First-passage percolation on random geometric graphs and an application to shortest-path trees

Christian Hirsch

jointly with David Neuhäuser, Catherine Gloaguen and Volker Schmidt

First-passage percolation on lattices

Model assumptions and examples

Main results and applications

Open problems

First-passage percolation on lattices

Model assumptions and examples

Main results and applications

Open problems

introduced by Hammersley and Welsh (1965)

- introduced by Hammersley and Welsh (1965)
- simple model for a spreading fluid in a random porous medium

- introduced by Hammersley and Welsh (1965)
- simple model for a spreading fluid in a random porous medium
- ▶ medium: nearest-neighbor lattice $\mathbb{Z}^d = (V, E)$
- ▶ iid non-negative random variables $\{\tau(e)\}_{e \in E}$ (edge passage times)

- introduced by Hammersley and Welsh (1965)
- simple model for a spreading fluid in a random porous medium
- ▶ medium: nearest-neighbor lattice $\mathbb{Z}^d = (V, E)$
- ▶ iid non-negative random variables $\{\tau(e)\}_{e \in E}$ (edge passage times)
- ▶ ⇒ random metric on \mathbb{Z}^d

$$\blacktriangleright \ \ell(u,v) = \inf_{u=z_0 \sim z_1 \sim \ldots \sim z_n = v} \sum_{i=1}^n \tau(\{z_{i-1}, z_i\})$$

- introduced by Hammersley and Welsh (1965)
- simple model for a spreading fluid in a random porous medium
- ▶ medium: nearest-neighbor lattice $\mathbb{Z}^d = (V, E)$
- ▶ iid non-negative random variables $\{\tau(e)\}_{e \in E}$ (edge passage times)
- \Rightarrow random metric on \mathbb{Z}^d
- $\blacktriangleright \ \ell(u,v) = \inf_{u=z_0 \sim z_1 \sim \ldots \sim z_n = v} \sum_{i=1}^n \tau(\{z_{i-1}, z_i\})$
- ▶ asymptotic behavior of *shortest-path lengths* $\ell_n = \ell(o, ne_1)$ for large *n*?
- related to notion of *tortuosity* in materials science

 (Howard & Newman, 2001). first-passage percolation on homogeneous Poisson point process with powers of Euclidean distance as edge-passage times

 (Howard & Newman, 2001). first-passage percolation on homogeneous Poisson point process with powers of Euclidean distance as edge-passage times

 \Rightarrow dependencies in geometry

 (Howard & Newman, 2001). first-passage percolation on homogeneous Poisson point process with powers of Euclidean distance as edge-passage times

 \Rightarrow dependencies in geometry

 (Pimentel, 2007/2011). first-passage percolation on Poisson-Delaunay graph with iid edge-passage times

 (Howard & Newman, 2001). first-passage percolation on homogeneous Poisson point process with powers of Euclidean distance as edge-passage times

 \Rightarrow dependencies in geometry

 (Pimentel, 2007/2011). first-passage percolation on Poisson-Delaunay graph with iid edge-passage times

 \Rightarrow dependencies in topology

 (Howard & Newman, 2001). first-passage percolation on homogeneous Poisson point process with powers of Euclidean distance as edge-passage times

\Rightarrow dependencies in geometry

 (Pimentel, 2007/2011). first-passage percolation on Poisson-Delaunay graph with iid edge-passage times

 \Rightarrow dependencies in topology

this talk. first-passage percolation on random geometric graphs with Euclidean distance as edge-passage times

 (Howard & Newman, 2001). first-passage percolation on homogeneous Poisson point process with powers of Euclidean distance as edge-passage times

\Rightarrow dependencies in geometry

 (Pimentel, 2007/2011). first-passage percolation on Poisson-Delaunay graph with iid edge-passage times

 \Rightarrow dependencies in topology

this talk. first-passage percolation on random geometric graphs with Euclidean distance as edge-passage times

 \Rightarrow dependencies in both geometry and topology

First-passage percolation on lattices

Model assumptions and examples

Main results and applications

Open problems

- ▶ $X \subset \mathbb{R}^d$ stationary, isotropic and *m*-dependent point process
- ▶ N, G : family of locally finite sets of points, resp. smooth curves in ℝ^d
- g: N→ G motion-equivariant, i.e., g(α(φ)) = α(g(φ)) for all φ ∈ N and all rigid motions α : ℝ^d → ℝ^d

- ▶ $X \subset \mathbb{R}^d$ stationary, isotropic and *m*-dependent point process
- ▶ \mathbb{N}, \mathbb{G} : family of locally finite sets of points, resp. smooth curves in \mathbb{R}^d
- g : N → G motion-equivariant, i.e., g(α(φ)) = α(g(φ)) for all φ ∈ N and all rigid motions α : ℝ^d → ℝ^d
- (A_a)_{a≥1} family of events. Say A_a occurs with high probability (whp) if there exists c₁ > 0 with P (A^c_a) ≤ 3 exp (-a^{c₁}) for all a ≥ 1

- ▶ $X \subset \mathbb{R}^d$ stationary, isotropic and *m*-dependent point process
- ▶ \mathbb{N}, \mathbb{G} : family of locally finite sets of points, resp. smooth curves in \mathbb{R}^d
- g : N → G motion-equivariant, i.e., g(α(φ)) = α(g(φ)) for all φ ∈ N and all rigid motions α : ℝ^d → ℝ^d
- (A_a)_{a≥1} family of events. Say A_a occurs with high probability (whp) if there exists c₁ > 0 with P (A^c_a) ≤ 3 exp (-a^{c₁}) for all a ≥ 1

GSC conditions

▶ growth condition. { ν_1 ($g(X) \cap Q_1(o)$) ≤ a} \cap { $g(X) \cap Q_a(o) \neq \emptyset$ } occur whp, $Q_a(o) = [-a/2, a/2]^d$.

- ▶ $X \subset \mathbb{R}^d$ stationary, isotropic and *m*-dependent point process
- ▶ \mathbb{N}, \mathbb{G} : family of locally finite sets of points, resp. smooth curves in \mathbb{R}^d
- g : N → G motion-equivariant, i.e., g(α(φ)) = α(g(φ)) for all φ ∈ N and all rigid motions α : ℝ^d → ℝ^d
- (A_a)_{a≥1} family of events. Say A_a occurs with high probability (whp) if there exists c₁ > 0 with P (A^c_a) ≤ 3 exp (-a^{c₁}) for all a ≥ 1

GSC conditions

- ▶ growth condition. { ν_1 ($g(X) \cap Q_1(o)$) ≤ a} \cap { $g(X) \cap Q_a(o) \neq \emptyset$ } occur whp, $Q_a(o) = [-a/2, a/2]^d$.
- ▶ stabilization condition. $g(X) \cap Q_1(o) = g(X \cap Q_a(o) \cup \psi) \cap Q_1(o)$ for all locally finite $\psi \subset \mathbb{R}^d \setminus Q_a(o)$ whp.

- ▶ $X \subset \mathbb{R}^d$ stationary, isotropic and *m*-dependent point process
- ▶ \mathbb{N}, \mathbb{G} : family of locally finite sets of points, resp. smooth curves in \mathbb{R}^d
- g : N → G motion-equivariant, i.e., g(α(φ)) = α(g(φ)) for all φ ∈ N and all rigid motions α : ℝ^d → ℝ^d
- (A_a)_{a≥1} family of events. Say A_a occurs with high probability (whp) if there exists c₁ > 0 with P (A^c_a) ≤ 3 exp (-a^{c₁}) for all a ≥ 1

GSC conditions

- ▶ growth condition. { ν_1 ($g(X) \cap Q_1(o)$) ≤ a} \cap { $g(X) \cap Q_a(o) \neq \emptyset$ } occur whp, $Q_a(o) = [-a/2, a/2]^d$.
- ▶ stabilization condition. $g(X) \cap Q_1(o) = g(X \cap Q_a(o) \cup \psi) \cap Q_1(o)$ for all locally finite $\psi \subset \mathbb{R}^d \setminus Q_a(o)$ whp.
- ▶ connectivity condition. $g(X) \cap Q_{a/2}(o)$ contained in a connected component of $g(X) \cap Q_a(o)$ whp.

Examples I

- ▶ $X \subset \mathbb{R}^d$ = homogeneous Poisson point process
- ▶ Voronoi graph Vor(X). edge system of tessellation with cells $(C_i)_{i \ge 1}$, where $C_i = \{y \in \mathbb{R}^d : |y X_i| \le |y X_j| \text{ for all } j \ge 1\}$

Poisson-Voronoi tessellation

Examples I

- ▶ $X \subset \mathbb{R}^d$ = homogeneous Poisson point process
- ▶ Voronoi graph Vor(X). edge system of tessellation with cells $(C_i)_{i\geq 1}$, where $C_i = \{y \in \mathbb{R}^d : |y X_i| \leq |y X_j| \text{ for all } j \geq 1\}$
- Delaunay graph Del(X). dual graph of Voronoi graph

Poisson-Voronoi tessellation

Poisson-Delaunay tessellation

Examples II

- ► Creek-crossing graphs $G_n(X)$. for fixed $n \ge 2$ define $G_n(X) = (V, E)$, where V = X
- ► {x, y} $\in E$ if $\exists m \leq n, x = x_0, \dots, x_m = y \in X$ such that $|x_i x_{i+1}| < |x y|$ for all $0 \leq i \leq m 1$

Examples II

- Creek-crossing graphs $G_n(X)$. for fixed $n \ge 2$ define $G_n(X) = (V, E)$, where V = X
- ► $\{x, y\} \in E$ if $\exists m \leq n, x = x_0, \dots, x_m = y \in X$ such that $|x_i x_{i+1}| < |x y|$ for all $0 \leq i \leq m 1$

framework extendable to further examples, e.g., Johnson-Mehl tessellation, dead leaves model First-passage percolation on lattices

Model assumptions and examples

Main results and applications

Open problems

- nearest point on graph: $q(x) = \operatorname{argmin}_{y \in G} |x y|$
- ▶ length of shortest Euclidean path on *G*: $\ell(x_1, x_2) = \ell(q(x_1), q(x_2))$

- ▶ nearest point on graph: $q(x) = \operatorname{argmin}_{y \in G} |x y|$
- ▶ length of shortest Euclidean path on *G*: $\ell(x_1, x_2) = \ell(q(x_1), q(x_2))$

Theorem

• let $X \subset \mathbb{R}^d$ and G = g(X) be as above.

- ▶ nearest point on graph: $q(x) = \operatorname{argmin}_{y \in G} |x y|$
- ▶ length of shortest Euclidean path on *G*: $\ell(x_1, x_2) = \ell(q(x_1), q(x_2))$

Theorem

- let $X \subset \mathbb{R}^d$ and G = g(X) be as above.
- then $\ell(o, re_1) \leq ur$ whp uniformly over all ur with $u \geq u_0$, i.e.

 $\exists c_1, c_2 > 0 \text{ with } \mathbb{P}(\ell(o, re_1) \ge ur) \le c_1 \exp(-(ur)^{c_2}) \text{ for all } u \ge u_0, r \ge 1$

proof uses techniques of Deuschel & Pisztora (1996)

- ▶ nearest point on graph: $q(x) = \operatorname{argmin}_{y \in G} |x y|$
- ▶ length of shortest Euclidean path on *G*: $\ell(x_1, x_2) = \ell(q(x_1), q(x_2))$

Theorem

- let $X \subset \mathbb{R}^d$ and G = g(X) be as above.
- ▶ then $l(o, re_1) \leq ur$ whp uniformly over all ur with $u \geq u_0$, i.e.

 $\exists c_1, c_2 > 0 \text{ with } \mathbb{P}(\ell(o, re_1) \ge ur) \le c_1 \exp(-(ur)^{c_2}) \text{ for all } u \ge u_0, r \ge 1$

- proof uses techniques of Deuschel & Pisztora (1996)
- ▶ see Aldous (2010) for related results in the case X=Poisson and d = 2
- ▶ also true for other ergodic graphs *G*, e.g. Poisson line tessellation

Applications: boundedness of cells & shape theorem

Corollary

- $G \subset \mathbb{R}^2$ as above
- ▶ then a.s. all cells of G are bounded

Applications: boundedness of cells & shape theorem

Corollary

- $G \subset \mathbb{R}^2$ as above
- then a.s. all cells of G are bounded

Corollary

- $G \subset \mathbb{R}^d$ as above
- ▶ $\Rightarrow \exists \mu \ge 1$ such that for all $\varepsilon > 0$ with probability 1:

$$B_{(1-arepsilon)\mu^{-1}r}(o)\subset B^G_r(o)=\{x\in\mathbb{R}^d:\ell(o,x)\leq r\}\subset B_{(1+arepsilon)\mu^{-1}r}(o)$$

for all sufficiently large $r \ge 0$

 first-passage metric behaves asymptotically as a scalar multiple of Euclidean metric

Concentration result for moderate deviations

- additional assumptions
 - X = homogeneous Poisson point process (for simplicity)
 - g(X) = Vor(X), Del(X) or $G_n(X)$

Theorem

- ▶ for every $\varepsilon > 0$ the events $|\ell(o, re_1) \mu r| \le r^{1/2+\varepsilon}$ occur whp
- where $\mu = \lim_{r \to \infty} r^{-1} \mathbb{E}\ell(o, re_1)$

Idea of proof: martingale approach

- fix $\delta > 0$, enumeration $\mathbb{Z}^d = \{z_1, z_2, \ldots\}$
- $(\Omega, \mathcal{F}, \mathbb{P})$ = canonical probability space associated with *X*

Idea of proof: martingale approach

- fix $\delta > 0$, enumeration $\mathbb{Z}^d = \{z_1, z_2, \ldots\}$
- ► (Ω, F, P) = canonical probability space associated with X
- consider filtration $(\mathcal{F}_{k}^{(r)})_{k\geq 1}$ of \mathcal{F} and martingale $(M_{k}^{(r)})_{k\geq 1}$, where $\mathcal{F}_{k}^{(r)} = \sigma \left(X \cap \bigcup_{i=1}^{k} Q_{r^{\delta}}(r^{\delta} z_{i}) \right)$ and $M_{k}^{(r)} = \mathbb{E} \left(\ell(o, re_{1}) \mid \mathcal{F}_{k}^{(r)} \right)$ $Q_{-\delta}(z)$
Idea of proof: martingale approach

- fix $\delta > 0$, enumeration $\mathbb{Z}^d = \{z_1, z_2, \ldots\}$
- ► (Ω, 𝓕, ℙ) = canonical probability space associated with X
- ► consider filtration $\left(\mathcal{F}_{k}^{(r)}\right)_{k\geq 1}$ of \mathcal{F} and martingale $\left(M_{k}^{(r)}\right)_{k\geq 1}$, where $\mathcal{F}_{k}^{(r)} = \sigma\left(X \cap \bigcup_{i=1}^{k} Q_{r^{\delta}}\left(r^{\delta} z_{i}\right)\right) \text{ and } M_{k}^{(r)} = \mathbb{E}\left(\ell(o, re_{1}) \mid \mathcal{F}_{k}^{(r)}\right)$
- apply suitable martingale concentration result (Kesten, 1993)

Concentration result for geodesics

• $\rho_r \subset G$: shortest path from q(o) to $q(re_1)$

Corollary

 $\rho_r \subset [o, re_1] \oplus Q_{r^{3/4+\varepsilon}}(o)$ occurs whp for all $\varepsilon > 0$

Shortest-path tree

- consider the graph G^{*} obtained from G by placing the origin at random on the edge set G⁽¹⁾
- ▶ formally, *G*^{*} is the Palm version of *G*

Shortest-path tree

- consider the graph G^{*} obtained from G by placing the origin at random on the edge set G⁽¹⁾
- ▶ formally, *G*^{*} is the Palm version of *G*
- consider *distance peaks* $M = \{x \in G^* \mid \text{shortest path from } x \text{ to } o \text{ not unique}\}$
- ► define the *shortest-path tree* $T = G^* \setminus M$ by elimination of distance peaks

Shortest-path tree

- consider the graph G^{*} obtained from G by placing the origin at random on the edge set G⁽¹⁾
- ▶ formally, *G*^{*} is the Palm version of *G*
- ► consider *distance peaks* $M = \{x \in G^* \mid \text{shortest path from } x \text{ to } o \text{ not unique}\}$
- define the *shortest-path tree* $T = G^* \setminus M$ by elimination of distance peaks
- ▶ then, for any $x \in T$: the path from x to o in T equals shortest path from x to o in G^*

Poisson-Delaunay graph (cutout)

Shortest-path tree (cutout)

- (Howard & Newman, 2001). concentration result for ρ_r ⇒ existence of asymptotic directions (AD) for all semi-infinite paths γ ⊂ T
- ▶ i.e. for $x_k / |x_k| \rightarrow \theta \in S^{d-1}$, where $\gamma = \langle x_1, x_2, \ldots \rangle$

- *(Howard & Newman, 2001).* concentration result for *ρ_r* ⇒ existence of *asymptotic directions (AD)* for all semi-infinite paths *γ* ⊂ *T*
- ▶ i.e. for $x_k / |x_k| \rightarrow \theta \in S^{d-1}$, where $\gamma = \langle x_1, x_2, \ldots \rangle$
- ▶ *d* = 2
- ▶ write T_1 , T_2 for subtrees at *o* (observe $deg_T(o) = 2$ a.s.)
- define competition interface $I = \overline{T_1} \cap \overline{T_2}$

- *(Howard & Newman, 2001).* concentration result for *ρ_r* ⇒ existence of *asymptotic directions (AD)* for all semi-infinite paths *γ* ⊂ *T*
- ▶ i.e. for $x_k / |x_k| \rightarrow \theta \in S^{d-1}$, where $\gamma = \langle x_1, x_2, \ldots \rangle$
- ▶ *d* = 2
- ▶ write T_1 , T_2 for subtrees at *o* (observe $deg_T(o) = 2$ a.s.)
- define competition interface $I = \overline{T_1} \cap \overline{T_2}$
- if $\nu_1(T_1) = \nu_1(T_2) = \infty$, then $I = I_1 \cup I_2$ where I_1 and I_2 admit AD

Poisson-Delaunay graph (cutout)

Poisson-Delaunay graph (cutout)

Competition interface: pathological realization

First-passage percolation on lattices

Model assumptions and examples

Main results and applications

Open problems

Open problems

- ► *d* = 2
 - two unbounded half-trees occur with positive probability
 - non-existence of bi-infinite geodesics with fixed asymptotic directions
 - coalescence of semi-infinite geodesics with same fixed asymptotic directions

Thank you for your attention!

D. J. Aldous. Which connected spatial networks on random points have linear route-lengths? Arxiv preprint arXiv:0911.5296, 2009.

J. Deuschel and A. Pisztora. Surface order large deviations for high-density percolation. Probability Theory and Related Fields, 104:467–482, 1996.

C. Hirsch, D. Neuhäuser, C. Gloaguen, and V. Schmidt.

First-passage percolation on random geometric graphs and an application to shortest-path trees.

Advances in Applied Probability, submitted.

- C. Hirsch, D. Neuhäuser, and V. Schmidt. Moderate deviations for shortest-path lengths on random geometric graphs. (Working Paper). 2013.
- C. Howard and C. Newman.
 Euclidean models of first-passage percolation.
 Probability Theory and Related Fields, 108:153–170, 1997.

C. Howard and C. Newman.
 Geodesics and spanning trees for Euclidean first-passage percolation.
 Annals of Probability, 29:577–623, 2001.

H. Kesten. On the speed of convergence in first-passage percolation. Annals of Applied Probability, 3:296–338, 1993.

$$\triangleright \ Z^{(i)}(\lambda_H) = \sup_{x \in S^*_{\lambda_H} \cap T_i} \ell(o, x), \, i \in \{1, 2\}$$

Theorem

• $X \subset \mathbb{R}^2$. homogeneous Poisson point process with intensity γ

$$\blacktriangleright Z^{(i)}(\lambda_H) = \sup_{x \in S^*_{\lambda_H} \cap T_i} \ell(o, x), i \in \{1, 2\}$$

Theorem

- $X \subset \mathbb{R}^2$. homogeneous Poisson point process with intensity γ
- ▶ then, \exists random vector $(Z^{(1)}, Z^{(2)})$

$$\left(Z^{(1)}\left(\lambda_{H}\right)\sqrt{\lambda_{H}},Z^{(2)}\left(\lambda_{H}\right)\sqrt{\lambda_{H}}\right)\overset{\mathrm{d}}{\rightarrow}\left(Z^{(1)},Z^{(2)}\right),$$

as $\lambda_H \rightarrow 0$, conditioned on simultaneous unboundedness of T_1 and T_2

• explicit interpretation of $(Z^{(1)}, Z^{(2)})$

►

- explicit interpretation of $(Z^{(1)}, Z^{(2)})$
- generate typical Poisson-Voronoi cell

- explicit interpretation of $(Z^{(1)}, Z^{(2)})$
- generate independent, isotropic sector

- explicit interpretation of (Z⁽¹⁾, Z⁽²⁾)
- ▶ find most distant point in each part and put $Z^{(i)} = \xi \cdot \zeta^{(i)}$, i = 1, 2

Theorem (Alexander, Kesten, 1993)

if P(τ = 0) < p_c(Z^d) and E (τ²) < ∞, then ∃C₁, C₂, C₃, C₄, C₅ > 0 such that ∀n ≥ 1

Theorem (Alexander, Kesten, 1993)

•
$$C_1 n^{-2} \leq \frac{1}{n} \mathbb{E} \ell_n - \mu \leq C_2 n^{-1/2} \log(n)$$

- ▶ $\mathbb{P}\left(|\ell_n \mathbb{E}\ell_n| \ge \sqrt{n}x\right) \le C_3 \exp(-C_4 x)$ for all $x \le C_5 n$
- ▶ $\mathbb{P}\left(\ell_n n\mu \leq -\sqrt{n}x\right) \leq C_3 \exp(-C_4 x)$ for all $x \leq C_5 n$
- ▶ $\mathbb{P}(\ell_n n\mu \ge 2C_2 n^{1/2} \log(n) + xn^{1/2}) \le C_3 \exp(-C_4 x)$ for all $x \le C_5 n$

Theorem (Alexander, Kesten, 1993)

•
$$C_1 n^{-2} \leq \frac{1}{n} \mathbb{E} \ell_n - \mu \leq C_2 n^{-1/2} \log(n)$$

▶ $\mathbb{P}\left(|\ell_n - \mathbb{E}\ell_n| \ge \sqrt{n}x\right) \le C_3 \exp(-C_4 x)$ for all $x \le C_5 n$

▶
$$\mathbb{P}\left(\ell_n - n\mu \leq -\sqrt{n}x
ight) \leq C_3 \exp(-C_4 x)$$
 for all $x \leq C_5 n$

- ▶ $\mathbb{P}(\ell_n n\mu \ge 2C_2 n^{1/2} \log(n) + xn^{1/2}) \le C_3 \exp(-C_4 x)$ for all $x \le C_5 n$
- variance of ℓ_n conjectured to be of order $n^{2/3}$
- best upper-bound by (Benjamini, Kalai & Schramm, 2003) is O(n/log(n))

Theorem (Alexander, Kesten, 1993)

•
$$C_1 n^{-2} \leq \frac{1}{n} \mathbb{E} \ell_n - \mu \leq C_2 n^{-1/2} \log(n)$$

▶ $\mathbb{P}\left(|\ell_n - \mathbb{E}\ell_n| \ge \sqrt{n}x\right) \le C_3 \exp(-C_4 x)$ for all $x \le C_5 n$

▶
$$\mathbb{P}\left(\ell_n - n\mu \leq -\sqrt{n}x
ight) \leq C_3 \exp(-C_4 x)$$
 for all $x \leq C_5 n$

- ▶ $\mathbb{P}(\ell_n n\mu \ge 2C_2 n^{1/2} \log(n) + xn^{1/2}) \le C_3 \exp(-C_4 x)$ for all $x \le C_5 n$
- ▶ variance of ℓ_n conjectured to be of order n^{2/3}
- best upper-bound by (Benjamini, Kalai & Schramm, 2003) is O(n/log(n))
- ▶ no CLT known for ℓ_n; limiting distribution conjectured to be of Tracy-Widom type

Main result

Theorem

- $X \subset \mathbb{R}^d$ homogeneous Poisson point process
- let G = Vor(X) or G = Del(X)

Main result

Theorem

- ▶ $X \subset \mathbb{R}^d$ homogeneous Poisson point process
- let G = Vor(X) or G = Del(X)
- ▶ then for all ε > 0 the events $|\ell_r \mu r| \le r^{1/2+\varepsilon}$ occur whp
- where $\mu = \lim_{r \to \infty} r^{-1} \mathbb{E} \ell_r$

Lemma (Kesten, 1993)

• $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k\geq 0}$

Lemma (Kesten, 1993)

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k \geq 0}$
- ▶ $\Delta_k = M_k M_{k-1}$ for some $(\mathcal{F}_k)_{k \ge 0}$ -martingale $(M_k)_{k \ge 0}$, $M_0 = 0$.

Lemma (Kesten, 1993)

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k \geq 0}$
- ► $\Delta_k = M_k M_{k-1}$ for some $(\mathcal{F}_k)_{k \geq 0}$ -martingale $(M_k)_{k \geq 0}$, $M_0 = 0$.
- ▶ $(U_k)_{k\geq 1}$ sequence of \mathcal{F} -measurable rvs with $\mathbb{E}(\Delta_k^2 \mid \mathcal{F}_{k-1}) \leq \mathbb{E}(U_k \mid \mathcal{F}_{k-1})$ a.s.

• $S = \sum_{k=1}^{\infty} U_k$ and assume $\exists C'_1 > 0, 0 < \gamma \le 1$, $c \ge 1$ and $x_0 \ge c^2$ with

 $|\Delta_k| \leq c$ a.s. and $\mathbb{P}(S > x) \leq C'_1 \exp(-x^{\gamma})$ for all $x \geq x_0$

Lemma (Kesten, 1993)

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k\geq 0}$
- ► $\Delta_k = M_k M_{k-1}$ for some $(\mathcal{F}_k)_{k \geq 0}$ -martingale $(M_k)_{k \geq 0}$, $M_0 = 0$.
- ► $(U_k)_{k\geq 1}$ sequence of \mathcal{F} -measurable rvs with $\mathbb{E}(\Delta_k^2 \mid \mathcal{F}_{k-1}) \leq \mathbb{E}(U_k \mid \mathcal{F}_{k-1})$ a.s.

• $S = \sum_{k=1}^{\infty} U_k$ and assume $\exists C'_1 > 0, 0 < \gamma \le 1$, $c \ge 1$ and $x_0 \ge c^2$ with

 $|\Delta_k| \leq c$ a.s. and $\mathbb{P}(S > x) \leq C'_1 \exp(-x^{\gamma})$ for all $x \geq x_0$

▶ then
$$\lim_{k\to\infty} M_k = M < \infty$$
 a.s. and $\exists C_2 = C_2(C'_1, \gamma)$ and $C_3 = C_3(\gamma) > 0$ such that

 $\mathbb{P}\left(|\boldsymbol{M}| \geq x\sqrt{x_0}\right) \leq C_2 \exp(-C_3 x) \quad \text{for all } x \leq x_0^{\gamma}$

Application to shortest-path problem

► first approach.
$$\mathcal{F}_{k}^{(n)} = \sigma\left(X \cap \bigcup_{i=1}^{k} Q_{n^{\delta}}(n^{\delta}z_{i})\right)$$
 and $M_{k}^{(n)} = \mathbb{E}\left(\ell_{n} \mid \mathcal{F}_{k}^{(n)}\right) - \mathbb{E}\ell_{n}$

• however, $\Delta_k^{(n)}$ not bounded by a constant uniformly in k!
Application to shortest-path problem

► first approach.
$$\mathcal{F}_{k}^{(n)} = \sigma\left(X \cap \bigcup_{i=1}^{k} Q_{n^{\delta}}(n^{\delta}z_{i})\right)$$
 and $M_{k}^{(n)} = \mathbb{E}\left(\ell_{n} \mid \mathcal{F}_{k}^{(n)}\right) - \mathbb{E}\ell_{n}$

- ▶ however, $\Delta_k^{(n)}$ not bounded by a constant uniformly in *k*!
- *solution.* consider regularization $X(n^{\delta})$ of X

Application to shortest-path problem

► first approach.
$$\mathcal{F}_{k}^{(n)} = \sigma \left(X \cap \bigcup_{i=1}^{k} Q_{n^{\delta}} \left(n^{\delta} z_{i} \right) \right)$$
 and $M_{k}^{(n)} = \mathbb{E} \left(\ell_{n} \mid \mathcal{F}_{k}^{(n)} \right) - \mathbb{E} \ell_{n}$

- however, $\Delta_k^{(n)}$ not bounded by a constant uniformly in k!
- solution. consider regularization $X(n^{\delta})$ of X
 - ▶ identify (potentially) malicious local configurations $X \cap Q_{n^{\delta}}(n^{\delta}z_i)$
 - ▶ replace $X \cap Q_{n^{\delta}}(n^{\delta}z_i)$ by $\mathbb{Z}^d \cap Q_{n^{\delta}}(n^{\delta}z_i)$ (where $\mathbb{E} |X \cap Q_1(o)| = 1$)

Application to shortest-path problem

► first approach.
$$\mathcal{F}_{k}^{(n)} = \sigma \left(X \cap \bigcup_{i=1}^{k} Q_{n^{\delta}} \left(n^{\delta} z_{i} \right) \right)$$
 and $M_{k}^{(n)} = \mathbb{E} \left(\ell_{n} \mid \mathcal{F}_{k}^{(n)} \right) - \mathbb{E} \ell_{n}$

- however, $\Delta_k^{(n)}$ not bounded by a constant uniformly in *k*!
- solution. consider regularization $X(n^{\delta})$ of X
 - ▶ identify (potentially) malicious local configurations $X \cap Q_{n^{\delta}}(n^{\delta}z_i)$
 - ▶ replace $X \cap Q_{n^{\delta}}(n^{\delta}z_i)$ by $\mathbb{Z}^d \cap Q_{n^{\delta}}(n^{\delta}z_i)$ (where $\mathbb{E} |X \cap Q_1(o)| = 1$)
- show $\ell_{g(X)}(o, ne_1) = \ell_{g(X(n^{\delta}))}(o, ne_1)$ whp

Straightness

- for $x \in T$ write $T_x \subset T$ for descendant tree at x
- ▶ consider cone $C(x, \delta) = \{y \in \mathbb{R}^d : |∠(x, y)| \le \delta\}$

Straightness

- ▶ for $x \in T$ write $T_x \subset T$ for descendant tree at x
- ▶ consider cone $C(x, \delta) = \{y \in \mathbb{R}^d : |\angle(x, y)| \le \delta\}$
- ▶ MD $\Rightarrow \forall \varepsilon > 0$ we have $T_x \subset C(x, |x|^{-1/4+\varepsilon})$ for all $x \in T$ with $|x| \gg 0$

Straightness

- ▶ for $x \in T$ write $T_x \subset T$ for descendant tree at x
- consider cone $C(x, \delta) = \{y \in \mathbb{R}^d : |\angle(x, y)| \le \delta\}$
- ▶ MD $\Rightarrow \forall \varepsilon > 0$ we have $T_x \subset C(x, |x|^{-1/4+\varepsilon})$ for all $x \in T$ with $|x| \gg 0$

Implications of straightness

- ▶ existence of *asymptotic directions (AD)* for all semi-infinite paths $\gamma \subset T$
- ▶ i.e. for $\gamma = \langle x_1, x_2, \ldots \rangle$ we have $x_k / |x_k| \rightarrow \theta \in S^{d-1}$

Implications of straightness

- existence of *asymptotic directions (AD)* for all semi-infinite paths $\gamma \subset T$
- ▶ i.e. for $\gamma = \langle x_1, x_2, \ldots \rangle$ we have $x_k / |x_k| \rightarrow \theta \in S^{d-1}$
- ▶ $\forall \theta \in S^{d-1}$ there exists a semi-infinite path in $\gamma \subset T$ with AD θ

Implications of straightness

- existence of *asymptotic directions (AD)* for all semi-infinite paths $\gamma \subset T$
- ▶ i.e. for $\gamma = \langle x_1, x_2, \ldots \rangle$ we have $x_k / |x_k| \rightarrow \theta \in S^{d-1}$
- ▶ $\forall \theta \in S^{d-1}$ there exists a semi-infinite path in $\gamma \subset T$ with AD θ
- b the set of those θ ∈ S^{d-1} for which there exists more than one semi-infinite path in T with AD θ is dense in S^{d-1}

Outlook

- application in telecommunication networks
 - asymptotic description for joint distribution for the lengths of longest branches in both of the two subtrees at the origin

Outlook

- application in telecommunication networks
 - asymptotic description for joint distribution for the lengths of longest branches in both of the two subtrees at the origin
- enlarge class of examples for which MD-result holds (e.g. dead-leaves model, Johnson-Mehl tessellations, creek-crossing graphs)

Outlook

- application in telecommunication networks
 - asymptotic description for joint distribution for the lengths of longest branches in both of the two subtrees at the origin
- enlarge class of examples for which MD-result holds (e.g. dead-leaves model, Johnson-Mehl tessellations, creek-crossing graphs)
- ▶ non-existence of bi-infinite geodesics (*d* = 2)
- coalescence of semi-infinite geodesics with same asymptotic directions (d = 2)

Further developments

- FPP on random geometric graphs: studied by Vahidi-Asl & Wierman (1990), Baccelli, Błaszczyszyn & Haji-Mirsadeghi (2011), Pimentel (2011)
- mostly iid edge passage times (e.g. hopcounts)

Further developments

- FPP on random geometric graphs: studied by Vahidi-Asl & Wierman (1990), Baccelli, Błaszczyszyn & Haji-Mirsadeghi (2011), Pimentel (2011)
- mostly iid edge passage times (e.g. hopcounts)
- Baccelli, Tchoumatchenko & Zuyev (2000), Aldous (2009):
 FPP on random geometric graphs with euclidean length as edge passage time

Further developments

- FPP on random geometric graphs: studied by Vahidi-Asl & Wierman (1990), Baccelli, Błaszczyszyn & Haji-Mirsadeghi (2011), Pimentel (2011)
- mostly iid edge passage times (e.g. hopcounts)
- Baccelli, Tchoumatchenko & Zuyev (2000), Aldous (2009):
 FPP on random geometric graphs with euclidean length as edge passage time
- example: Delaunay graph/relative neighborhood graph on a homogeneous PPP in dimension d = 2

First step: block construction

- follow approach proposed by Deuschel & Pisztora (1996)
- consider discretization of \mathbb{R}^d into cubes of side length L > 0
- define site percolation process of good cubes with the properties

First step: block construction

- follow approach proposed by Deuschel & Pisztora (1996)
- ▶ consider discretization of ℝ^d into cubes of side length L > 0
- define site percolation process of good cubes with the properties
 - good paths correspond to paths in $G \Rightarrow$ essential connectivity
 - ▶ probability of goodness \rightarrow 1 as $L \rightarrow \infty$
 - total length inside good cubes bounded from above
 - ▶ finite range of dependence ⇒ stabilization

First step: block construction

- follow approach proposed by Deuschel & Pisztora (1996)
- consider discretization of \mathbb{R}^d into cubes of side length L > 0
- define site percolation process of good cubes with the properties
 - good paths correspond to paths in $G \Rightarrow$ essential connectivity
 - probability of goodness \rightarrow 1 as $L \rightarrow \infty$
 - total length inside good cubes bounded from above
 - ▶ finite range of dependence ⇒ stabilization
- ightarrow stochastically dominates supercritical Bernoulli percolation process

Construction of global & local routes

→ global path close to o, re₁ not intersecting bad clusters between o
and re₁

Construction of global & local routes

- ⇒ global path close to o, re₁ not intersecting bad clusters between o and re₁
- ▶ final step. construction of local routes from *o*, *re*₁ to global path

Construction of global & local routes

- ⇒ global path close to o, re₁ not intersecting bad clusters between o and re₁
- ▶ final step. construction of local routes from *o*, *re*₁ to global path
- choose any path leaving bad clusters close to o
- whp these clusters are not too large and length of local path length bounded from above by total edge length inside certain bad clusters

▶ main roads

simulated main roads

- main roads
- side streets

simulated side streets

- main roads
- side streets
- network components:
 - higher-level components (green)
 - Iower-level components (blue)

network components along roads

- main roads
- side streets
- network components:
 - higher-level components (green)
 - lower-level components (blue)
- serving zones of higher-level components

serving zones

Shortest-path trees

• consider segment system S_H^* of a typical serving zone

Shortest-path trees

- consider segment system S_H^* of a typical serving zone
- construct tree T from S_H^* by moving along shortest paths to o

Shortest-path trees

- consider segment system S^{*}_H of a typical serving zone
- construct tree T from S_H^* by moving along shortest paths to o
- goal. asymptotic characteristics of *backbone lengths* in unboundedly dense networks?
 - asymptotic marginal distribution of longest-branch length?
 - asymptotic joint distribution of longest-branch lengths in both subtrees?

Applications: boundedness of cells & shape theorem

Corollary

- $G \subset \mathbb{R}^2$ as above
- ▶ then a.s. all cells of G are bounded

Applications: boundedness of cells & shape theorem

Corollary

48

- $G \subset \mathbb{R}^2$ as above
- then a.s. all cells of G are bounded
- idea: use theorem to construct closed curve of edges around the origin
- ► consider annulus of squares of side length \sqrt{r} at distance r^2 from o and distance r from each other
- by the thm: points in neighboring squares can be connected by a path far away from o whp
- $ightarrow \Rightarrow$ claim follows from Borel-Cantelli lemma

- main roads
- side streets
- network components:
 - higher-level components (green)
 - lower-level components (blue)
- serving zones of higher-level components

serving zones
Description of the model

- G = random geometric graph in \mathbb{R}^2 as above
- ► G^{*} = Palm version of G
 - ▶ informally: shifting *o* to random location on the edge set of *G*

Description of the model

- G = random geometric graph in \mathbb{R}^2 as above
- G^{*} = Palm version of G
 - ▶ informally: shifting *o* to random location on the edge set of *G*
- $Y_{\lambda} = \text{Cox process on } G^*$ with intensity $\lambda > 0$
- $\blacktriangleright \ S^*_{\lambda} = \{x \in G^* : |x| \le |x y| \text{ for all } y \in Y_{\lambda}\}$

Description of the model

- G = random geometric graph in \mathbb{R}^2 as above
- G^{*} = Palm version of G
 - ▶ informally: shifting *o* to random location on the edge set of *G*
- $Y_{\lambda} = \text{Cox process on } G^*$ with intensity $\lambda > 0$
- $\blacktriangleright \ S^*_{\lambda} = \{x \in G^* : |x| \le |x y| \text{ for all } y \in Y_{\lambda}\}$

$$\blacktriangleright Z(\lambda) = \sup_{x \in S_{\lambda}^{*}} \ell(o, x)$$

Asymptotic result

- Ξ = typical Poisson-Voronoi cell based on homogeneous Poisson point process with intensity Eν₁ (G ∩ Q₁(o))
- ▶ R = random radius of smallest ball $B_R(o)$ with $\Xi \subset B_R(o)$

Asymptotic result

Theorem

- Ξ = typical Poisson-Voronoi cell based on homogeneous Poisson point process with intensity Eν₁ (G ∩ Q₁(o))
- ▶ R = random radius of smallest ball $B_R(o)$ with $\Xi \subset B_R(o)$
- then, as $\lambda \to 0$,

$$Z(\lambda) \sqrt{\lambda} \xrightarrow{\mathrm{d}} \xi R,$$

where $\xi = \lim_{n \to \infty} n^{-1} \mathbb{E} \ell(o, ne_1)$

• $\ell(o, ne_1) = length of the shortest path on G^* from q(o) to q(ne_1)$

Asymptotic result

Theorem

- Ξ = typical Poisson-Voronoi cell based on homogeneous Poisson point process with intensity Eν₁ (G ∩ Q₁(o))
- ▶ R = random radius of smallest ball $B_R(o)$ with $\Xi \subset B_R(o)$
- then, as $\lambda \rightarrow 0$,

$$Z(\lambda) \sqrt{\lambda} \xrightarrow{\mathrm{d}} \xi R,$$

where $\xi = \lim_{n \to \infty} n^{-1} \mathbb{E} \ell(o, ne_1)$

- $\ell(o, ne_1) = length of the shortest path on G^* from q(o) to q(ne_1)$
- distribution of R explicitly known, see Calka 2002

- by the shape theorem: length of longest branch ≈ ξ. Euclidean distance from most distant point in the serving zone to the origin
- furthermore: scaled typical serving zone converges asymptotically to typical Poisson-Voronoi cell

- by the shape theorem: length of longest branch ≈ ξ. Euclidean distance from most distant point in the serving zone to the origin
- furthermore: scaled typical serving zone converges asymptotically to typical Poisson-Voronoi cell
- ► \Rightarrow scaled length of longest branch $\approx \xi$ · radius of circumcircle of typical Poisson-Voronoi cell

- by the shape theorem: length of longest branch ≈ ξ. Euclidean distance from most distant point in the serving zone to the origin
- furthermore: scaled typical serving zone converges asymptotically to typical Poisson-Voronoi cell
- ► \Rightarrow scaled length of longest branch $\approx \xi$ · radius of circumcircle of typical Poisson-Voronoi cell

- by the shape theorem: length of longest branch ≈ ξ. Euclidean distance from most distant point in the serving zone to the origin
- furthermore: scaled typical serving zone converges asymptotically to typical Poisson-Voronoi cell
- ► \Rightarrow scaled length of longest branch $\approx \xi$ · radius of circumcircle of typical Poisson-Voronoi cell

Lemma (Kesten, 1993)

• $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k\geq 1}$

Lemma (Kesten, 1993)

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k \geq 1}$
- ▶ $\Delta_k = M_k M_{k-1}$ for some $(\mathcal{F}_k)_{k \ge 1}$ -martingale $(M_k)_{k \ge 1}$, $M_0 = 0$.

Lemma (Kesten, 1993)

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k \geq 1}$
- ▶ $\Delta_k = M_k M_{k-1}$ for some $(\mathcal{F}_k)_{k \ge 1}$ -martingale $(M_k)_{k \ge 1}$, $M_0 = 0$.
- $(U_k)_{k\geq 1}$ sequence of \mathcal{F} -measurable rvs with $\mathbb{E}(\Delta_k^2 \mid \mathcal{F}_{k-1}) \leq \mathbb{E}(U_k \mid \mathcal{F}_{k-1})$ a.s.

• $S = \sum_{k=1}^{\infty} U_k$ and assume $\exists c \ge 1$ and $x_0 \ge c^2$ with

 $|\Delta_k| \leq c$ a.s. and $S \leq x_0$ a.s.

Lemma (Kesten, 1993)

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space with filtration $(\mathcal{F}_k)_{k \geq 1}$
- ► $\Delta_k = M_k M_{k-1}$ for some $(\mathcal{F}_k)_{k \geq 1}$ -martingale $(M_k)_{k \geq 1}$, $M_0 = 0$.
- $(U_k)_{k\geq 1}$ sequence of \mathcal{F} -measurable rvs with $\mathbb{E}(\Delta_k^2 \mid \mathcal{F}_{k-1}) \leq \mathbb{E}(U_k \mid \mathcal{F}_{k-1})$ a.s.
- $S = \sum_{k=1}^{\infty} U_k$ and assume $\exists c \ge 1$ and $x_0 \ge c^2$ with

 $|\Delta_k| \leq c$ a.s. and $S \leq x_0$ a.s.

▶ then $\lim_{k\to\infty} M_k = M < \infty$ a.s. and $\exists C_1, C_2 > 0$ such that

 $\mathbb{P}\left(|M| \ge x\sqrt{x_0}\right) \le C_1 \exp(-C_2 x)$ for all $x \le x_0$

Moderate deviations of shortest-patht lengths

tail bound can be refined for probabilities of moderate deviations of shortest-path lengths

- ▶ $X \subset \mathbb{R}^d$ homogeneous Poisson point process (for simplicity)
- let G = Vor(X) or G = Del(X)

Moderate deviations of shortest-patht lengths

tail bound can be refined for probabilities of moderate deviations of shortest-path lengths

- ▶ $X \subset \mathbb{R}^d$ homogeneous Poisson point process (for simplicity)
- let G = Vor(X) or G = Del(X)
- ▶ then for all ε > 0 the events $|\ell_r \xi r| \le r^{1/2+\varepsilon}$ occur whp,
- where $\xi = \lim_{r \to \infty} \mathbb{E}\ell_r / r$

Moderate deviations of shortest-patht lengths

tail bound can be refined for probabilities of moderate deviations of shortest-path lengths

- $X \subset \mathbb{R}^d$ homogeneous Poisson point process (for simplicity)
- let G = Vor(X) or G = Del(X)
- ▶ then for all ε > 0 the events $|\ell_r \xi r| \le r^{1/2+\varepsilon}$ occur whp,
- where $\xi = \lim_{r \to \infty} \mathbb{E}\ell_r / r$
- based on martingale concentration inequality due to Kesten (1993)

 so far, asymptotic (one-dimensional) distribution of longest branch in shortest-path tree (backbone)

- so far, asymptotic (one-dimensional) distribution of longest branch in shortest-path tree (backbone)
- ▶ with probability 1, shortest-path tree decomposes into two subtrees $T = T_1 \cup T_2$

- so far, asymptotic (one-dimensional) distribution of longest branch in shortest-path tree (backbone)
- ▶ with probability 1, shortest-path tree decomposes into two subtrees $T = T_1 \cup T_2$
- ► asymptotic *bivariate* distribution of backbone lengths in both subtrees? moderate-deviation result ⇒ concept of competition interfaces, Howard & Newman (2001)
- also applicable to limit distributions of total length and capacity

- so far, asymptotic (one-dimensional) distribution of longest branch in shortest-path tree (backbone)
- ▶ with probability 1, shortest-path tree decomposes into two subtrees $T = T_1 \cup T_2$
- ► asymptotic *bivariate* distribution of backbone lengths in both subtrees? moderate-deviation result ⇒ concept of competition interfaces, Howard & Newman (2001)
- also applicable to limit distributions of total length and capacity

- so far, asymptotic (one-dimensional) distribution of longest branch in shortest-path tree (backbone)
- ▶ with probability 1, shortest-path tree decomposes into two subtrees $T = T_1 \cup T_2$
- ► asymptotic *bivariate* distribution of backbone lengths in both subtrees? moderate-deviation result ⇒ concept of competition interfaces, Howard & Newman (2001)
- also applicable to limit distributions of total length and capacity

