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Introduction

There are random vector (XT ,Y )T ∈ Rp ×{0, 1} and one
constant α0 ∈ Rm defined in such a way that for some known
function f : Rm×Rp→[0, 1] the following equation holds:

P(Y = 1|X = x) = f (α0, x)

and
P(Y = 0|X = x) = 1− f (α0, x).

For a sequence of i.i.d. random vectors (XT
q ,Yq)T , q ∈ N with the

same distributions as for (X ,Y ) our aim is to construct any
estimation α̂n for parameter α0.
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Logistic regression

One of the most commonly used functions is logistic function. Let
set m = p. Define logistic function:

f (α, x) =
e−α

T x

1 + e−αT x
.

To construct estimator for this model the method of maximum
likelihood is generally used with likelihood function

Ln(α) =
n∏

q=1

[I(Yq = 1)f (α, x) + I(Yq = 0)(1− f (α, x)] .

So α̂n = argmaxα∈Rp Ln(α).
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Multinomial logistic regression

Define some set K = {1, . . . , k}. Assume that Y ∈ {0} ∪ K and
there are some nonrandom vectors α0

1, . . . , α
0
k ∈ Rp such that for

every j ∈ K and x ∈ Rp

P (Y = j |X = x ) =
exp{−(α0

j )T x}
1 +

∑k
t=1 exp{−(α0

t )T x}
,

P (Y = 0 |X = x ) =
1

1 +
∑k

t=1 exp{−(α0
t )T x}

,
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Multinomial logistic regression

Assume that p = pn, n ∈ N and for each n ∈ N there exist i.i.d.
random vectors (Xq(n)T ,Yq(n)T )T with parameters α0,n

j of the
logistic regression dependence.
Assumptions

A1 pn/n→ 0 when n→∞;

A2 maxi ,q |X I
q | <∞ a.s. for all n ∈ N. Define Sn =

∑n
q=1 XqXT

q .
There exist two positive constants cmin and Cmax such that
the following equation holds for all n ∈ N a.s.

cminn ≤ λmin(Sn) ≤ λmax(Sn) ≤ Cmaxn.
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Theorem (Liang (2012))

Let assumptions (A1) and (A2) hold. Then there exists a sequence
of a random variables α̂n such that for n→∞

P {Ln(α̂n) = 1}→ 1

and
uTG

1/2
n (α̂n − α0)

Law→ Z , Z ∼ N(0, 1),

where u is a unit pn-vector, and Gn - is a covariate matrix of
∇Ln(α0

n).
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For some natural k there are random vectors ((X (n)T ,Y (n))T ,
where X (n) ∈ Rpn and Y (n) ∈ K ∪ {0} for K = {1, 2, . . . , k}.
Assume that for every n ∈ N, j ∈ K and x ∈ Rpn following
equations hold:

P (Y (n) = j |X (n) = x ) =
exp{−(α0,n

j )T x}
1 +

∑k
t=1 exp{−(α0,n

t )T x}
,

P (Y (n) = 0 |X (n) = x ) =
1

1 +
∑k

t=1 exp{−(α0,n
t )T x}

,

where α0,n
j Rpn , j ∈ K are nonrandom vectors, which are

parameters of the multinomial logistic regression model.
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Our aim is to construct and investigate some estimate for the vector
of parameters α0,n := ((α0,n

1 )T , . . . , (α0,n
k )T )T if we have a sample

((X1(n)T ,Y1(n))T , . . . , (Xn(n)T ,YN(n))T ). For α ∈ Rkpn determine
double numerate of components:

α(r ,l) := αl+(r−1)pn = (αr )l .

So (α0,n)r ,· is equal to vector α0,n
r . Define some functions

πnj (α, x) =
exp

{
−
(
α(j ,·))T x

}
1 +

∑k
t=1 exp

{
−
(
α(t,·)

)T
x
} ,

πn0(α, x) =
1

1 +
∑k

t=1 exp
{
−
(
α(t,·)

)T
x
} .
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Loss function:

L̃n(α) =
n∏

q=1

(
πnYq(n)

(α,Xq(n))
)

=
n∏

q=1


k∏

j=0

[
πnj (α,Xq(n))

]I{Yq(n)=j}

 .

Maximum likelihood estimate is α̂n = argmaxα∈Rkp L̃n(α). But instead
of finding maximum of this function we will look for a root for the
gradient of it.

Rn(α) =
{

R
(1,1)
n (α), . . . ,R

(1,pn)
n (α),R

(2,1)
n (α), . . . ,R

(k,pn)
n (α)

}T
,

where R
(r ,l)
n (α) =

∑n
q=1 [I {Yq(n) = r} − πnr (α,Xq(n))] X l

q(n) and

α ∈ Rkpn .
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It is easy to see that Rn(α) = ∇
[
ln L̃n(α)

]
. Define α̂n as the root

of equation Rn(α) = 0 with the smallest norm. If there’s no root
of it then α̂n := 0. Determine new function:

b
(r ,l)
(m,s)(n) = EX l(n)X s(n)·

·

{
−πnr (α0,n,X (n))πnm(α0,n,X (n)), if r 6= m;

πnr (α0,n,X (n))(1− πnr (α0,n,X (n))), if r = m.

Define matrix Bn =
(

b
(r ,l)
(m,s)(n)

)
with size kpn× kpn and Gn = nBn.
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Assumptions

B1 There exists constant C > 0 such that for every n ∈ N ‖X (n)‖ ≤ C
holds a.s.

B2 There exists constant c > 0 such that mT
n Bnmn ≥ c‖mn‖2 holds for

all n ∈ N and mn ∈ Rkpn .

Un =



pn︷ ︸︸ ︷
1
√

pn
. . .

1
√

pn

pn︷ ︸︸ ︷
0 . . . 0 . . .

pn︷ ︸︸ ︷
0 . . . 0

0 . . . 0
1
√

pn
. . .

1
√

pn
. . . 0 . . . 0

...
...

...
...

. . .
...

...

0 . . . 0 0 . . . 0 . . .
1
√

pn
. . .

1
√

pn


.
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Theorem

Let assumptions (B1) and (B2) hold. Than for every sequence δn > 0 such
that δnpn/

√
n→ 0 and

√
pn/δn → 0 for n→∞ we have

P
(
‖α0,n − α̂n‖ ≥ δn/

√
n
)
→ 0.

Theorem

Let assumptions (B1) and (B1) hold and pn = o(n1/3) for n→∞. Than

UnG
1/2
n

(
α̂n − α0,n

) Law→ Z , Z ∼ N(0,Ek), n→∞,

where Ek is a unit matrix order k.
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Corollary

Let assumptions of the last theorem hold, than for n→∞∥∥∥∥Qn(α̂n)

n
− Gn

n

∥∥∥∥
2

P→ 0

and
UnQn(α̂n)1/2(α̂n − α0,n)

d→ Z , Z ∼ N(0,Ek),

where ‖M‖2 is an operator norm of matrix M.
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Let Γ be a continuous injection from Rp to Rp with Γ(x0) = y0 for
some fixed point x0 ∈ Rpn . Assume that for some constants
δ,R > 0 the inequation inf ||x−x0||=δ ‖Γ(x)− y0‖ ≥ R holds. Than
for every y ∈ {u ∈ Rp : ‖u − y0‖ ≤ R} there is x = x(y) such
that Γ(x(y)) = y and ‖x(y)− x0‖ ≤ δ.

Lemma

Let assumptions of the theorem 1 hold.Than for n→∞ there is
some inequation with Ekpn — unit matrix with order kpn.

sup
α∈Nn(δn)

‖G−1/2n Qn(α)G
−1/2
n − Ekpn‖2

P→ 0,

where Nn(δn) = {α ∈ Rkpn : ||G 1/2
n (α− α0,n)|| ≤ δ}.
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The main idea in the proof of the first theorem

Determine Γn(α) = G
−1/2
n

[
Rn(α)− Rn(α0,n)

]
. It is easy to prove

that

P

(
inf

α∈∂Nn(δn)

∥∥∥G
−1/2
n {Rn(α)− Rn(α0,n)}

∥∥∥≥∥∥∥G
−1/2
n Rn(α0,n)

∥∥∥)→ 1.

As matrix Gn is non trivial, so from the lemma 2 it follows that

P (∃α ∈ ∂Nn(δn) : Rn(α) = 0)→ 1, n→∞.
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Proof of the second theorem

UnG
−1/2
n Rn(α0,n) = Un

(
Gn

n

)−1/2 Rn(α0,n)√
n

d→ Z ,

where Z ∼ N(0,Ek), n→∞. From the multinomial center limit
theorem we can say that

UnG
1/2
n (α0,n − α̂n) = UnG

−1/2
n Rn(α0,n) + UnG

−1/2
n op(1) =

= Z + op(1).
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Thank you for your attention!
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