Jürgen Kampf, AG Statistik, TU Kaiserslautern
Asymptotic properties of the parallel volume
(Based on a joint work with Markus Kiderlen)
Supported by the Villum Foundation in the framework of the CSGB

Probability, Analysis and Geometry, Ulm, September 4th, 2013
body $=$ compact, non-empty subset of \mathbb{R}^{d}

Parallel body of a body $K \subseteq \mathbb{R}^{d}$ at distance $r \geq 0$:

$$
\left\{x \in \mathbb{R}^{d} \mid d(K, x) \leq r\right\}=K+r B^{d}
$$

where

$$
\begin{aligned}
d(K, x) & :=\min \{\|y-x\|: y \in K\} \\
K+L & :=\{x+y: x \in K, y \in L\} \\
r K & :=\{r x: x \in K\} \\
B^{d} & :=\left\{x \in \mathbb{R}^{d}:\|x\| \leq 1\right\}
\end{aligned}
$$

Parallel volume of a body $K \subseteq \mathbb{R}^{d}$ at distance $r \geq 0$:

$$
\lambda_{d}\left(K+r B^{d}\right)
$$

$\lambda_{d}=$ Lebesgue measure

- used to define essential concepts of convex geometry
- applications in stochastic geometry, stereology, statistics and geometric functional analysis
- well understood for convex bodies

Theorem 1 (Kiderlen \& Rataj (2006))
Let $K \subseteq \mathbb{R}^{d}$ be a body. Then for $r \rightarrow \infty$

$$
\lambda_{d}\left(\operatorname{conv} K+r B^{d}\right)-\lambda_{d}\left(K+r B^{d}\right) \in o\left(r^{d-1}\right)
$$

Theorem 2 (K. (2009))

$$
\lambda_{d}\left(\operatorname{conv} K+r B^{d}\right)-\lambda_{d}\left(K+r B^{d}\right) \in O\left(r^{d-3}\right)
$$

Theorem 3

Let $K \subseteq \mathbb{R}^{d}$ be a body. Then

$$
\lim _{r \rightarrow \infty} \frac{\lambda_{d}\left(\operatorname{conv} K+r B^{d}\right)-\lambda_{d}\left(K+r B^{d}\right)}{r^{d-3}}=\frac{(d-1) \kappa_{d-1}}{2} V_{1}^{(3)}(K),
$$

where $\kappa_{j}:=\lambda_{j}\left(B^{j}\right)$.

What is the intrinsic power volume $V_{1}^{(3)}(K)$?

For $d=2$:

Consider (bd conv K) $\backslash K$.

$$
\begin{gathered}
K \\
(\text { conv } K) \backslash K \\
(\text { bd conv } K) \backslash K
\end{gathered}
$$

(bdconv K) $\backslash K$ consists of countably many disjoint, relatively open segments

Call this collection $\mathcal{F}^{*}(K)$

Theorem 3 (Recalled)

Let $K \subseteq \mathbb{R}^{d}$ be a body. Then

$$
\lim _{r \rightarrow \infty} \frac{\lambda_{d}\left(\operatorname{conv} K+r B^{d}\right)-\lambda_{d}\left(K+r B^{d}\right)}{r^{d-3}}=\frac{(d-1) \kappa_{d-1}}{2} V_{1}^{(3)}(K)
$$

where $\kappa_{j}:=\lambda_{j}\left(B^{j}\right)$.

For $d=2$:

$$
V_{1}^{(3)}(K)=\frac{1}{24} \sum_{F \in \mathcal{F}^{*}(K)}(\ell(F))^{3}
$$

where $\ell(F)$ is the length of F.

For $d \geq 2$:

$$
V_{1}^{(3)}(K)=\frac{1}{\kappa_{d-1}} \int_{\mathrm{bd} \operatorname{conv} K}\|\ldots\|^{2} C_{1}(\operatorname{conv} K, d x)
$$

Proof: $d=2$

$$
\begin{aligned}
& \lambda_{d}\left(\operatorname{conv} K+r B^{d}\right)-\lambda_{d}\left(K+r B^{d}\right) \\
& =\sum_{F \in \mathcal{F}^{*}(K)} \lambda_{d}\left(\left\{x \in\left(\operatorname{conv} K+r B^{d}\right) \backslash\left(K+r B^{d}\right) \mid p(K, x) \in F\right\}\right),
\end{aligned}
$$

where $p(K, x)=$ metric projection of x onto K

$$
=\text { point in } K \text { closest to } x
$$

For $r \geq \ell(F) / 2$

$$
\begin{aligned}
\lambda_{d}(\{x & \left.\left.\in\left(\operatorname{conv} K+r B^{d}\right) \backslash\left(K+r B^{d}\right) \mid p(K, x) \in F\right\}\right) \\
& \leq 2 \int_{0}^{\ell(F) / 2} r-\sqrt{r^{2}-x^{2}} d x \\
& =\frac{1}{24} \ell(F)^{3} r^{-1}+O\left(r^{-2}\right)
\end{aligned}
$$

$$
\forall_{\delta \in(0, \ell(F))}: \exists_{r_{0}>0}: \forall_{r>r_{0}}:
$$

$$
\lambda_{d}\left(\left\{x \in\left(\operatorname{conv} K+r B^{d}\right) \backslash\left(K+r B^{d}\right) \mid p(K, x) \in F\right\}\right)
$$

$$
\geq 2 \int_{0}^{(\ell(F)-\delta) / 2} r-\sqrt{r^{2}-x^{2}} d x
$$

$$
=\frac{1}{24}(\ell(F)-\delta)^{3} r^{-1}+O\left(r^{-2}\right)
$$

Theorem 3 (Recalled)

Let $K \subseteq \mathbb{R}^{d}$ be a body. Then

$$
\begin{aligned}
\lambda_{d}\left(\operatorname{conv} K+r B^{d}\right) & -\lambda_{d}\left(K+r B^{d}\right) \\
& =\frac{(d-1) \kappa_{d-1}}{2} V_{1}^{(3)}(K) r^{d-3} \pm o\left(r^{d-3}\right)
\end{aligned}
$$

where $\kappa_{j}:=\lambda_{j}\left(B^{j}\right)$.

Can we go further?

In general: no

For finite sets $K \subseteq \mathbb{R}^{d}$ fulfilling a certain geometric condition:

$$
\lambda_{d}\left(\operatorname{conv} K+r B^{d}\right)-\lambda_{d}\left(K+r B^{d}\right)=\sum_{j=3-d}^{\infty} a_{j}(K) r^{-j}
$$

for sufficiently large r, where

$$
\begin{aligned}
a_{j}(K)= & \sum_{\substack{i=1, 2 \mid(j+d-i)}}^{\substack{\min \{d-1, j+d-2\}}}(-1)^{(j+d-i) / 2}\binom{(d-i) / 2}{(j+d-i) / 2} \kappa_{d-i} \\
& \sum_{F \in \mathcal{F}_{i}(\operatorname{conv} K)} \gamma(F, \operatorname{conv} K) \int_{F} d(K \cap F, x)^{j+d-i} d x .
\end{aligned}
$$

Literature:

1. Kampf, J.; Kiderlen, M.: Large parallel volumes of finite and compact sets in d-dimensional Euclidean space, Documenta Mathematica 18 (2013), 275295.
