Zeros of Random Analytic Functions

Zakhar Kabluchko

University of Ulm

September 3, 2013

Algebraic equations

Consider a polynomial of degree *n*:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0.$$

Here, a_0, a_1, \ldots, a_n are complex numbers. Assume that $a_n \neq 0$.

Fundamental theorem of algebra

The equation P(x) = 0 has at least one complex solution.

Corollary

There is a decomposition of the form

$$P(x) = a_n(x-x_1)(x-x_2)\dots(x-x_n),$$

where x_1, \ldots, x_n are complex numbers called the roots (or zeros) of *P*.

Example

Find the roots of the equation

$$x^{n} + x^{n-1} + \ldots + x + 1 = 0.$$

Algebraic equations: Example

Solution

1) Geometric progression:

$$x^{n} + x^{n-1} + \ldots + x + 1 = \frac{x^{n+1} - 1}{x - 1}$$

2) Roots of
$$x^{n+1} - 1 = 0$$
:

$$1, \omega, \omega^2, \ldots, \omega^n,$$

where
$$\omega = e^{\frac{2\pi i}{n+1}}$$
.
3) Roots of $x^{n} + x^{n-1} + ... + x + 1 = 0$

$$\omega, \omega^2, \ldots, \omega^n.$$

Statement of the problem

We consider an equation with random coefficients, for example

$$z^{2000} - z^{1999} + z^{1998} + z^{1997} - z^{1996} - \ldots + z^3 + z^2 - z + 1 = 0$$

We would like to describe the distribution of its solutions in the complex plane.

Roots of a random equation

Roots of a random equation

Observations:

- Most roots are close to the unit circle.
- The distribution of the roots around the circle is approximately uniform.

Why are most roots close to the unit circle?

Explanation

1) Take some x with |x| > 1. Then,

$$|x^{n}| > |x^{n-1}| > |x^{n-2}| > \dots$$

Difficult to cancel...

2) Take some x with |x| < 1. Then,

$$1 > |x| > |x^2| > |x^3| > \dots$$

Difficult to cancel... 3) Take some x with $|x| \approx 1$

$$1 \approx |x| \approx |x^2| \approx \ldots \approx |x^{n-1}| \approx |x^n|$$

Easy to cancel...

Random polynomials (Kac ensemble)

Notation

- Let ξ₀, ξ₁,... be independent identically distributed random variables.
- The random polynomial of the form

$$P_n(z) := \xi_0 + \xi_1 z + \xi_2 z^2 + \ldots + \xi_n z^n$$

is called the Kac polynomial.

• Denote by z_1, \ldots, z_n the complex roots of P_n .

Empirical distribution of roots

Notation

- \bullet Let $\mathbb M$ be the set of probability measures on $\mathbb C.$
- Endow M with weak topology: A sequence of probability measures μ₁, μ₂,... ∈ M converges to μ ∈ M if for every bounded, continuous function f : C → R we have

$$\lim_{n\to\infty}\int_{\mathbb{C}} f d\mu_n = \int_{\mathbb{C}} f d\mu.$$

• The empirical distribution of roots of P_n is the probability measure

$$\mu_n = \frac{1}{n} \sum_{k=1}^n \delta(z_k).$$

• Let $\lambda \in \mathbb{M}$ be the uniform distribution on the unit circle.

Zeros of Kac polynomials

Theorem (Ibragimov und Zaporozhets, 2011)

The following conditions are equivalent:

• μ_n converges to λ almost surely, that is

$$\mathbb{P}\left[\mu_n \xrightarrow[n \to \infty]{} \lambda\right] = 1.$$

$$2 \mathbb{E}\log(1+|\xi_0|) < \infty.$$

History

Erdös and Turan (1950), Hammersley (1954), Shparo and Shur (1962), Arnold (1966), Shepp and Vanderbei (1995), Hughes and Nikeghbali (2008),...

The role of the log-moment condition

Exercise

The following conditions are equivalent:

$$\bullet \ \mathbb{E}\log(1+|\xi_0|) < \infty.$$

2 For every $\varepsilon > 0$

$$\lim_{n\to\infty}\frac{\xi_k}{e^{\varepsilon k}}=0 \text{ a.s.}$$

3 For some $\varepsilon > 0$

$$\lim_{n\to\infty}\frac{\xi_k}{e^{\varepsilon k}}=0 \text{ a.s.}$$

Remark

The series $\sum_{k=0}^{\infty} \xi_k z^k$ converges a.s. in the unit disk if and only if $\mathbb{E} \log(1 + |\xi_0|) < \infty$.

Definition

- Let ξ₀, ξ₁,... be independent identically distributed random variables.
- Consider the Weyl polynomials

$$P_n(z) = \sum_{k=0}^n \xi_k \frac{z^k}{\sqrt{k!}}.$$

• Let z_1, \ldots, z_n be the zeros of P_n .

Weyl polynomials

Theorem (Kabluchko, Zaporozhets, 2012)

The following conditions are equivalent:

• The probability measure $\frac{1}{n} \sum_{k=1} \delta(\frac{z_k}{\sqrt{n}})$ converges a.s. to the uniform distribution on the unit circle $\{|z| \le 1\}$.

2
$$\mathbb{E}\log(1+|\xi_0|) < \infty$$
.

Random matrices

Statement of the problem

- Let ξ_{ij} , $i, j \in \mathbb{N}$, be independent identically distributed random variables with $\mathbb{E}\xi_{ij} = 0$, $\mathbb{E}\xi_{ij}^2 = 1$.
- Consider the matrix

$$M_n = \begin{pmatrix} \xi_{11} & \cdots & \xi_{1n} \\ \vdots & \vdots & \vdots \\ \xi_{n1} & \cdots & \xi_{nn} \end{pmatrix}$$

• Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of M_n .

Theorem (T. Tao und V. Vu, 2010)

The probability measure $\frac{1}{n} \sum_{k=1}^{n} \delta(\frac{\lambda_k}{\sqrt{n}})$ converges a.s. to the uniform distribution on the unit disk $\{|z| \leq 1\}$.

Random matrices

Left: Eigenvalues of a random matrix Right: Zeros of a Weyl polynomial

Littlewood–Offord polynomials (1939)

- Let ξ₀, ξ₁,... be independent identically distributed random variables with E log(1 + |ξ₀|) < ∞.
- Consider the Littlewood–Offord polynomials

$$P_n(z) = \sum_{k=0}^n \xi_k \frac{z^k}{(k!)^{\alpha}}.$$

• Let
$$z_1, \ldots, z_n$$
 be the zeros of P_n .

Theorem (Kabluchko, Zaporozhets, 2012)

The probability measure $\frac{1}{n}\sum_{k=1}^{n}\delta(\frac{z_k}{n^{\alpha}})$ converges a.s. to the probability measure with the density

$$\frac{1}{2\pi\alpha}|z|^{\frac{1}{\alpha}-2}, \ |z|<1.$$

Littlewood–Offord polynomials

Zeros of the Littlewood–Offord polynomials: Normally distributed coefficients

Littlewood–Offord polynomials

Zeros of the Littlewood–Offord polynomials: Log–Pareto coefficients

Compare: Szegö polynomials $s_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$.

Remark

Taylor series for e^z :

$$e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}.$$

Complex zeros of e^z ?

Szegö polynomials

Theorem (Szegö, 1924)

The zeros of $s_n(nz)$ cluster along the curve $|ze^{1-z}| = 1$, |z| < 1.

Szegö and Littlewood–Offord polynomials

General statement

Assumptions

Consider random polynomials (Taylor series) of the form

$$P_n(z) = \sum_{k=0}^{\infty} f_{k,n} \xi_k z^k, \quad z \in \mathbb{C}.$$

Assume that

- ξ_1, ξ_2, \ldots are independent identically distributed random variables with $\mathbb{E} \log(1 + |\xi_0|) < \infty$.
- 2 $f_{k,n}$ are numbers such that for every t > 0,

$$|f_{tn,n}| \approx e^{-nu(t)}, \quad n \to \infty,$$

where u(t) is a function of t > 0.

Examples

Kac polynomials

Kac polynomials: $P_n(z) = \sum_{k=0}^n \xi_k z^k$.

•
$$f_{k,n} = 1$$
 for $k \le n$, hence $u(t) = 0$ for $t \le 1$.

•
$$f_{k,n} = 0$$
 for $k > n$, hence $u(t) = +\infty$ for $t > 1$.

Weyl polynomial

Weyl polynomials:
$$P_n(\sqrt{n}z) = \sum_{k=0}^n \xi_k z^k \sqrt{\frac{n^k}{k!}}$$
. For $t < 1$:

$$f_{tn,n}\approx \sqrt{\frac{n^{tn}}{(tn/e)^{tn}}}=e^{-\frac{n}{2}(t\log t-t)}.$$

Hence, $u(t) = \frac{1}{2}(t \log t - t)$ for t < 1 and $u(t) = +\infty$ for t > 1.

Definition

Let f(x, y) be a function of two variables. Laplace operator:

$$\Delta f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.$$

Example

 $\Delta \log |z| =???.$

Poincaré-Lelong formula

Remark

We have

$$\frac{1}{2\pi}\Delta \log |z-w| = \delta(w).$$

Hence,

$$\frac{1}{2\pi}\Delta \log |(z-w_1)\dots(z-w_n)| = \delta(w_1) + \dots + \delta(w_n).$$

Theorem (Poincaré–Lelong)

Let f(z) an analytic function. Then,

$$\frac{1}{2\pi}\Delta \log |f(z)|$$

is the measure counting the zeros of f. Exception: f is identically 0. Recall that we consider random Taylor series

$$P_n(z) = \sum_{k=0}^{\infty} f_{k,n} \xi_k z^k, \quad z \in \mathbb{C}.$$

Empirical distribution of zeros:

$$\lim_{n\to\infty}\frac{1}{2\pi n}\Delta\log|P_n(z)|.$$

Interchange lim and Δ :

$$\frac{1}{2\pi}\Delta \lim_{n\to\infty}\frac{1}{n}\log|P_n(z)|.$$

Limiting distribution of zeros

How large is

$$P_n(z) = \sum_{k=0}^{\infty} f_{k,n} \xi_k z^k ?$$

Let k = tn, where t > 0:

$$|f_{k,n}\xi_k z^k| \approx e^{-nu(t)}e^{tn\log|z|} = e^{n(t\log|z|-u(t))}$$

It follows that

$$P_n(z) \approx e^{n \sup_{t>0} (t \log |z| - u(t))} = e^{nu^*(\log |z|)}$$

Hence,

$$\lim_{n\to\infty}\frac{1}{n}\log|P_n(z)|=u^*(\log|z|).$$

Limiting distribution of zeros

"Theorem"

The limiting empirical distribution of zeros of the random polynomial $P_n(z) = \sum_{k=0}^{\infty} f_{k,n} \xi_k z^k$ is given by

$$\frac{1}{2\pi}\Delta u^*(\log|z|).$$

Example: Kac polynomials

We have u(t) = 0 for t < 1 and $u(t) = +\infty$ for t < 1. Then,

$$u^*(s) = \sup_{t>0} (st - u(t)) = \begin{cases} s, & \text{if } s \ge 0, \\ 0, & \text{if } s \le 0. \end{cases}$$
$$\left(\log |z| & \text{if } |z| > 1 \end{cases}$$

"Random Energy Model" (Derrida, 1981)

- A system can be in e^n states.
- The energy of the system in state k is $\sqrt{n}\xi_k$.
- $\xi_1, \xi_2, \ldots \sim N(0, 1)$ are i.i.d. standard Gaussian random variables.
- The partition function is

$$\mathcal{Z}_n(eta) = \sum_{k=1}^{e^n} e^{eta \sqrt{n} \xi_k}, \quad eta > 0.$$

Phase transition

Free energy is given by

$$\lim_{n\to\infty}\frac{1}{n}\log|\mathcal{Z}_n(\beta)| = \begin{cases} 1+\frac{1}{2}\beta^2, & 0<\beta<\sqrt{2},\\ \sqrt{2}\beta, & \beta>\sqrt{2}. \end{cases}$$

There is a phase transition at $\beta = \sqrt{2}$. Very strange because $\frac{1}{n} \log |\mathcal{Z}_n(\beta)|$ is **real analytic** for every finite system size *n*. Reason?

Answer (Lee and Yang)

The function $\mathcal{Z}_n(\beta)$ has **complex** zeros.

Zeros in the Random Energy Model

Complex zeros of Z_n . Source: C. Moukarzel and N. Parga: Physica A 177 (1991).

Random Energy Model at complex temperature

Free energy for complex β

Recall that

$$\mathcal{Z}_n(\beta) = \sum_{k=1}^{e^n} e^{\beta \sqrt{n} \xi_k}, \quad \beta > 0.$$

We compute

$$\lim_{n\to\infty}\frac{1}{n}\log|\mathcal{Z}_n(\beta)|.$$

Three guesses:

•
$$\mathcal{Z}_n(\beta) \approx \mathbb{E}\mathcal{Z}_n(\beta).$$

• $\mathcal{Z}_n(\beta) \approx \sqrt{\operatorname{Var}\mathcal{Z}_n(\beta)}.$
• $\mathcal{Z}_n(\beta) \approx \max |e^{\beta\sqrt{n}\xi_k}|.$

Phases in the Random Energy Model

The three phases

Zeros in the Random Energy Model

Theorem (Derrida, 1991; Rigorous proof: Kabluchko und Klimovsky, 2012)

For $\beta = \sigma + i\tau \in \mathbb{C}$ it holds that

$$\lim_{n\to\infty}\frac{1}{n}\log|\mathcal{Z}_n(\beta)| = \begin{cases} 1+\frac{1}{2}(\sigma^2-\tau^2), & \beta\in\overline{B}_1,\\ \sqrt{2}|\sigma|, & \beta\in\overline{B}_2,\\ \frac{1}{2}+\sigma^2, & \beta\in\overline{B}_3. \end{cases}$$

Poisson Zeta Function

Definition

Let P_1, P_2, \ldots a Poisson Process with intensity 1. Define

$$\zeta_P(z) = \sum_{n=1}^{\infty} \frac{1}{P_n^z}.$$

The series converges for Re z > 1 a.s. since

$$\lim_{n\to\infty}\frac{P_n}{n}=1.$$

Theorem (Kabluchko and Klimovsky, 2012)

With probability 1 this function admits a meromorphic continuation to the half-plane $Re z > \frac{1}{2}$.

Vielen Dank für Ihre Aufmerksamkeit! Many thanks for your attention!