refined for probabilities of moderate deviations of
shortest-path lengths

Theorem
I X ⊂ Rd homogeneous Poisson point process (for simplicity)
I let G = Vor(X ) or G = Del(X )

I then for all ε > 0 the events |`r − ξr | ≤ r1/2+ε occur whp,
I where ξ = limr→∞ E`r/r

I based on martingale concentration inequality due to Kesten (1993)
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Asymptotic joint distribution of backbone lengths
I so far, asymptotic (one-dimensional) distribution of longest branch in

shortest-path tree (backbone)

I with probability 1, shortest-path tree decomposes into two subtrees
T = T1 ∪ T2

I asymptotic bivariate distribution of backbone lengths in both subtrees?

moderate-deviation result⇒ concept of competition interfaces,
Howard & Newman (2001)

I also applicable to limit distributions of total length and capacity
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