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Algebraic equations

Consider a polynomial of degree n:

P(x) = anx
n + an−1x

n−1 + . . . + a1x + a0.

Here, a0, a1, . . . , an are complex numbers. Assume that an 6= 0.

Fundamental theorem of algebra

The equation P(x) = 0 has at least one complex solution.

Corollary

There is a decomposition of the form

P(x) = an(x − x1)(x − x2) . . . (x − xn),

where x1, . . . , xn are complex numbers called the roots (or zeros)
of P .
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Algebraic equations

Example

Find the roots of the equation

xn + xn−1 + . . . + x + 1 = 0.
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Algebraic equations: Example

Solution

1) Geometric progression:

xn + xn−1 + . . . + x + 1 =
xn+1 − 1

x − 1
.

2) Roots of xn+1 − 1 = 0:

1, ω, ω2, . . . , ωn,

where ω = e
2πi
n+1 .

3) Roots of xn + xn−1 + . . . + x + 1 = 0:

ω, ω2, . . . , ωn.
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A random equation

Statement of the problem

We consider an equation with random coefficients, for example

z2000− z1999 + z1998 + z1997− z1996− . . .+ z3 + z2− z + 1 = 0

We would like to describe the distribution of its solutions in the
complex plane.
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Roots of a random equation

Zeros of a random polynomial of degree n = 2000
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Roots of a random equation

Observations:

Most roots are close to the unit circle.

The distribution of the roots around the circle is approxi-
mately uniform.
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Why are most roots close to the unit circle?

Explanation

1) Take some x with |x | > 1. Then,

|xn| > |xn−1| > |xn−2| > . . .

Difficult to cancel...
2) Take some x with |x | < 1. Then,

1 > |x | > |x2| > |x3| > . . .

Difficult to cancel...
3) Take some x with |x | ≈ 1

1 ≈ |x | ≈ |x2| ≈ . . . ≈ |xn−1| ≈ |xn|.

Easy to cancel...
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Random polynomials (Kac ensemble)

Notation

Let ξ0, ξ1, . . . be independent identically distributed random
variables.

The random polynomial of the form

Pn(z) := ξ0 + ξ1z + ξ2z
2 + . . . + ξnz

n

is called the Kac polynomial.

Denote by z1, . . . , zn the complex roots of Pn.
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Empirical distribution of roots

Notation

Let M be the set of probability measures on C.

Endow M with weak topology: A sequence of probability
measures µ1, µ2, . . . ∈ M converges to µ ∈ M if for every
bounded, continuous function f : C→ R we have

lim
n→∞

∫
C
fdµn =

∫
C
fdµ.

The empirical distribution of roots of Pn is the probability
measure

µn =
1

n

n∑
k=1

δ(zk).

Let λ ∈M be the uniform distribution on the unit circle.
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Zeros of Kac polynomials

Theorem (Ibragimov und Zaporozhets, 2011)

The following conditions are equivalent:

1 µn converges to λ almost surely, that is

P
[
µn

w−→
n→∞

λ
]

= 1.

2 E log(1 + |ξ0|) <∞.

History

Erdös and Turan (1950), Hammersley (1954), Shparo and Shur
(1962), Arnold (1966), Shepp and Vanderbei (1995), Hughes
and Nikeghbali (2008),...
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The role of the log-moment condition

Exercise

The following conditions are equivalent:

1 E log(1 + |ξ0|) <∞.

2 For every ε > 0

lim
n→∞

ξk
eεk

= 0 a.s.

3 For some ε > 0

lim
n→∞

ξk
eεk

= 0 a.s.

Remark

The series
∑∞

k=0 ξkz
k converges a.s. in the unit disk if and only

if E log(1 + |ξ0|) <∞.
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Weyl polynomials

Definition

Let ξ0, ξ1, . . . be independent identically distributed random
variables.

Consider the Weyl polynomials

Pn(z) =
n∑

k=0

ξk
zk√
k!
.

Let z1, . . . , zn be the zeros of Pn.
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Weyl polynomials

Zeros of a Weyl polynomial
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Zeros of Weyl polynomials

Theorem (Kabluchko, Zaporozhets, 2012)

The following conditions are equivalent:

1 The probability measure 1
n

∑
k=1 δ( zk√

n
) converges a.s. to

the uniform distribution on the unit circle {|z | ≤ 1}.
2 E log(1 + |ξ0|) <∞.
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Random matrices

Statement of the problem

Let ξij , i , j ∈ N, be independent identically distributed
random variables with Eξij = 0, Eξ2ij = 1.

Consider the matrix

Mn =

 ξ11 . . . ξ1n
...

...
...

ξn1 . . . ξnn

 .

Let λ1, . . . , λn be the eigenvalues of Mn.

Theorem (T. Tao und V. Vu, 2010)

The probability measure 1
n

∑n
k=1 δ( λk√

n
) converges a.s. to the

uniform distribution on the unit disk {|z | ≤ 1}.
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Random matrices

Left: Eigenvalues of a random matrix
Right: Zeros of a Weyl polynomial
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Littlewood–Offord polynomials (1939)

Let ξ0, ξ1, . . . be independent identically distributed random
variables with E log(1 + |ξ0|) <∞.

Consider the Littlewood–Offord polynomials

Pn(z) =
n∑

k=0

ξk
zk

(k!)α
.

Let z1, . . . , zn be the zeros of Pn.

Theorem (Kabluchko, Zaporozhets, 2012)

The probability measure 1
n

∑n
k=1 δ( zk

nα
) converges a.s. to the

probability measure with the density

1

2πα
|z |

1
α
−2, |z | < 1.
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Littlewood–Offord polynomials

Zeros of the Littlewood–Offord polynomials:
Normally distributed coefficients
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Littlewood–Offord polynomials

Zeros of the Littlewood–Offord polynomials:
Log–Pareto coefficients
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Szegö polynomials

Compare: Szegö polynomials sn(z) =
∑n

k=0
zk

k!
.

Remark

Taylor series for ez :

ez =
∑∞

k=0
zk

k!
.

Complex zeros of ez?
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Szegö polynomials

Theorem (Szegö, 1924)

The zeros of sn(nz) cluster along the curve |ze1−z | = 1, |z | < 1.
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Szegö and Littlewood–Offord polynomials

Zeros of
∑n

k=0
zk

k!
and

∑n
k=0 ξk

zk

k!
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General statement

Assumptions

Consider random polynomials (Taylor series) of the form

Pn(z) =
∞∑
k=0

fk,nξkz
k , z ∈ C.

Assume that

1 ξ1, ξ2, . . . are independent identically distributed random
variables with E log(1 + |ξ0|) <∞.

2 fk,n are numbers such that for every t > 0,

|ftn,n| ≈ e−nu(t), n→∞,

where u(t) is a function of t > 0.
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Examples

Kac polynomials

Kac polynomials: Pn(z) =
∑n

k=0 ξkz
k .

fk,n = 1 for k ≤ n, hence u(t) = 0 for t ≤ 1.

fk,n = 0 for k > n, hence u(t) = +∞ for t > 1.

Weyl polynomial

Weyl polynomials: Pn(
√
nz) =

∑n
k=0 ξkz

k
√

nk

k!
. For t < 1:

ftn,n ≈

√
ntn

(tn/e)tn
= e−

n
2
(t log t−t).

Hence, u(t) = 1
2
(t log t − t) for t < 1 and u(t) = +∞ for

t > 1.
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Laplace operator

Definition

Let f (x , y) be a function of two variables. Laplace operator:

∆f (x , y) =
∂2f

∂x2
+
∂2f

∂y 2
.

Example

∆ log |z | =???.
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Poincaré–Lelong formula

Remark

We have
1

2π
∆ log |z − w | = δ(w).

Hence,

1

2π
∆ log |(z − w1) . . . (z − wn)| = δ(w1) + . . . + δ(wn).

Theorem (Poincaré–Lelong)

Let f (z) an analytic function. Then,

1

2π
∆ log |f (z)|

is the measure counting the zeros of f .
Exception: f is identically 0.
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Limiting distribution of zeros

Recall that we consider random Taylor series

Pn(z) =
∞∑
k=0

fk,nξkz
k , z ∈ C.

Empirical distribution of zeros:

lim
n→∞

1

2πn
∆ log |Pn(z)|.

Interchange lim and ∆:

1

2π
∆ lim

n→∞

1

n
log |Pn(z)|.
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Limiting distribution of zeros

How large is

Pn(z) =
∞∑
k=0

fk,nξkz
k?

Let k = tn, where t > 0:

|fk,nξkzk | ≈ e−nu(t)etn log |z| = en(t log |z|−u(t)).

It follows that

Pn(z) ≈ en supt>0(t log |z|−u(t)) = enu
∗(log |z|).

Hence,

lim
n→∞

1

n
log |Pn(z)| = u∗(log |z |).

29



Limiting distribution of zeros

“Theorem”

The limiting empirical distribution of zeros of the random poly-
nomial Pn(z) =

∑∞
k=0 fk,nξkz

k is given by

1

2π
∆u∗(log |z |).

Example: Kac polynomials

We have u(t) = 0 for t < 1 and u(t) = +∞ for t < 1. Then,

u∗(s) = sup
t>0

(st − u(t)) =

{
s, if s ≥ 0,

0, if s ≤ 0.

u∗(log |z |) =

{
log |z |, if |z | ≥ 1,

0, if |z | ≤ 1.
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The Random Energy Model

“Random Energy Model” (Derrida, 1981)

A system can be in en states.

The energy of the system in state k is
√
nξk .

ξ1, ξ2, . . . ∼ N(0, 1) are i.i.d. standard Gaussian random
variables.

The partition function is

Zn(β) =
en∑
k=1

eβ
√
nξk , β > 0.
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The Random Energy Model

Phase transition

Free energy is given by

lim
n→∞

1

n
log |Zn(β)| =

{
1 + 1

2
β2, 0 < β <

√
2,√

2β, β >
√

2.

There is a phase transition at β =
√

2. Very strange because
1
n

log |Zn(β)| is real analytic for every finite system size n.
Reason?

Answer (Lee and Yang)

The function Zn(β) has complex zeros.
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Zeros in the Random Energy Model

Complex zeros of Zn. Source: C. Moukarzel and N. Parga:
Physica A 177 (1991).
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Random Energy Model at complex temperature

Free energy for complex β

Recall that

Zn(β) =
en∑
k=1

eβ
√
nξk , β > 0.

We compute

lim
n→∞

1

n
log |Zn(β)|.

Three guesses:

Zn(β) ≈ EZn(β).

Zn(β) ≈
√
VarZn(β).

Zn(β) ≈ max |eβ
√
nξk |.
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Phases in the Random Energy Model

The three phases
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Zeros in the Random Energy Model

Theorem (Derrida, 1991; Rigorous proof: Kabluchko und
Klimovsky, 2012)

For β = σ + iτ ∈ C it holds that

lim
n→∞

1

n
log |Zn(β)| =


1 + 1

2
(σ2 − τ 2), β ∈ B1,√

2|σ|, β ∈ B2,
1
2

+ σ2, β ∈ B3.
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Poisson Zeta Function

Definition

Let P1,P2, . . . a Poisson Process with intensity 1. Define

ζP(z) =
∞∑
n=1

1

Pz
n

.

The series converges for Re z > 1 a.s. since

lim
n→∞

Pn

n
= 1.

Theorem (Kabluchko and Klimovsky, 2012)

With probability 1 this function admits a meromorphic contin-
uation to the half-plane Re z > 1

2
.
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