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» simple model for a spreading fluid in a random porous medium

» medium: nearest-neighbor lattice Z¢ = (V, E)
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» = random metric on Z¢

> ((U, V) = imCU:ZONZVV---NZn:V 27:1 T({Z,-,1 ) Zi})



FPP of random geometric graphs | September 3,2013 | First-passage percolation on lattices

First-passage percolation (lattice models)

introduced by Hammersley and Welsh (1965)

simple model for a spreading fluid in a random porous medium
medium: nearest-neighbor lattice Z¢ = (V, E)

iid non-negative random variables {7(€)}ece (edge passage times)

= random metric on Z¢

E(U, V) = imCU:ZONZ1N---NZn:V 27:1 T({Z,-,1 ) Zi})

asymptotic behavior of shortest-path lengths ¢, = £(o, ney) for large n?
related to notion of tortuosity in materials science

vV vV vV vV vV VvV VvY
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Related models

» (Howard & Newman, 2001). first-passage percolation on
homogeneous Poisson point process with powers of Euclidean
distance as edge-passage times

= dependencies in geometry

» (Pimentel, 2007/2011). first-passage percolation on Poisson-Delaunay
graph with iid edge-passage times

= dependencies in topology

» this talk. first-passage percolation on random geometric graphs with
Euclidean distance as edge-passage times

= dependencies in both geometry and topology
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Model assumptions

» X C RY stationary, isotropic and m-dependent point process
» N, G : family of locally finite sets of points, resp. smooth curves in R?

» g: N — G motion-equivariant, i.e., g(a(¢)) = a(g(y)) for all ¢ € N and
all rigid motions a : RY — R¢
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X C RY stationary, isotropic and m-dependent point process

N, G : family of locally finite sets of points, resp. smooth curves in R?
g : N — G motion-equivariant, i.e., g(a(¢)) = a(g(y)) for all ¢ € N and
all rigid motions a : RY — R¢

(Aa)a>1 family of events. Say A, occurs with high probability (whp) if
there exists ¢; > 0 with P (AS) < 3exp(—a“) forall a > 1
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Model assumptions

v

X C RY stationary, isotropic and m-dependent point process
N, G : family of locally finite sets of points, resp. smooth curves in R?

g : N — G motion-equivariant, i.e., g(a(y)) = a(g(y)) for all ¢ € N and
all rigid motions a : RY — R¢

(Aa)a>1 family of events. Say A, occurs with high probability (whp) if
there exists ¢; > 0 with P (AS) < 3exp(—a®) forall a > 1

GSC conditions

» growth condition. {v1 (g(X) N @Qi(0)) < a} N {g(X) N Qa(0) # 0} occur whp,
Qa(0) = [-a/2,a/2]°.
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g : N — G motion-equivariant, i.e., g(a(y)) = a(g(y)) for all ¢ € N and
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there exists ¢; > 0 with P (AS) < 3exp(—a®) forall a > 1

GSC conditions

» growth condition. {v1 (g(X) N @Qi(0)) < a} N {g(X) N Qa(0) # 0} occur whp,
Qa(0) = [-a/2,a/2]°.

» stabilization condition. g (X) N Qi(0) = g (X N Qz(0) U ) N Qq(0) for all locally
finite 1 C RY \ Qa(0) whp.

v

v

v




“ FPP of random geometric graphs | September 3,2013 | Model assumptions and examples

Model assumptions

v

X C RY stationary, isotropic and m-dependent point process
N, G : family of locally finite sets of points, resp. smooth curves in R?

g : N — G motion-equivariant, i.e., g(a(y)) = a(g(y)) for all ¢ € N and
all rigid motions a : RY — R¢

(Aa)a>1 family of events. Say A, occurs with high probability (whp) if
there exists ¢; > 0 with P (AS) < 3exp(—a®) forall a > 1

GSC conditions

» growth condition. {v1 (g(X) N @Qi(0)) < a} N {g(X) N Qa(0) # 0} occur whp,
Qa(0) = [-a/2,a/2]°.

» stabilization condition. g (X) N Qi(0) = g (X N Qz(0) U ) N Qq(0) for all locally
finite ¢ C RY \ Qa(0) whp.

» connectivity condition. g(X) N Qz/2(0) contained in a connected component of
g(X) N Qa(0) whp.

v

v

v
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» X C RY = homogeneous Poisson point process

» Voronoi graph Vor(X). edge system of tessellation with cells (C;)i>1,
where Ci={y e R?: |y — Xj| < |y — Xj| forallj > 1}

Poisson-Voronoi tessellation
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Examples |

» X C RY = homogeneous Poisson point process

» Voronoi graph Vor(X). edge system of tessellation with cells (C;)i>1,
where Ci={y e R?: |y — Xj| < |y — Xj| forallj > 1}

» Delaunay graph Del(X). dual graph of Voronoi graph

Poisson-Voron0| tessellatlon Poisson-Delaunay tessellation
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» Creek-crossing graphs G(X). for fixed n > 2 define G,(X) = (V, E),
where V = X

» {x,y} € Eif Am < n,x=Xo,...,Xm =y € X such that
IXi — Xip1] < |x —y|forall0 <i<m-—1
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Examples |
» Creek-crossing graphs G(X). for fixed n > 2 define G,(X) = (V, E),
where V = X

» {x,y} € Eif Am < n,x=Xo,...,Xm =y € X such that
IXi — Xip1] < |x —y|forall0 <i<m-—1

n=2

» framework extendable to further examples, e.g., Johnson-Mehl
tessellation, dead leaves model
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Tail bounds for shortest-path lengths
» nearest point on graph: g(x) = argmin, g [X — y|
» length of shortest Euclidean path on G: ¢(x1, x2) = £(q(x1), q(x2))

let X ¢ RY and G = g(X) be as above.
then ((o, re1) < ur whp uniformly over all ur with u > uy, i.e.

v

v

dey, ¢ > 0 with P (¢(o, req) > ur) < crexp (—(ur)®) forallu > ug,r > 1

v

proof uses techniques of Deuschel & Pisztora (1996)
see Aldous (2010) for related results in the case X=Poisson and d = 2
also true for other ergodic graphs G, e.g. Poisson line tessellation

v

v
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Applications: boundedness of cells & shape theorem

Corollary

» G C R? as above
» then a.s. all cells of G are bounded

Corollary

» G c RY as above
» = du > 1 such that for all ¢ > O with probability 1:

B(1—5)M’1I’(O) C BrG(o) = {X eR?: 6(0, X) < f} c B(1+s),uﬁ‘r(o)

for all sufficiently large r > 0

» first-passage metric behaves asymptotically as a scalar multiple of
Euclidean metric
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Concentration result for moderate deviations

» additional assumptions

» X = homogeneous Poisson point process (for simplicity)
> g(X) = Vor(X), Del(X) or Ga(X)

» for every ¢ > 0 the events |((o, re;) — pur| < r'/?*¢ occur whp
» where p = lim,_,.. r—"El(o, rey)
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|dea of proof: martingale approach

» fix § > 0, enumeration Z9 = {z, z,...}
» (Q,F,P) = canonical probability space associated with X

» consider filtration (]-'(’)>k> of 7 and martingale (M,((’)>k>1, where
F=q (Xﬂ U, Qs (18 z,)) and M(’) (E(o, res) | ]-',Er))

. |
y N
o

» apply suitable martingale concentration result (Kesten, 1993)
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Concentration result for geodes

» pr C G: shortest path from g(o)

Corollary

pr C [0, re1] & Que/4:<(0) occurs whp

Main results and applications

ics

to q(rey)

foralle >0
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Shortest-path tree

» consider the graph G* obtained from G by placing the origin at random
on the edge set G(")

» formally, G* is the Palm version of G

» consider distance peaks
M = {x € G* | shortest path from x to o not unique}

» define the shortest-path tree T = G* \ M by elimination of distance
peaks

» then, for any x € T: the path from x to o in T equals shortest path from
xtooin G*
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Poisson-Delaunay graph (cutout)
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» (Howard & Newman, 2001). concentration result for p, = existence of
asymptotic directions (AD) for all semi-infinite paths v Cc T

> i.e. for xx/ |xk| — 6 € S, where v = (x1, x2,...)
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» (Howard & Newman, 2001). concentration result for p, = existence of
asymptotic directions (AD) for all semi-infinite paths v Cc T

> i.e. for xx/ |xk| — 6 € S, where v = (x1, x2,...)

» d=2

» write Ty, T for subtrees at o (observe degr(0) =2 a.s.)
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Competition interface

(Howard & Newman, 2001). concentration result for p, = existence of
asymptotic directions (AD) for all semi-infinite paths v Cc T

i.e. for xx/ |xx| — 6 € S, where v = (x1, X2, ...)

d=2

write Ty, T, for subtrees at o (observe degr(o) =2 a.s.)

» define competition interface | = Ty N T,

if v1(T1) = v1(T2) = o0, then | = 1uk where Iy and , admit AD

vV vV v

v
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Competition interface: pathological realization
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Open problems

»d=2
» two unbounded half-trees occur with positive probability
» non-existence of bi-infinite geodesics with fixed asymptotic directions
» coalescence of semi-infinite geodesics with same fixed asymptotic
directions
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» D.J. Aldous.
Which connected spatial networks on random points have linear route-lengths?

» J. Deuschel and A. Pisztora.
Surface order large deviations for high-density percolation.

» C. Hirsch, D. Neuhauser, C. Gloaguen, and V. Schmidt.
First-passage percolation on random geometric graphs and an application to shortest-path
trees.

» C. Hirsch, D. Neuhauser, and V. Schmidt.
Moderate deviations for shortest-path lengths on random geometric graphs. (Working Paper).

» C. Howard and C. Newman.
Euclidean models of first-passage percolation.

» C. Howard and C. Newman.
Geodesics and spanning trees for Euclidean first-passage percolation.

» H. Kesten.
On the speed of convergence in first-passage percolation.
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Bivariate distribution of backbone lengths

> ZO(0\y) = SUPyes; 7, X(0,X), i€ {1,2}
H

» X C R2. homogeneous Poisson point process with intensity ~
» then, 3 random vector (Z(V, Z(2))

(20 0w v Z® ) V) & (20, 2)),

as Ay — 0, conditioned on simultaneous unboundedness of T; and T,
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Bivariate distribution of backbone lengths (ll)

» explicit interpretation of (Z(V, Z(2))

>
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Bivariate distribution of backbone lengths (1)

> explicit interpretation of (Z(V), Z(2))
» generate typical Poisson-Voronoi cell
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Bivariate distribution of backbone lengths (1)

> explicit interpretation of (Z(V), Z(2))
» generate independent, isotropic sector
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Bivariate distribution of backbone lengths (1)

> explicit interpretation of (Z(V), Z(2))
» find most distant point in each part and put Z() = ¢. ¢, j=1,2
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such thatvn > 1
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A moderate deviation result

Theorem (Alexander, Kesten, 1993)

» ifP(t=0) < pc(Zd) andE (7’2) < 0o, then 3Cy, Co, C3, C4, C5 > 0
such thatVn > 1

» Cin~2 < 1E¢, — pu < Con~"/2log(n)

P (|tn — Ely| > v/nx) < Czexp(—Cux) for all x < Csn

P (¢ — nu < —/nx) < Czexp(—Cux) for all x < Csn

» P (¢ — np > 2Con'/2log(n) + xn'/?) < Czexp(—Cax) for all x < Csn

v

v
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A moderate deviation result

Theorem (Alexander, Kesten, 1993)

» ifP(r=0) < pc(Zd) andE (7’2) < 0o, then 3Cy, Co, C3, C4, C5 > 0
such thatVn > 1

» Cin~2 < 1E¢, — p < Con1/2log(n)

> P (|tn — Ely| > v/nx) < Cgexp(—Cux) for all x < Csn

> P (0 — np < —/nx) < Caexp(—Cyx) for all x < Csn

» P (¢, — np > 2Con"/2log(n) + xn'/2) < Csexp(—Cqx) for all x < Csn

» variance of ¢, conjectured to be of order n?/3

» best upper-bound by (Benjamini, Kalai & Schramm, 2003) is
O(n/log(n))
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A moderate deviation result

Theorem (Alexander, Kesten, 1993)

» ifP(r=0) < pc(Zd) andE (7’2) < 0o, then 3Cy, Co, C3, C4, C5 > 0
such thatVn > 1

» Cin~2 < 1E¢, — p < Con1/2log(n)

> P (|tn — Ely| > v/nx) < Cgexp(—Cux) for all x < Csn

> P (0 — np < —/nx) < Caexp(—Cyx) for all x < Csn

» P (¢, — np > 2Con"/2log(n) + xn'/2) < Csexp(—Cqx) for all x < Csn

» variance of ¢, conjectured to be of order n?/3

» best upper-bound by (Benjamini, Kalai & Schramm, 2003) is
O(n/log(n))

» no CLT known for £,; limiting distribution conjectured to be of
Tracy-Widom type
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» X c RY homogeneous Poisson point process
> let G = Vor(X) or G = Del(X)
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Main result

» X c RY homogeneous Poisson point process

> let G = Vor(X) or G = Del(X)

» then for alle > 0 the events |¢, — ur| < r'/?*¢ occur whp
» where p = lim,_o r'E¢,
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Concentration Result

Lemma (Kesten, 1993)
» (Q, F,P) probability space with filtration (Fi) k>0
> Ag = M — Mi_4 for some (]—'k)kzo-martingale (Mk)kZO: My = 0.
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Concentration Result

Lemma (Kesten, 1993)
» (Q,F,P) probability space with filtration (Fi)x>o
» Ay = My — Mi_ for some (Fy)x>o-martingale (My)x>o0, Mo = 0.

» (Uk)k>1 sequence of F-measurable rvs with
E(A2 | Fk—1) < E(Uk | Fk—1) a.s.

» S=Y42, Uc and assume 3C, > 0,0 <y <1,c>1 and xo > ¢ with

|Ak| < cas. and P(S > x) < Cjexp(—x") forall x > xo
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Concentration Result

Lemma (Kesten, 1993)
» (Q,F,P) probability space with filtration (Fi)x>o
» Ay = My — Mi_ for some (Fy)x>o-martingale (My)x>o0, Mo = 0.

» (Uk)k>1 sequence of F-measurable rvs with
E(A2 | Fk—1) < E(Uk | Fk—1) a.s.

» S=Y42, Uc and assume 3C, > 0,0 <y <1,c>1 and xo > ¢ with

|Ak| < cas. and P(S > x) < Cjexp(—x") forall x > xo

» thenlimy_,., My = M < 00 a.s. and 3C, = C»(C},~) and
C3 = Cs(v) > 0 such that

P (M| > x\/xo) < Coexp(—Csx)  forall x < xj
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Application to shortest-path problem

> first approach. F\" = ¢ (X NUL; Qs (n‘szi)) and
M" =& (e,, | .F,f")) — Et,

» however, Af(”)not bounded by a constant uniformly in k!
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» however, Af(”)not bounded by a constant uniformly in k!
> solution. consider regularization X (n°) of X
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Application to shortest-path problem

> first approach. F\" = ¢ (X AU, Qs (n‘sz,»)) and
MO =E (6| F) ~ Bty
» however, Af(”)not bounded by a constant uniformly in k!

> solution. consider regularization X (n°) of X

» identify (potentially) malicious local configurations X N Q,s (n’z))
» replace X N Q,s(n°z) by Z¢ N Qs (n’z;) (where E|X N Qy(0)| = 1)
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Application to shortest-path problem

» first approach. ]-‘,E”) =0 (X N Uf; Qps (n‘szf)) and
M =& (en | J—',E")> — Et,

» however, Aﬁ(”)not bounded by a constant uniformly in k!
> solution. consider regularization X (n°) of X

» identify (potentially) malicious local configurations X N Q,s (n’z))
» replace X N Q,s(n°z) by Z¢ N Qs (n’z;) (where E|X N Qy(0)| = 1)

> show £yx)(0, ner) = Lgx(ns))(0, N€1) Whp
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» for x € T write T, C T for descendant tree at x
» consider cone C(x,0) = {y € R?: |£(x,y)| < &}

71/4+€)

» MD = Ve > 0 we have T, C C(x,|x] forall x € T with |[x| >0

j L= e

Clx, x| 1/4+) =
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Implications of straightness

» existence of asympitotic directions (AD) for all semi-infinite paths vy C T
> i.e. fory = (xy,Xo,...) we have xi/ |xx| — 6 € ST'
» V8 € S there exists a semi-infinite path in v ¢ T with AD ¢

» the set of those # € S?— for which there exists more than one
semi-infinite path in T with AD @ is dense in S9—1
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Outlook

» application in telecommunication networks

» asymptotic description for joint distribution for the lengths of longest
branches in both of the two subtrees at the origin

» enlarge class of examples for which MD-result holds (e.g. dead-leaves
model, Johnson-Mehl tessellations, creek-crossing graphs)

» non-existence of bi-infinite geodesics (d = 2)

» coalescence of semi-infinite geodesics with same asymptotic
directions (d = 2)
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Further developments

» FPP on random geometric graphs: studied by Vahidi-Asl & Wierman
(1990), Baccelli, Bltaszczyszyn & Haji-Mirsadeghi (2011), Pimentel
(2011)

» mostly iid edge passage times (e.g. hopcounts)
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Further developments

» FPP on random geometric graphs: studied by Vahidi-Asl & Wierman
(1990), Baccelli, Bltaszczyszyn & Haji-Mirsadeghi (2011), Pimentel
(2011)

» mostly iid edge passage times (e.g. hopcounts)

» Baccelli, Tchoumatchenko & Zuyev (2000), Aldous (2009):

FPP on random geometric graphs with euclidean length as edge
passage time

» example: Delaunay graph/relative neighborhood graph on a
homogeneous PPP in dimension d = 2
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First step: block construction

v

follow approach proposed by Deuschel & Pisztora (1996)
consider discretization of RY into cubes of side length L > 0
define site percolation process of good cubes with the properties

good paths correspond to paths in G = essential connectivity
probability of goodness — 1 as L — oo

total length inside good cubes bounded from above

finite range of dependence =- stabilization

v

v

vVYyVvyly

v

= stochastically dominates supercritical Bernoulli percolation process
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Construction of global & local routes

» = global path close to o, rey not intersecting bad clusters between o
and rey

» final step. construction of local routes from o, rey to global path
» choose any path leaving bad clusters close to o

» whp these clusters are not too large and length of local path length
bounded from above by total edge length inside certain bad clusters



- FPP of random geometric graphs | September 3,2013 | Open problems




FPP of random geometric graphs | September 3,2013 | Open problems




FPP of random geometric graphs | September 3,2013 | Open problems




FPP of random geometric graphs | September 3,2013 | Open problems

Stochastic Subscriber Network

» main roads

simulated main roads



FPP of random geometric graphs | September 3,2013 | Open problems

Stochastic Subscriber Network

simulated side streets

» main roads
» side streets
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Stochastic Subscriber Network

» main roads
» side streets
» network components:

> higher-level components
(green)
> lower-level components (blue)

network components along roads
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Stochastic Subscriber Network

serving zones

>

>

>

v

main roads
side streets

network components:
> higher-level components
(green)
> lower-level components (blue)
serving zones of higher-level
components
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Shortest-path trees

» consider segment system S}, of a typical serving zone
» construct tree T from Sj; by moving along shortest paths to o

» goal. asymptotic characteristics of backbone lengths in unboundedly
dense networks?

» asymptotic marginal distribution of longest-branch length?
» asymptotic joint distribution of longest-branch lengths in both subtrees?
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Applications: boundedness of cells & shape theorem

Corollary

» G C R? as above
» then a.s. all cells of G are bounded

v

idea: use theorem to construct closed curve of edges around the origin

consider annulus of squares of side length \/r at distance r? from o and
distance r from each other

by the thm: points in neighboring squares can be connected by a path
far away from o whp

= claim follows from Borel-Cantelli lemma

v

v

v
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Stochastic Subscriber Network

serving zones

>

>

>

v

main roads
side streets

network components:
> higher-level components
(green)
> lower-level components (blue)
serving zones of higher-level
components
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v

G = random geometric graph in R? as above
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» informally: shifting o to random location on the edge set of G
Y, = Cox process on G* with intensity A > 0
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Description of the model

v

G = random geometric graph in R? as above
G* = Palm version of G
» informally: shifting o to random location on the edge set of G
» Y\ = Cox process on G* with intensity A > 0
» Si={xeG x| <|x—y|foralyc Yy}

v

v

Z(X) = sUpPyes; £(0,X)
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Asymptotic result

» = = typical Poisson-Voronoi cell based on homogeneous Poisson point
process with intensity Evqy (G N Q4(0))

R = random radius of smallest ball Bg(0) with = C Bg(0)
then, as A — 0,

v

v

ZM\)VAS¢R,
where ¢ = lim,,_,., n~"E{(0, ney)
£(0, ney) = length of the shortest path on G* from q(0) to q(ney)

v

v

distribution of R explicitly known, see Calka 2002
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|dea of proof

» by the shape theorem: length of longest branch = £- Euclidean distance
from most distant point in the serving zone to the origin

» furthermore: scaled typical serving zone converges asymptotically to
typical Poisson-Voronoi cell

» = scaled length of longest branch = ¢- radius of circumcircle of typical
Poisson-Voronoi cell "

(

P

{
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Concentration Result

Lemma (Kesten, 1993)
> (Q.F,P) probability space with filtration (Fi)>1
> A = My — My_4 for some (Fi)k>1-martingale (My)x>1, Mo = 0.

» (Uk)k>1 sequence of F-measurable rvs with
E(A2 | Fk—1) < E(Uk | Fk—1) a.s.

» S=3"12, Uk and assume 3¢ > 1 and xo > ¢? with

|Ak| < cas. and S < xp a.s.
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Concentration Result

Lemma (Kesten, 1993)
» (Q, F,P) probability space with filtration (Fi )x>1
» Ay = My — Mi_1 for some (Fy)i>1-martingale (Mi)x>1, Mo = 0.

» (Uk)k>1 sequence of F-measurable rvs with
E(A2 | Fk—1) < E(Uk | Fk—1) a.s.

S =42, Uc and assume 3c > 1 and xo > ¢ with

v

|Ak| < cas. and S < xp a.s.

v

then limy_,oc Mk = M < o a.s. and 3C;y, C> > 0 such that

P (M| > x\/Xo) < Crexp(—C2x)  forall x < xo
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Moderate deviations of shortest-patht lengths

» tail bound can be refined for probabilities of moderate deviations of
shortest-path lengths

» X c RY homogeneous Poisson point process (for simplicity)
» let G = Vor(X) or G = Del(X)

» then for all = > 0 the events |¢, — £r| < r'/?= occur whp,

» where{ =Ilim,_, El /r

|

based on martingale concentration inequality due to Kesten (1993)
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Asymptotic joint distribution of backbone lengths

» so far, asymptotic (one-dimensional) distribution of longest branch in
shortest-path tree (backbone)

» with probability 1, shortest-path tree decomposes into two subtrees
T=TuUuT

» asymptotic bivariate distribution of backbone lengths in both subtrees?
moderate-deviation result = concept of competition interfaces,
Howard & Newman (2001)

» also applicable to limit distributions of total length and capacity
W7D =
W%
N 0
ANAANY
SUNAL
KD
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Asymptotic joint distribution of backbone lengths

» so far, asymptotic (one-dimensional) distribution of longest branch in
shortest-path tree (backbone)

» with probability 1, shortest-path tree decomposes into two subtrees
T=TuUuT

» asymptotic bivariate distribution of backbone lengths in both subtrees?
moderate-deviation result = concept of competition interfaces,
Howard & Newman (2001)

» also applicable to limit distributions of total length and capacity
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