First-passage percolation on random geometric graphs
and an application to shortest-path trees

Christian Hirsch
jointly with David Neuhäuser, Catherine Gloaguen and Volker Schmidt
First-passage percolation on lattices

Model assumptions and examples

Main results and applications

Open problems
First-passage percolation on lattices

Model assumptions and examples

Main results and applications

Open problems
First-passage percolation (lattice models)

- introduced by Hammersley and Welsh (1965)
First-passage percolation (lattice models)

- introduced by Hammersley and Welsh (1965)
- simple model for a spreading fluid in a random porous medium
First-passage percolation (lattice models)

- introduced by Hammersley and Welsh (1965)
- simple model for a spreading fluid in a random porous medium
- medium: nearest-neighbor lattice $\mathbb{Z}^d = (V, E)$
- iid non-negative random variables $\{\tau(e)\}_{e \in E}$ (edge passage times)
First-passage percolation (lattice models)

- introduced by Hammersley and Welsh (1965)
- simple model for a spreading fluid in a random porous medium
- medium: nearest-neighbor lattice $\mathbb{Z}^d = (V, E)$
- iid non-negative random variables $\{\tau(e)\}_{e \in E}$ (edge passage times)
- \Rightarrow random metric on \mathbb{Z}^d
- $\ell(u, v) = \inf_{u = z_0 \sim z_1 \sim \ldots \sim z_n = v} \sum_{i=1}^{n} \tau(\{z_{i-1}, z_i\})$
First-passage percolation (lattice models)

- introduced by Hammersley and Welsh (1965)
- simple model for a spreading fluid in a random porous medium
- medium: nearest-neighbor lattice $\mathbb{Z}^d = (V, E)$
- iid non-negative random variables $\{\tau(e)\}_{e \in E}$ (edge passage times)
- \Rightarrow random metric on \mathbb{Z}^d
- $\ell(u, v) = \inf_{u=z_0 \sim z_1 \sim \ldots \sim z_n=v} \sum_{i=1}^{n} \tau(\{z_{i-1}, z_i\})$
- asymptotic behavior of shortest-path lengths $\ell_n = \ell(o, ne_1)$ for large n?
- related to notion of tortuosity in materials science
Related models

- *(Howard & Newman, 2001).* first-passage percolation on homogeneous Poisson point process with powers of Euclidean distance as edge-passage times
Related models

- (Howard & Newman, 2001). First-passage percolation on homogeneous Poisson point process with powers of Euclidean distance as edge-passage times

 \Rightarrow dependencies in geometry
Related models

- (Howard & Newman, 2001). first-passage percolation on homogeneous Poisson point process with powers of Euclidean distance as edge-passage times
 ⇒ dependencies in geometry

Related models

- *(Howard & Newman, 2001).* first-passage percolation on homogeneous Poisson point process with powers of Euclidean distance as edge-passage times
 \[\Rightarrow \text{dependencies in geometry} \]

- *(Pimentel, 2007/2011).* first-passage percolation on Poisson-Delaunay graph with iid edge-passage times
 \[\Rightarrow \text{dependencies in topology} \]
Related models

- (Howard & Newman, 2001). first-passage percolation on homogeneous Poisson point process with powers of Euclidean distance as edge-passage times
 \[\Rightarrow \text{dependencies in geometry} \]

 \[\Rightarrow \text{dependencies in topology} \]

- this talk. first-passage percolation on random geometric graphs with Euclidean distance as edge-passage times
Related models

- *(Howard & Newman, 2001)*. first-passage percolation on homogeneous Poisson point process with powers of Euclidean distance as edge-passage times
 \[\Rightarrow \text{dependencies in geometry} \]

- *(Pimentel, 2007/2011)*. first-passage percolation on Poisson-Delaunay graph with iid edge-passage times
 \[\Rightarrow \text{dependencies in topology} \]

- *this talk*. first-passage percolation on random geometric graphs with Euclidean distance as edge-passage times
 \[\Rightarrow \text{dependencies in both geometry and topology} \]
First-passage percolation on lattices

Model assumptions and examples

Main results and applications

Open problems
Model assumptions

- \(X \subset \mathbb{R}^d \) stationary, isotropic and \(m \)-dependent point process
- \(N, G \) : family of locally finite sets of points, resp. smooth curves in \(\mathbb{R}^d \)
- \(g : N \rightarrow G \) motion-equivariant, i.e., \(g(\alpha(\varphi)) = \alpha(g(\varphi)) \) for all \(\varphi \in N \) and all rigid motions \(\alpha : \mathbb{R}^d \rightarrow \mathbb{R}^d \)
Model assumptions

- $X \subset \mathbb{R}^d$ stationary, isotropic and m-dependent point process
- $N, G :$ family of locally finite sets of points, resp. smooth curves in \mathbb{R}^d
- $g : N \rightarrow G$ motion-equivariant, i.e., $g(\alpha(\varphi)) = \alpha(g(\varphi))$ for all $\varphi \in N$ and all rigid motions $\alpha : \mathbb{R}^d \rightarrow \mathbb{R}^d$
- $\left(A_a\right)_{a \geq 1}$ family of events. Say A_a occurs with high probability (whp) if there exists $c_1 > 0$ with $\mathbb{P}(A_a^c) \leq 3 \exp(-a^{c_1})$ for all $a \geq 1$.
Model assumptions

- $X \subset \mathbb{R}^d$ stationary, isotropic and m-dependent point process
- \mathbb{N}, G: family of locally finite sets of points, resp. smooth curves in \mathbb{R}^d
- $g : \mathbb{N} \to G$ motion-equivariant, i.e., $g(\alpha(\varphi)) = \alpha(g(\varphi))$ for all $\varphi \in \mathbb{N}$ and all rigid motions $\alpha : \mathbb{R}^d \to \mathbb{R}^d$
- $(A_a)_{a \geq 1}$ family of events. Say A_a occurs \textit{with high probability (whp)} if there exists $c_1 > 0$ with $\mathbb{P}(A_a^c) \leq 3 \exp(-a^{c_1})$ for all $a \geq 1$

GSC conditions

- \textit{growth condition}. $\{\nu_1(g(X) \cap Q_1(o)) \leq a\} \cap \{g(X) \cap Q_a(o) \neq \emptyset\}$ occur whp, $Q_a(o) = [-a/2, a/2]^d$.
Model assumptions

- \(X \subset \mathbb{R}^d \) stationary, isotropic and \(m \)-dependent point process
- \(\mathbb{N}, \mathbb{G} : \) family of locally finite sets of points, resp. smooth curves in \(\mathbb{R}^d \)
- \(g : \mathbb{N} \to \mathbb{G} \) motion-equivariant, i.e., \(g(\alpha(\varphi)) = \alpha(g(\varphi)) \) for all \(\varphi \in \mathbb{N} \) and all rigid motions \(\alpha : \mathbb{R}^d \to \mathbb{R}^d \)
- \((A_a)_{a \geq 1} \) family of events. Say \(A_a \) occurs \textit{with high probability (whp)} if there exists \(c_1 > 0 \) with \(\mathbb{P}(A_a^c) \leq 3 \exp(-a^{c_1}) \) for all \(a \geq 1 \)

GSC conditions

- \textit{growth condition}. \(\{\nu_1(g(X) \cap Q_1(o)) \leq a\} \cap \{g(X) \cap Q_a(o) \neq \emptyset\} \) occur whp, \(Q_a(o) = [-a/2, a/2]^d \).
- \textit{stabilization condition}. \(g(X) \cap Q_1(o) = g(X \cap Q_a(o) \cup \psi) \cap Q_1(o) \) for all locally finite \(\psi \subset \mathbb{R}^d \setminus Q_a(o) \) whp.
Model assumptions

- \(X \subset \mathbb{R}^d \) stationary, isotropic and \(m \)-dependent point process
- \(\mathbb{N}, \mathbb{G} : \) family of locally finite sets of points, resp. smooth curves in \(\mathbb{R}^d \)
- \(g : \mathbb{N} \rightarrow \mathbb{G} \) motion-equivariant, i.e., \(g(\alpha(\varphi)) = \alpha(g(\varphi)) \) for all \(\varphi \in \mathbb{N} \) and all rigid motions \(\alpha : \mathbb{R}^d \rightarrow \mathbb{R}^d \)
- \((A_a)_{a \geq 1} \) family of events. Say \(A_a \) occurs with high probability (whp) if there exists \(c_1 > 0 \) with \(\mathbb{P}(A_a^c) \leq 3 \exp(-a^{c_1}) \) for all \(a \geq 1 \)

GSC conditions

- **growth condition.** \(\{\nu_1(g(X) \cap Q_1(o)) \leq a\} \cap \{g(X) \cap Q_a(o) \neq \emptyset\} \) occur whp, \(Q_a(o) = [-a/2, a/2]^d \).
- **stabilization condition.** \(g(X) \cap Q_1(o) = g(X \cap Q_a(o) \cup \psi) \cap Q_1(o) \) for all locally finite \(\psi \subset \mathbb{R}^d \setminus Q_a(o) \) whp.
- **connectivity condition.** \(g(X) \cap Q_{a/2}(o) \) contained in a connected component of \(g(X) \cap Q_a(o) \) whp.
Examples I

- $X \subset \mathbb{R}^d =$ homogeneous Poisson point process
- Voronoi graph $\text{Vor}(X)$. edge system of tessellation with cells $(C_i)_{i \geq 1}$, where $C_i = \{ y \in \mathbb{R}^d : |y - X_i| \leq |y - X_j| \text{ for all } j \geq 1 \}$

Poisson-Voronoi tessellation
Examples I

- $X \subset \mathbb{R}^d$ = homogeneous Poisson point process
- Voronoi graph $\text{Vor}(X)$. edge system of tessellation with cells $(C_i)_{i \geq 1}$, where $C_i = \{ y \in \mathbb{R}^d : |y - X_i| \leq |y - X_j| \ \text{for all} \ j \geq 1 \}$
- Delaunay graph $\text{Del}(X)$. dual graph of Voronoi graph

Poisson-Voronoi tessellation

Poisson-Delaunay tessellation
Examples II

- Creek-crossing graphs $G_n(X)$. For fixed $n \geq 2$ define $G_n(X) = (V, E)$, where $V = X$

- $\{x, y\} \in E$ if $\exists m \leq n, x = x_0, \ldots, x_m = y \in X$ such that $|x_i - x_{i+1}| < |x - y|$ for all $0 \leq i \leq m - 1$
Examples II

- **Creek-crossing graphs** $G_n(X)$. For fixed $n \geq 2$ define $G_n(X) = (V, E)$, where $V = X$

- $\{x, y\} \in E$ if $\forall m \leq n, x = x_0, \ldots, x_m = y \in X$ such that $|x_i - x_{i+1}| < |x - y|$ for all $0 \leq i \leq m - 1$

- Framework extendable to further examples, e.g., Johnson-Mehl tessellation, dead leaves model
First-passage percolation on lattices

Model assumptions and examples

Main results and applications

Open problems
Tail bounds for shortest-path lengths

- nearest point on graph: \(q(x) = \arg\min_{y \in G} |x - y| \)
- length of shortest Euclidean path on \(G \): \(\ell(x_1, x_2) = \ell(q(x_1), q(x_2)) \)
Tail bounds for shortest-path lengths

- nearest point on graph: $q(x) = \operatorname{argmin}_{y \in G} |x - y|$
- length of shortest Euclidean path on G: $\ell(x_1, x_2) = \ell(q(x_1), q(x_2))$

Theorem

- let $X \subset \mathbb{R}^d$ and $G = g(X)$ be as above.
Tail bounds for shortest-path lengths

- nearest point on graph: \(q(x) = \arg\min_{y \in G} |x - y| \)
- length of shortest Euclidean path on \(G \): \(\ell(x_1, x_2) = \ell(q(x_1), q(x_2)) \)

Theorem

- let \(X \subset \mathbb{R}^d \) and \(G = g(X) \) be as above.
- then \(\ell(o, re_1) \leq ur \) whp uniformly over all \(ur \) with \(u \geq u_0 \), i.e.

\[
\exists c_1, c_2 > 0 \text{ with } \mathbb{P}(\ell(o, re_1) \geq ur) \leq c_1 \exp(-ur^{c_2}) \text{ for all } u \geq u_0, r \geq 1
\]

- proof uses techniques of Deusche & Pisztor (1996)
Tail bounds for shortest-path lengths

- nearest point on graph: \(q(x) = \arg\min_{y \in G} |x - y| \)
- length of shortest Euclidean path on \(G \): \(\ell(x_1, x_2) = \ell(q(x_1), q(x_2)) \)

Theorem

- let \(X \subset \mathbb{R}^d \) and \(G = g(X) \) be as above.
- then \(\ell(o, re_1) \leq ur \) whp uniformly over all ur with \(u \geq u_0 \), i.e.
 \[
 \exists c_1, c_2 > 0 \text{ with } \mathbb{P}(\ell(o, re_1) \geq ur) \leq c_1 \exp(-ur^{c_2}) \text{ for all } u \geq u_0, r \geq 1
 \]

- proof uses techniques of Deuschel & Pisztora (1996)
- see Aldous (2010) for related results in the case \(X=\text{Poisson} \) and \(d = 2 \)
- also true for other ergodic graphs \(G \), e.g. Poisson line tessellation
Applications: boundedness of cells & shape theorem

Corollary

- $G \subset \mathbb{R}^2$ as above
- then a.s. all cells of G are bounded
Applications: boundedness of cells & shape theorem

Corollary

- $G \subset \mathbb{R}^2$ as above
- then a.s. all cells of G are bounded

Corollary

- $G \subset \mathbb{R}^d$ as above
- ⇒ $\exists \mu \geq 1$ such that for all $\varepsilon > 0$ with probability 1:

$$B_{(1-\varepsilon)\mu^{-1}r}(o) \subset B_r^G(o) = \{x \in \mathbb{R}^d : \ell(o, x) \leq r\} \subset B_{(1+\varepsilon)\mu^{-1}r}(o)$$

for all sufficiently large $r \geq 0$

- first-passage metric behaves asymptotically as a scalar multiple of Euclidean metric
Concentration result for moderate deviations

- additional assumptions
 - $X = \text{homogeneous Poisson point process (for simplicity)}$
 - $g(X) = \text{Vor}(X), \text{Del}(X) \text{ or } G_n(X)$

Theorem

- for every $\varepsilon > 0$ the events $|\ell(o, re_1) - \mu r| \leq r^{1/2+\varepsilon}$ occur whp
- where $\mu = \lim_{r \to \infty} r^{-1} \mathbb{E}\ell(o, re_1)$
Idea of proof: martingale approach

- fix $\delta > 0$, enumeration $\mathbb{Z}^d = \{z_1, z_2, \ldots\}$
- $(\Omega, \mathcal{F}, \mathbb{P}) = \text{canonical probability space associated with } X$
Idea of proof: martingale approach

- fix $\delta > 0$, enumeration $\mathbb{Z}^d = \{Z_1, Z_2, \ldots \}$
- $(\Omega, \mathcal{F}, \mathbb{P}) = \text{canonical probability space associated with } X$
- consider filtration $\left(\mathcal{F}_k^{(r)} \right)_{k \geq 1}$ of \mathcal{F} and martingale $\left(M_k^{(r)} \right)_{k \geq 1}$, where

$$
\mathcal{F}_k^{(r)} = \sigma \left(X \cap \bigcup_{i=1}^k Q_{r\delta} \left(r\delta z_i \right) \right) \quad \text{and} \quad M_k^{(r)} = \mathbb{E} \left(\ell(o, re_1) \mid \mathcal{F}_k^{(r)} \right)
$$

- apply suitable martingale concentration result (Kesten, 1993)
Idea of proof: martingale approach

- fix $\delta > 0$, enumeration $\mathbb{Z}^d = \{z_1, z_2, \ldots\}$
- $(\Omega, \mathcal{F}, \mathbb{P}) = \text{canonical probability space associated with } X$
- consider filtration $\left(\mathcal{F}_k^{(r)}\right)_{k \geq 1}$ of \mathcal{F} and martingale $\left(M_k^{(r)}\right)_{k \geq 1}$, where
 \[
 \mathcal{F}_k^{(r)} = \sigma \left(X \cap \bigcup_{i=1}^k Q_{r\delta} \left(r\delta z_i \right) \right) \quad \text{and} \quad M_k^{(r)} = \mathbb{E} \left(\ell(o, re_1) \mid \mathcal{F}_k^{(r)} \right)
 \]
- apply suitable martingale concentration result (Kesten, 1993)
Concentration result for geodesics

- \(\rho_r \subset G \): shortest path from \(q(o) \) to \(q(re_1) \)

Corollary

\(\rho_r \subset [o, re_1] \oplus Q_{r^{3/4+\varepsilon}}(o) \) occurs whp for all \(\varepsilon > 0 \)
Shortest-path tree

- consider the graph G^* obtained from G by placing the origin at random on the edge set $G^{(1)}$
- formally, G^* is the Palm version of G
Shortest-path tree

- consider the graph G^* obtained from G by placing the origin at random on the edge set $G^{(1)}$
- formally, G^* is the Palm version of G
- consider distance peaks
 \[M = \{ x \in G^* \mid \text{shortest path from } x \text{ to } o \text{ not unique} \} \]
- define the shortest-path tree $T = G^* \setminus M$ by elimination of distance peaks
Shortest-path tree

- consider the graph G^* obtained from G by placing the origin at random on the edge set $G^{(1)}$
- formally, G^* is the Palm version of G
- consider distance peaks $M = \{ x \in G^* \mid \text{shortest path from } x \text{ to } o \text{ not unique} \}$
- define the shortest-path tree $T = G^* \setminus M$ by elimination of distance peaks
- then, for any $x \in T$: the path from x to o in T equals shortest path from x to o in G^*
Poisson-Delaunay graph (cutout)
Shortest-path tree (cutout)
Competition interface

- (Howard & Newman, 2001). concentration result for $\rho_r \Rightarrow$ existence of asymptotic directions (AD) for all semi-infinite paths $\gamma \subset T$
- i.e. for $x_k/|x_k| \to \theta \in S^{d-1}$, where $\gamma = \langle x_1, x_2, \ldots \rangle$
Competition interface

- \((\text{Howard} \ & \ \text{Newman}, \ 2001)\). concentration result for \(\rho_r \Rightarrow \) existence of \textit{asymptotic directions (AD)} for all semi-infinite paths \(\gamma \subset T\)
- i.e. for \(x_k/ |x_k| \to \theta \in S^{d-1}\), where \(\gamma = \langle x_1, x_2, \ldots \rangle\)
- \(d = 2\)
- write \(T_1, T_2\) for subtrees at \(o\) (observe \(\text{deg}_T(o) = 2\) a.s.)
- define \textit{competition interface} \(I = \overline{T_1} \cap \overline{T_2}\)
Competition interface

- (Howard & Newman, 2001). concentration result for $\rho_r \Rightarrow$ existence of asymptotic directions (AD) for all semi-infinite paths $\gamma \subset T$
- i.e. for $x_k/|x_k| \rightarrow \theta \in S^{d-1}$, where $\gamma = \langle x_1, x_2, \ldots \rangle$
- $d = 2$
- write T_1, T_2 for subtrees at o (observe $\text{deg}_T(o) = 2$ a.s.)
- define competition interface $I = \overline{T_1} \cap \overline{T_2}$
- if $\nu_1(T_1) = \nu_1(T_2) = \infty$, then $I = I_1 \cup I_2$ where I_1 and I_2 admit AD
Poisson-Delaunay graph (cutout)
Competition interface
Poisson-Delaunay graph (cutout)
Competition interface: pathological realization
First-passage percolation on lattices

Model assumptions and examples

Main results and applications

Open problems
Open problems

- $d = 2$
 - two unbounded half-trees occur with positive probability
 - non-existence of bi-infinite geodesics with fixed asymptotic directions
 - coalescence of semi-infinite geodesics with same fixed asymptotic directions
Thank you for your attention!
D. J. Aldous.
Which connected spatial networks on random points have linear route-lengths?

J. Deuschel and A. Pisztora.
Surface order large deviations for high-density percolation.

First-passage percolation on random geometric graphs and an application to shortest-path trees.

C. Hirsch, D. Neuhäuser, and V. Schmidt.
Moderate deviations for shortest-path lengths on random geometric graphs. (Working Paper).
2013.

C. Howard and C. Newman.
Euclidean models of first-passage percolation.

C. Howard and C. Newman.
Geodesics and spanning trees for Euclidean first-passage percolation.

H. Kesten.
On the speed of convergence in first-passage percolation.
Bivariate distribution of backbone lengths

\[Z^{(i)}(\lambda_H) = \sup_{x \in S_{\lambda_H} \cap T_i} \ell(o, x), \ i \in \{1, 2\} \]

Theorem

\[X \subset \mathbb{R}^2. \text{ homogeneous Poisson point process with intensity } \gamma \]
Bivariate distribution of backbone lengths

\[Z^{(i)}(\lambda_H) = \sup_{x \in S^*_H \cap T_i} \ell(o, x), \ i \in \{1, 2\} \]

Theorem

- \(X \subset \mathbb{R}^2 \). homogeneous Poisson point process with intensity \(\gamma \)
- then, \(\exists \) random vector \((Z^{(1)}, Z^{(2)})\)

\[
\left(Z^{(1)}(\lambda_H) \sqrt{\lambda_H}, Z^{(2)}(\lambda_H) \sqrt{\lambda_H} \right) \xrightarrow{d} \left(Z^{(1)}, Z^{(2)} \right),
\]

as \(\lambda_H \to 0 \), *conditioned on simultaneous unboundedness of \(T_1 \) and \(T_2 \)
Bivariate distribution of backbone lengths (II)

- explicit interpretation of \((Z^{(1)}, Z^{(2)})\)
Bivariate distribution of backbone lengths (II)

- explicit interpretation of \((Z^{(1)}, Z^{(2)})\)
- generate typical Poisson-Voronoi cell
Bivariate distribution of backbone lengths (II)

- explicit interpretation of $(Z^{(1)}, Z^{(2)})$
- generate independent, isotropic sector
Bivariate distribution of backbone lengths (II)

- explicit interpretation of \((Z^{(1)}, Z^{(2)})\)
- find most distant point in each part and put \(Z^{(i)} = \xi \cdot \zeta^{(i)}, i = 1, 2\)
A moderate deviation result

Theorem (Alexander, Kesten, 1993)

- if $\mathbb{P}(\tau = 0) < p_c(\mathbb{Z}^d)$ and $\mathbb{E}(\tau^2) < \infty$, then $\exists C_1, C_2, C_3, C_4, C_5 > 0$ such that $\forall n \geq 1$
A moderate deviation result

Theorem (Alexander, Kesten, 1993)

- If $P(\tau = 0) < p_c(\mathbb{Z}^d)$ and $\mathbb{E}(\tau^2) < \infty$, then $\exists C_1, C_2, C_3, C_4, C_5 > 0$ such that $\forall n \geq 1$

 - $C_1 n^{-2} \leq \frac{1}{n} \mathbb{E} \ell_n - \mu \leq C_2 n^{-1/2} \log(n)$

 - $P(|\ell_n - \mathbb{E} \ell_n| \geq \sqrt{n}x) \leq C_3 \exp(-C_4x)$ for all $x \leq C_5 n$

 - $P(\ell_n - n\mu \leq -\sqrt{n}x) \leq C_3 \exp(-C_4x)$ for all $x \leq C_5 n$

 - $P(\ell_n - n\mu \geq 2C_2 n^{1/2} \log(n) + xn^{1/2}) \leq C_3 \exp(-C_4x)$ for all $x \leq C_5 n$
A moderate deviation result

Theorem (Alexander, Kesten, 1993)

- if $\mathbb{P}(\tau = 0) < p_c(\mathbb{Z}^d)$ and $\mathbb{E}(\tau^2) < \infty$, then $\exists C_1, C_2, C_3, C_4, C_5 > 0$ such that $\forall n \geq 1$

 - $C_1 n^{-2} \leq \frac{1}{n} \mathbb{E} \ell_n - \mu \leq C_2 n^{-1/2} \log(n)$

 - $\mathbb{P} (|\ell_n - \mathbb{E}\ell_n| \geq \sqrt{n}x) \leq C_3 \exp(-C_4x)$ for all $x \leq C_5 n$

 - $\mathbb{P} (\ell_n - n\mu \leq -\sqrt{n}x) \leq C_3 \exp(-C_4x)$ for all $x \leq C_5 n$

 - $\mathbb{P} (\ell_n - n\mu \geq 2C_2 n^{1/2} \log(n) + xn^{1/2}) \leq C_3 \exp(-C_4x)$ for all $x \leq C_5 n$

- variance of ℓ_n conjectured to be of order $n^{2/3}$
- best upper-bound by (Benjamini, Kalai & Schramm, 2003) is $O(n/\log(n))$
A moderate deviation result

Theorem (Alexander, Kesten, 1993)

- If \(P(\tau = 0) < p_c(\mathbb{Z}^d) \) and \(\mathbb{E}(\tau^2) < \infty \), then \(\exists C_1, C_2, C_3, C_4, C_5 > 0 \) such that \(\forall n \geq 1 \)
 - \(C_1 n^{-2} \leq \frac{1}{n} \mathbb{E} \ell_n - \mu \leq C_2 n^{-1/2} \log(n) \)
 - \(P(\ell_n - \mathbb{E}\ell_n \geq \sqrt{n}x) \leq C_3 \exp(-C_4x) \) for all \(x \leq C_5 n \)
 - \(P(\ell_n - n\mu \leq -\sqrt{n}x) \leq C_3 \exp(-C_4x) \) for all \(x \leq C_5 n \)
 - \(P(\ell_n - n\mu \geq 2C_2 n^{1/2} \log(n) + xn^{1/2}) \leq C_3 \exp(-C_4x) \) for all \(x \leq C_5 n \)

- Variance of \(\ell_n \) conjectured to be of order \(n^{2/3} \)
- Best upper-bound by (Benjamini, Kalai & Schramm, 2003) is \(O(n/\log(n)) \)
- No CLT known for \(\ell_n \); limiting distribution conjectured to be of Tracy-Widom type
Main result

Theorem

- $X \subseteq \mathbb{R}^d$ homogeneous Poisson point process
- let $G = \text{Vor}(X)$ or $G = \text{Del}(X)$
Main result

Theorem

\(X \subset \mathbb{R}^d \) homogeneous Poisson point process

let \(G = \text{Vor}(X) \) or \(G = \text{Del}(X) \)

then for all \(\varepsilon > 0 \) the events \(|\ell_r - \mu r| \leq r^{1/2+\varepsilon} \) occur whp

where \(\mu = \lim_{r \to \infty} r^{-1} E \ell_r \)
Concentration Result

Lemma (Kesten, 1993)

\[(\Omega, \mathcal{F}, \mathbb{P}) \text{ probability space with filtration } (\mathcal{F}_k)_{k \geq 0}\]
Concentration Result

Lemma (Kesten, 1993)

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k \geq 0}$
- $\Delta_k = M_k - M_{k-1}$ for some $(\mathcal{F}_k)_{k \geq 0}$-martingale $(M_k)_{k \geq 0}$, $M_0 = 0$.
Concentration Result

Lemma (Kesten, 1993)

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k \geq 0}$
- $\Delta_k = M_k - M_{k-1}$ for some $(\mathcal{F}_k)_{k \geq 0}$-martingale $(M_k)_{k \geq 0}$, $M_0 = 0$.
- $(U_k)_{k \geq 1}$ sequence of \mathcal{F}-measurable rvs with $\mathbb{E}(\Delta_k^2 | \mathcal{F}_{k-1}) \leq \mathbb{E}(U_k | \mathcal{F}_{k-1})$ a.s.
- $S = \sum_{k=1}^{\infty} U_k$ and assume $\exists C'_1 > 0$, $0 < \gamma \leq 1$, $c \geq 1$ and $x_0 \geq c^2$ with $|\Delta_k| \leq c$ a.s. and $\mathbb{P}(S > x) \leq C'_1 \exp(-x^{\gamma})$ for all $x \geq x_0$
Concentration Result

Lemma (Kesten, 1993)

- (Ω, \mathcal{F}, P) probability space with filtration $(\mathcal{F}_k)_{k \geq 0}$
- $\Delta_k = M_k - M_{k-1}$ for some $(\mathcal{F}_k)_{k \geq 0}$-martingale $(M_k)_{k \geq 0}$, $M_0 = 0$
- $(U_k)_{k \geq 1}$ sequence of \mathcal{F}-measurable rvs with
 $$\mathbb{E}(\Delta^2_k \mid \mathcal{F}_{k-1}) \leq \mathbb{E}(U_k \mid \mathcal{F}_{k-1}) \ a.s.$$
- $S = \sum_{k=1}^{\infty} U_k$ and assume $\exists C'_1 > 0$, $0 < \gamma \leq 1$, $c \geq 1$ and $x_0 \geq c^2$ with
 $$|\Delta_k| \leq c \ a.s. \ and \ \mathbb{P}(S > x) \leq C'_1 \exp(-x^\gamma) \ for \ all \ x \geq x_0$$
- then $\lim_{k \to \infty} M_k = M < \infty \ a.s. \ and \ \exists C_2 = C_2(C'_1, \gamma) \ and \ C_3 = C_3(\gamma) > 0$ such that
 $$\mathbb{P}(|M| \geq x\sqrt{x_0}) \leq C_2 \exp(-C_3 x) \ for \ all \ x \leq x_0^{\gamma}$$
Application to shortest-path problem

- **first approach.** \(\mathcal{F}_k^{(n)} = \sigma \left(X \cap \bigcup_{i=1}^k Q_{n^\delta} \left(n^\delta z_i \right) \right) \) and \(M_k^{(n)} = \mathbb{E} \left(\ell_n \mid \mathcal{F}_k^{(n)} \right) - \mathbb{E} \ell_n \)

- however, \(\Delta_k^{(n)} \) not bounded by a constant uniformly in \(k \)!
Application to shortest-path problem

- first approach. $\mathcal{F}_k^{(n)} = \sigma \left(X \cap \bigcup_{i=1}^{k} Q_{n^\delta} (n^\delta z_i) \right)$ and $M_k^{(n)} = \mathbb{E} \left(\ell_n \mid \mathcal{F}_k^{(n)} \right) - \mathbb{E} \ell_n$

- however, $\Delta_k^{(n)}$ not bounded by a constant uniformly in k!
- solution. consider regularization $X (n^\delta)$ of X
Application to shortest-path problem

- **first approach.** \(\mathcal{F}^{(n)}_k = \sigma \left(X \cap \bigcup_{i=1}^k Q_{n^\delta} \left(n^\delta z_i \right) \right) \) and
 \[M^{(n)}_k = \mathbb{E} \left(\ell_n \mid \mathcal{F}^{(n)}_k \right) - \mathbb{E} \ell_n \]

- however, \(\Delta^{(n)}_k \) not bounded by a constant uniformly in \(k \! \)!

- **solution.** consider regularization \(X \left(n^\delta \right) \) of \(X \)
 - identify (potentially) malicious local configurations \(X \cap Q_{n^\delta} \left(n^\delta z_i \right) \)
 - replace \(X \cap Q_{n^\delta} \left(n^\delta z_i \right) \) by \(\mathbb{Z}^d \cap Q_{n^\delta} \left(n^\delta z_i \right) \) (where \(\mathbb{E} |X \cap Q_1(o)| = 1 \))
Application to shortest-path problem

- **first approach.** \(F_k^{(n)} = \sigma \left(X \cap \bigcup_{i=1}^k Q_{n^\delta} (n^\delta z_i) \right) \) and
 \[
 M_k^{(n)} = \mathbb{E} \left(\ell_n \mid F_k^{(n)} \right) - \mathbb{E} \ell_n
 \]

- however, \(\Delta_k^{(n)} \) not bounded by a constant uniformly in \(k \)!

- **solution.** consider regularization \(X (n^\delta) \) of \(X \)

 - identify (potentially) malicious local configurations \(X \cap Q_{n^\delta} (n^\delta z_i) \)
 - replace \(X \cap Q_{n^\delta} (n^\delta z_i) \) by \(\mathbb{Z}^d \cap Q_{n^\delta} (n^\delta z_i) \) (where \(\mathbb{E} |X \cap Q_1(o)| = 1 \))

- show \(\ell_g(X)(o, ne_1) = \ell_g(X(n^\delta))(o, ne_1) \) whp
Straightness

- for $x \in T$ write $T_x \subseteq T$ for descendant tree at x
- consider cone $C(x, \delta) = \{ y \in \mathbb{R}^d : |\angle(x, y)| \leq \delta \}$
Straightness

- for $x \in T$ write $T_x \subset T$ for descendant tree at x
- consider cone $C(x, \delta) = \{y \in \mathbb{R}^d : |\angle(x, y)| \leq \delta\}$
- $\text{MD} \Rightarrow \forall \varepsilon > 0 \text{ we have } T_x \subset C(x, |x|^{-1/4+\varepsilon}) \text{ for all } x \in T \text{ with } |x| \gg 0$
Straightness

- for \(x \in T \) write \(T_x \subset T \) for descendant tree at \(x \)
- consider cone \(C(x, \delta) = \{ y \in \mathbb{R}^d : |\angle(x, y)| \leq \delta \} \)
- \(\text{MD} \implies \forall \epsilon > 0 \) we have \(T_x \subset C(x, |x|^{-1/4+\epsilon}) \) for all \(x \in T \) with \(|x| \gg 0 \)
Implications of straightness

- existence of *asymptotic directions (AD)* for all semi-infinite paths $\gamma \subset T$
 - i.e. for $\gamma = \langle x_1, x_2, \ldots \rangle$ we have $x_k/|x_k| \to \theta \in S^{d-1}$
Implications of straightness

- existence of *asymptotic directions (AD)* for all semi-infinite paths $\gamma \subset T$
- i.e. for $\gamma = \langle x_1, x_2, \ldots \rangle$ we have $x_k/|x_k| \to \theta \in S^{d-1}$
- $\forall \theta \in S^{d-1}$ there exists a semi-infinite path in $\gamma \subset T$ with AD θ
Implications of straightness

- existence of *asymptotic directions* (AD) for all semi-infinite paths $\gamma \subset T$
- i.e. for $\gamma = \langle x_1, x_2, \ldots \rangle$ we have $x_k/|x_k| \to \theta \in S^{d-1}$
- $\forall \theta \in S^{d-1}$ there exists a semi-infinite path in $\gamma \subset T$ with AD θ
- the set of those $\theta \in S^{d-1}$ for which there exists more than one semi-infinite path in T with AD θ is dense in S^{d-1}
Outlook

- application in telecommunication networks
 - asymptotic description for joint distribution for the lengths of longest branches in both of the two subtrees at the origin
Outlook

- application in telecommunication networks
 - asymptotic description for joint distribution for the lengths of longest branches in both of the two subtrees at the origin
- enlarge class of examples for which MD-result holds (e.g. dead-leaves model, Johnson-Mehl tessellations, creek-crossing graphs)
Outlook

- application in telecommunication networks
 - asymptotic description for joint distribution for the lengths of longest branches in both of the two subtrees at the origin
- enlarge class of examples for which MD-result holds (e.g. dead-leaves model, Johnson-Mehl tessellations, creek-crossing graphs)
- non-existence of bi-infinite geodesics \((d = 2)\)
- coalescence of semi-infinite geodesics with same asymptotic directions \((d = 2)\)
Further developments

- FPP on random geometric graphs: studied by Vahidi-Asl & Wierman (1990), Baccelli, Błaszczyszyn & Haji-Mirsadeghi (2011), Pimentel (2011)
- mostly iid edge passage times (e.g. hopcounts)
Further developments

- FPP on random geometric graphs: studied by Vahidi-Asl & Wierman (1990), Baccelli, Błaszczyszyn & Haji-Mirsadeghi (2011), Pimentel (2011)
- mostly iid edge passage times (e.g. hopcounts)
Further developments

- FPP on random geometric graphs: studied by Vahidi-Asl & Wierman (1990), Baccelli, Błaszczyszyn & Haji-Mirsadeghi (2011), Pimentel (2011)
- mostly iid edge passage times (e.g. hopcounts)
- example: Delaunay graph/relative neighborhood graph on a homogeneous PPP in dimension $d = 2$
First step: block construction

- follow approach proposed by Deuschel & Pisztora (1996)
- consider discretization of \mathbb{R}^d into cubes of side length $L > 0$
- define site percolation process of good cubes with the properties
First step: block construction

- follow approach proposed by Deuschel & Pisztora (1996)
- consider discretization of \mathbb{R}^d into cubes of side length $L > 0$
- define site percolation process of good cubes with the properties
 - good paths correspond to paths in $G \Rightarrow$ essential connectivity
 - probability of goodness $\to 1$ as $L \to \infty$
 - total length inside good cubes bounded from above
 - finite range of dependence \Rightarrow stabilization
First step: block construction

- follow approach proposed by Deuschel & Pisztora (1996)
- consider discretization of \mathbb{R}^d into cubes of side length $L > 0$
- define site percolation process of good cubes with the properties
 - good paths correspond to paths in $G \Rightarrow$ essential connectivity
 - probability of goodness $\to 1$ as $L \to \infty$
 - total length inside good cubes bounded from above
 - finite range of dependence \Rightarrow stabilization

\Rightarrow stochastically dominates supercritical Bernoulli percolation process
Construction of global & local routes

- Global path close to o, re_1 not intersecting bad clusters between o and re_1
Construction of global & local routes

- global path close to o, re₁ not intersecting bad clusters between o and re₁
- final step. construction of local routes from o, re₁ to global path
Construction of global & local routes

- global path close to \(o \), \(re_1 \) not intersecting bad clusters between \(o \) and \(re_1 \)
- **final step.** construction of local routes from \(o, re_1 \) to global path
- choose any path leaving bad clusters close to \(o \)
- whp these clusters are not too large and length of local path length bounded from above by total edge length inside certain bad clusters
Stochastic Subscriber Network

- main roads

simulated main roads
Stochastic Subscriber Network

- main roads
- side streets

simulated side streets
Stochastic Subscriber Network

- main roads
- side streets
- network components:
 - higher-level components (green)
 - lower-level components (blue)

network components along roads
Stochastic Subscriber Network

- main roads
- side streets
- network components:
 - higher-level components (green)
 - lower-level components (blue)
- serving zones of higher-level components
Shortest-path trees

- consider segment system S^*_H of a typical serving zone
Shortest-path trees

- consider segment system S^*_H of a typical serving zone
- construct tree T from S^*_H by moving along shortest paths to o
Shortest-path trees

- consider segment system S^*_H of a typical serving zone
- construct tree T from S^*_H by moving along shortest paths to o
- goal. asymptotic characteristics of *backbone lengths* in unboundedly dense networks?
 - asymptotic marginal distribution of longest-branch length?
 - asymptotic joint distribution of longest-branch lengths in both subtrees?

![Diagram of shortest-path trees](image)
Applications: boundedness of cells & shape theorem

Corollary

- $G \subset \mathbb{R}^2$ as above
- then a.s. all cells of G are bounded
Applications: boundedness of cells & shape theorem

Corollary

- $G \subset \mathbb{R}^2$ as above
- then a.s. all cells of G are bounded

idea: use theorem to construct closed curve of edges around the origin

consider annulus of squares of side length \sqrt{r} at distance r^2 from o and distance r from each other

by the thm: points in neighboring squares can be connected by a path far away from o whp

\Rightarrow claim follows from Borel-Cantelli lemma
Stochastic Subscriber Network

- main roads
- side streets
- network components:
 - higher-level components (green)
 - lower-level components (blue)
- serving zones of higher-level components

serving zones
Description of the model

- $G = \text{random geometric graph in } \mathbb{R}^2 \text{ as above}$
- $G^* = \text{Palm version of } G$
 - informally: shifting o to random location on the edge set of G
Description of the model

- G = random geometric graph in \mathbb{R}^2 as above
- $G^* = $ Palm version of G
 - informally: shifting o to random location on the edge set of G
- $Y_\lambda = $ Cox process on G^* with intensity $\lambda > 0$
- $S^*_\lambda = \{ x \in G^* : |x| \leq |x - y| \text{ for all } y \in Y_\lambda \}$
Description of the model

- $G = \text{random geometric graph in } \mathbb{R}^2 \text{ as above}$
- $G^* = \text{Palm version of } G$
 - informally: shifting o to random location on the edge set of G
- $Y_\lambda = \text{Cox process on } G^* \text{ with intensity } \lambda > 0$
- $S^*_\lambda = \{ x \in G^* : |x| \leq |x - y| \text{ for all } y \in Y_\lambda \}$
- $Z(\lambda) = \sup_{x \in S^*_\lambda} \ell(o, x)$
Asymptotic result

Theorem

- $\Xi = \text{typical Poisson-Voronoi cell based on homogeneous Poisson point process with intensity } \mathbb{E}_{\nu_1}(G \cap Q_1(o))$
- $R = \text{random radius of smallest ball } B_R(o) \text{ with } \Xi \subset B_R(o)$
Asymptotic result

Theorem

- $\Xi = \text{typical Poisson-Voronoi cell based on homogeneous Poisson point process with intensity } \mathbb{E}_{\mathcal{V}_1} (G \cap Q_1(o))$
- $R = \text{random radius of smallest ball } B_R(o) \text{ with } \Xi \subset B_R(o)$
- then, as $\lambda \to 0$,

$$Z(\lambda) \sqrt{\lambda} \xrightarrow{d} \xi R,$$

where $\xi = \lim_{n \to \infty} n^{-1} \mathbb{E} \ell(o, ne_1)$

- $\ell(o, ne_1) = \text{length of the shortest path on } G^* \text{ from } q(o) \text{ to } q(ne_1)$
Asymptotic result

Theorem

- Ξ = typical Poisson-Voronoi cell based on homogeneous Poisson point process with intensity $E_{\nu_1} (G \cap Q_1 (o))$
- $R = \text{random radius of smallest ball } B_R(o) \text{ with } \Xi \subset B_R(o)$
- then, as $\lambda \to 0$,

 $$Z(\lambda) \sqrt{\lambda} \xrightarrow{d} \xi R,$$

 where $\xi = \lim_{n \to \infty} n^{-1} E\ell(o, ne_1)$
- $\ell(o, ne_1) = \text{length of the shortest path on } G^* \text{ from } q(o) \text{ to } q(ne_1)$

- distribution of R explicitly known, see Calka 2002
Idea of proof

- by the shape theorem: length of longest branch $\approx \xi \cdot$ Euclidean distance from most distant point in the serving zone to the origin

- furthermore: scaled typical serving zone converges asymptotically to typical Poisson-Voronoi cell
Idea of proof

► by the shape theorem: length of longest branch \(\approx \xi \cdot \) Euclidean distance from most distant point in the serving zone to the origin

► furthermore: scaled typical serving zone converges asymptotically to typical Poisson-Voronoi cell

► \(\Rightarrow \) scaled length of longest branch \(\approx \xi \cdot \) radius of circumcircle of typical Poisson-Voronoi cell
Idea of proof

- by the shape theorem: length of longest branch $\approx \xi \cdot$ Euclidean distance from most distant point in the serving zone to the origin
- furthermore: scaled typical serving zone converges asymptotically to typical Poisson-Voronoi cell
- \Rightarrow scaled length of longest branch $\approx \xi \cdot$ radius of circumcircle of typical Poisson-Voronoi cell
Idea of proof

- by the shape theorem: length of longest branch $\approx \xi \cdot$ Euclidean distance from most distant point in the serving zone to the origin
- furthermore: scaled typical serving zone converges asymptotically to typical Poisson-Voronoi cell
- \Rightarrow scaled length of longest branch $\approx \xi \cdot$ radius of circumcircle of typical Poisson-Voronoi cell
Concentration Result

Lemma (Kesten, 1993)

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k \geq 1}$
Concentration Result

Lemma (Kesten, 1993)

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k \geq 1}$
- $\Delta_k = M_k - M_{k-1}$ for some $(\mathcal{F}_k)_{k \geq 1}$-martingale $(M_k)_{k \geq 1}$, $M_0 = 0$.

Concentration Result

Lemma (Kesten, 1993)

1. $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k \geq 1}$
2. $\Delta_k = M_k - M_{k-1}$ for some $(\mathcal{F}_k)_{k \geq 1}$-martingale $(M_k)_{k \geq 1}$, $M_0 = 0$.
3. $(U_k)_{k \geq 1}$ sequence of \mathcal{F}-measurable rvs with $\mathbb{E}(\Delta_k^2 | \mathcal{F}_{k-1}) \leq \mathbb{E}(U_k | \mathcal{F}_{k-1})$ a.s.
4. $S = \sum_{k=1}^{\infty} U_k$ and assume $\exists c \geq 1$ and $x_0 \geq c^2$ with $|\Delta_k| \leq c$ a.s. and $S \leq x_0$ a.s.
Concentration Result

Lemma (Kesten, 1993)

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k \geq 1}$
- $\Delta_k = M_k - M_{k-1}$ for some $(\mathcal{F}_k)_{k \geq 1}$-martingale $(M_k)_{k \geq 1}$, $M_0 = 0$.
- $(U_k)_{k \geq 1}$ sequence of \mathcal{F}-measurable rvs with
 \[\mathbb{E}(\Delta_k^2 | \mathcal{F}_{k-1}) \leq \mathbb{E}(U_k | \mathcal{F}_{k-1}) \text{ a.s.} \]
- $S = \sum_{k=1}^{\infty} U_k$ and assume $\exists c \geq 1$ and $x_0 \geq c^2$ with
 \[|\Delta_k| \leq c \text{ a.s. and } S \leq x_0 \text{ a.s.} \]

- then $\lim_{k \to \infty} M_k = M < \infty$ a.s. and $\exists C_1, C_2 > 0$ such that
 \[\mathbb{P}(|M| \geq x\sqrt{x_0}) \leq C_1 \exp(-C_2 x) \quad \text{for all } x \leq x_0 \]
Moderate deviations of shortest-path lengths

- tail bound can be refined for probabilities of moderate deviations of shortest-path lengths

Theorem

- $X \subset \mathbb{R}^d$ homogeneous Poisson point process (for simplicity)
- let $G = \text{Vor}(X)$ or $G = \text{Del}(X)$
Moderate deviations of shortest-path lengths

- tail bound can be refined for probabilities of moderate deviations of shortest-path lengths

Theorem

- $X \subset \mathbb{R}^d$ homogeneous Poisson point process (for simplicity)
- let $G = \text{Vor}(X)$ or $G = \text{Del}(X)$
- then for all $\varepsilon > 0$ the events $|\ell_r - \xi r| \leq r^{1/2+\varepsilon}$ occur whp,
- where $\xi = \lim_{r \to \infty} \mathbb{E}\ell_r / r$
Moderate deviations of shortest-path lengths

- tail bound can be refined for probabilities of moderate deviations of shortest-path lengths

Theorem

- $X \subset \mathbb{R}^d$ homogeneous Poisson point process (for simplicity)
- let $G = \text{Vor}(X)$ or $G = \text{Del}(X)$
- then for all $\varepsilon > 0$ the events $|\ell_r - \xi r| \leq r^{1/2 + \varepsilon}$ occur whp,
- where $\xi = \lim_{r \to \infty} \frac{\mathbb{E}\ell_r}{r}$

- based on martingale concentration inequality due to Kesten (1993)
Asymptotic joint distribution of backbone lengths

- so far, asymptotic (one-dimensional) distribution of longest branch in shortest-path tree (backbone)
Asymptotic joint distribution of backbone lengths

- so far, asymptotic (one-dimensional) distribution of longest branch in shortest-path tree (backbone)
- with probability 1, shortest-path tree decomposes into two subtrees $T = T_1 \cup T_2$
Asymptotic joint distribution of backbone lengths

- so far, asymptotic (one-dimensional) distribution of longest branch in shortest-path tree (backbone)
- with probability 1, shortest-path tree decomposes into two subtrees $T = T_1 \cup T_2$
- asymptotic *bivariate* distribution of backbone lengths in both subtrees?
 moderate-deviation result \Rightarrow concept of competition interfaces, Howard & Newman (2001)
- also applicable to limit distributions of total length and capacity
Asymptotic joint distribution of backbone lengths

- so far, asymptotic (one-dimensional) distribution of longest branch in shortest-path tree (backbone)
- with probability 1, shortest-path tree decomposes into two subtrees $T = T_1 \cup T_2$
- asymptotic *bivariate* distribution of backbone lengths in both subtrees? moderate-deviation result \Rightarrow concept of competition interfaces, Howard & Newman (2001)
- also applicable to limit distributions of total length and capacity
Asymptotic joint distribution of backbone lengths

- so far, asymptotic (one-dimensional) distribution of longest branch in shortest-path tree (backbone)
- with probability 1, shortest-path tree decomposes into two subtrees $T = T_1 \cup T_2$
- asymptotic bivariate distribution of backbone lengths in both subtrees? moderate-deviation result \Rightarrow concept of competition interfaces, Howard & Newman (2001)
- also applicable to limit distributions of total length and capacity