EXISTENCE "IN THE LARGE" AND UNIQUENESS OF A SOLUTION TO PRIMITIVE EQUATIONS

G.M. KOBELKOV (Moscow State University)

OVERVIEW

1. Problem formulation.
2. Auxiliary results.
3. Solution for 2D-case.
4. Peculiarities for 3D-case.
5. Primitive equations.

Leray Problem

Let $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ be the velocity vector and p - the pressure. The system of Navier-Stokes equations describing flow of incompressible liauid in a bounded domain Ω is of the form

$$
\begin{align*}
& \mathbf{u}_{t}-\nu \Delta \mathbf{u}+\nabla p+u_{k} \mathbf{u}_{x_{k}}=\mathbf{f} \\
& \operatorname{div} \mathbf{u}=0,\left.\quad \mathbf{u}\right|_{\partial \Omega}=\mathbf{0}, \quad \mathbf{u}(\mathrm{x}, 0)=\mathbf{u}_{0}(\mathrm{x}) \tag{1}
\end{align*}
$$

hereafter the following notations are used

$$
\begin{aligned}
& \partial_{i}=\frac{\partial}{\partial x_{i}}, \quad\|f\|_{q}=\|f\|_{L_{q}}, \quad\|f\|=\|f\|_{L_{2}} \\
& x=\left(x_{1}, x_{2}\right) \text { or } x=\left(x_{1}, x_{2}, x_{3}\right) \\
& u_{k} \mathbf{u}_{x_{k}}=\left(u_{1} \partial_{1} u_{1}+u_{2} \partial_{2} u_{1}+u_{3} \partial_{3} u_{1}, \ldots\right) \\
& \left\|\mathbf{u}_{x}\right\|^{2}=\sum_{i, j=1}^{3} \int_{\Omega}\left(\partial_{i} u_{j}\right)^{2} d x
\end{aligned}
$$

The Leray problem is formulated as follows: Let Ω be a bounded Lipschitz domain in 3D space. For any $\nu>0$ (viscosity), $T>0$ (time interval) and arbitrary smooth \mathbf{f} and \mathbf{u}_{0} to prove existence and uniqueness of a solution $\mathbf{u}(x, t) \in$ $\mathbf{H}_{0}^{1}(\Omega)$ and such that the norm $\left\|\mathbf{u}_{x}(t)\right\|$ is continuous in time on $[0, T]$.

The following auxiliary results are used

Lemma 1. For any $f \in H_{0}^{1}(\Omega)$ the following estimate holds in $2 D$ case

$$
\begin{equation*}
\|f\|_{4}^{4} \leq 4\left\|\partial_{1} f\right\|\left\|\partial_{2} f\right\|\|f\|^{2} \leq c_{1}\|\nabla f\|^{2}\|f\|^{2} \tag{2}
\end{equation*}
$$

Proof. Continue $f \in H_{0}^{1}$ on the whole plane R^{2} by zero. From the relation

$$
f^{2}(x)=2 \int_{-\infty}^{x_{k}} f f_{x_{k}} d x_{k}, \quad k=1,2,
$$

it follows

$$
\max _{x_{k}} f^{2}(x) \leq 2 \int_{-\infty}^{\infty}\left|f f_{x_{k}}\right| d x_{k}, \quad k=1,2
$$

Then

$$
\begin{aligned}
& \int_{R^{2}} f^{4}(x) d x \leq \int_{-\infty}^{\infty} \max _{x_{2}} f^{2} d x_{1} \int_{-\infty}^{\infty} \max _{x_{1}} f^{2} d x_{2} \\
& \leq 4 \int_{R^{2}}\left|f f_{x_{2}}\right| d x \int_{R^{2}}\left|f f_{x_{1}}\right| d x \leq 4\|f\|^{2}\left\|f_{x_{1}}\right\|\left\|f_{x_{2}}\right\| \\
& \leq 2\|f\|^{2}\|\nabla f\|^{2} .
\end{aligned}
$$

Lemma 2. For any $f \in H_{0}^{1}(\Omega)$ the following estimate holds in 3D case

$$
\begin{equation*}
\|f\|_{4}^{4} \leq 8\left\|\partial_{1} f\right\|\left\|\partial_{2} f\right\|\left\|\partial_{3} f\right\|\|f\| \leq c_{2}\|\nabla f\|^{3}\|f\| . \tag{3}
\end{equation*}
$$

Proof. As before,

$$
\begin{aligned}
& \|f\|_{4}^{4} \leq 4 \int_{-\infty}^{\infty}\|f\|_{2, R^{2}}^{2}\left\|f_{x_{1}}\right\|_{2, R^{2}}\left\|f_{x_{2}}\right\|_{2, R^{2}} d x_{3} \\
& \leq 4 \max _{x_{3}}\|f\|_{2, R^{2}}^{2} \int_{-\infty}^{\infty}\left\|f_{x_{1}}\right\|_{2, R^{2}}\left\|f_{x_{2}}\right\|_{2, R^{2}} d x_{3} \\
& \leq 8 \int_{-\infty}^{\infty}\left|f f_{x_{3}}\right| d x_{3}\left\|f_{x_{1}}\right\|\left\|f_{x_{2}}\right\| \\
& \quad \leq 8\left\|f_{x_{1}}\right\|\left\|f_{x_{2}}\right\|\left\|f_{x_{3}}\right\|\|f\| \leq c_{2}\|\nabla f\|^{3}\|f\|
\end{aligned}
$$

Remark. Estimates (2) and (3) are severe, i.e. powers cannot be changed. The constants c_{1} and c_{2} do not depend on Ω and f.

From (2) and (3) and the Young inequality we have

$$
\begin{equation*}
\|f\|_{4}^{4} \leq \varepsilon\|\nabla f\|^{4}+\varepsilon^{-1}\|f\|^{4}, \quad \Omega \in R^{2} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\|f\|_{4}^{4} \leq \frac{2}{\sqrt{3}}\left[\varepsilon\|\nabla f\|^{4}+(3 \varepsilon)^{-1 / 3}\|f\|^{4}\right], \Omega \in R^{3} \tag{5}
\end{equation*}
$$

Lemma 3. For any $f \in H_{0}^{1}(\Omega), \Omega \in R^{3}$, the following inequality holds

$$
\begin{equation*}
\|f\|_{6} \leq(48)^{1 / 6}\|\nabla f\| \tag{6}
\end{equation*}
$$

Proof. For simplicity, assume $f \geq 0$. Then

$$
\begin{aligned}
\|f\|_{6}^{6} & =\int_{\Omega} f^{6} d x=\int_{-\infty}^{\infty} d x_{1} \int_{R^{2}} f^{3} \cdot f^{3} d x_{2} d x_{3} \\
& \leq \int_{-\infty}^{\infty} d x_{1}\left[\int_{x_{3}} \max _{x_{2}} f^{3} d x_{3} \int_{x_{2}} \max _{x_{3}} f^{3} d x_{2}\right] \\
& \leq 9 \int_{-\infty}^{\infty} d x_{1}\left[\int_{R^{2}} f^{2} f_{x_{2}} d x_{2} d x_{3} \int_{R^{2}} f^{2} f_{x_{3}} d x_{2} d x_{3}\right] \\
& \leq 9 \int_{-\infty}^{\infty}\left[\|f\|_{4, R^{2}}^{4}\left\|f_{x_{2}}\right\|_{R^{2}}\left\|f_{x_{3}}\right\|_{R^{2}}\right] d x_{1}
\end{aligned}
$$

From the above inequality one obtains

$$
\begin{gathered}
\|f\|_{6}^{6} \leq 9 \max _{x_{1}}\|f\|_{4, R^{2}}^{4}\left\|f_{x_{2}}\right\|_{R^{3}}\left\|f_{x_{3}}\right\|_{R^{3}} \\
\leq 36 \int_{R^{3}}\left|f^{3} f_{x_{1}}\right| d x\left\|f_{x_{2}}\right\|_{R^{3}}\left\|f_{x_{3}}\right\|_{R^{3}} \\
\leq 36\|f\|_{6}^{3}\left\|f_{x_{1}}\right\|\left\|f_{x_{2}}\right\|\left\|f_{x_{3}}\right\|,
\end{gathered}
$$

which yields
$\|f\|_{6} \leq\left(36\left\|f_{x_{1}}\right\|\left\|f_{x_{2}}\right\|\left\|f_{x_{3}}\right\|\right)^{1 / 3} \leq(48)^{1 / 6}\|\nabla f\|$,
Q.E.D.

Lemma 4 (The Gronwall inequality). Let $y(t) \geq$ 0 satisfy for almost all $t \in[0, T]$ the inequality

$$
y^{\prime}(t) \leq C_{1}(t) y(t)+C_{2}(t)
$$

where $C_{i}(t)$ - nonnegative integrable functions.
Then

$$
y(t) \leq \exp \left\{\int_{0}^{t} C_{1}(t) d t\right\}\left[y(0)+\int_{0}^{t} C_{2}(t) d t\right]
$$

A PRIORI ESTIMATES

For simplicity we put $\mathrm{f}=0$ and rewrite (1)

$$
\begin{align*}
& \mathbf{u}_{t}-\nu \Delta \mathbf{u}+\nabla p+u_{k} \mathbf{u}_{x_{k}}=\mathbf{0} \\
& \operatorname{div} \mathbf{u}=0,\left.\quad \mathbf{u}\right|_{\partial \Omega}=\mathbf{0}, \quad \mathbf{u}(\mathrm{x}, 0)=\mathbf{u}_{0}(\mathrm{x}) . \tag{1}
\end{align*}
$$

1. Take a scalar product in \mathbf{L}_{2} of (1) and \mathbf{u} :

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\mathbf{u}\|^{2}+\nu\left\|\mathbf{u}_{x}\right\|^{2}=0 \tag{8}
\end{equation*}
$$

Integration in t gives

$$
\begin{equation*}
\max _{t}\|\mathbf{u}(t)\| \leq\left\|\mathbf{u}_{0}\right\| \equiv M \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
2 \nu \int_{0}^{\infty}\left\|\mathbf{u}_{x}(t)\right\|^{2} d t \leq M^{2} \tag{10}
\end{equation*}
$$

2. From (8) and (9) we have

$$
\begin{equation*}
\nu\left\|\mathbf{u}_{x}\right\|^{2}=\left(\mathbf{u}, \mathbf{u}_{t}\right) \leq M\left\|\mathbf{u}_{t}\right\| . \tag{11}
\end{equation*}
$$

3. Differentiate (1) in t :

$$
\begin{align*}
& \mathbf{u}_{t t}-\nu \Delta \mathbf{u}_{t}+\nabla p_{t}+u_{k} \mathbf{u}_{t x_{k}}+u_{k t} \mathbf{u}_{x_{k}}=\mathbf{0}, \\
& \operatorname{div} \mathbf{u}_{\mathrm{t}}=0,\left.\quad \mathbf{u}_{\mathrm{t}}\right|_{\partial \Omega}=\mathbf{0} . \tag{12}
\end{align*}
$$

Take a scalar product of the first eq-n and \mathbf{u}_{t} :

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|\mathbf{u}_{t}\right\|^{2}+\nu\left\|\mathbf{u}_{t x}\right\|^{2}+\left(u_{k t} \mathbf{u}_{x_{k}}, \mathbf{u}_{t}\right)=0 \tag{13}
\end{equation*}
$$

Estimate the scalar product from (13). In 2D
case we have

$$
\begin{aligned}
& \left|\left(u_{k t} \mathbf{u}_{x_{k}}, \mathbf{u}_{t}\right)\right|=\left|\left(u_{k t} \mathbf{u}, \mathbf{u}_{t x_{k}}\right)\right| \leq\left\|\mathbf{u}_{t x}\right\|\left\|\mathbf{u}_{t}\right\|_{4}\|\mathbf{u}\|_{4} \\
& \quad \leq c\left\|\mathbf{u}_{t x}\right\|^{3 / 2}\left\|\mathbf{u}_{t}\right\|^{1 / 2}\left\|\mathbf{u}_{x}\right\|^{1 / 2}\|\mathbf{u}\|^{1 / 2} \\
& \quad \leq c \sqrt{M}\left\|\mathbf{u}_{t x}\right\|^{3 / 2}\left\|\mathbf{u}_{t}\right\|^{1 / 2}\left\|\mathbf{u}_{x}\right\|^{1 / 2} \\
& \quad \leq \frac{\nu}{2}\left\|\mathbf{u}_{t x}\right\|^{2}+c M^{2} / \nu^{3}\left\|\mathbf{u}_{x}\right\|^{2}\left\|\mathbf{u}_{t}\right\|^{2}
\end{aligned}
$$

Then from (13) one gets

$$
\begin{equation*}
\frac{d}{d t}\left\|\mathbf{u}_{t}\right\|^{2}+\nu\left\|\mathbf{u}_{t x}\right\|^{2} \leq c M^{2} / \nu^{3}\left\|\mathbf{u}_{x}\right\|^{2}\left\|\mathbf{u}_{t}\right\|^{2} \tag{14}
\end{equation*}
$$

Using the Gronwall inequality (7), from (14) we obtain

$$
\begin{align*}
\max _{0 \leq t \leq T} & \left\|\mathbf{u}_{t}(t)\right\|^{2} \leq\left\|\mathbf{u}_{t}(0)\right\|^{2} e^{c M^{2} / \nu^{3}} \int_{0}^{\infty}\left\|\mathbf{u}_{x}\right\|^{2} d t \\
& \leq\left\|\mathbf{u}_{t}(0)\right\|^{2} e^{c M^{4} / \nu^{4}} \tag{15}
\end{align*}
$$

It is easy to see that the norm $\left\|\mathbf{u}_{t}(0)\right\|$ can be estimated from above by some norm of the
initial condition \mathbf{u}_{0}. Therefore, for 2D case we have the final a priori eqtimate

$$
\begin{equation*}
\max _{0 \leq t \leq T}\left\|\mathbf{u}_{t}(t)\right\| \leq c_{T} \tag{16}
\end{equation*}
$$

where c_{T} depends on the time interval, the norm of the initial condition, and ν.

Using (16) and the ordinary technique, it is not difficult to prove existence and uniqueness of a solution from the Sobolev space $\mathbf{H}^{1}\left(Q_{T}\right)$, where $Q_{T}=\Omega \times(0, T)$. From this it follows that the norm of this solution $\left\|\mathbf{u}_{x}\right\|$ is continuous in time.

3D case. The estimates (9)-(11) are valid. As for estimation of the scalar product from
(13), in 3D case we have
$\left|\left(u_{k t} \mathbf{u}_{x_{k}}, \mathbf{u}_{t}\right)\right|=\left|\left(u_{k t} \mathbf{u}, \mathbf{u}_{t x_{k}}\right)\right| \leq\left\|\mathbf{u}_{t x}\right\|\left\|\mathbf{u}_{t}\right\|_{4}\|\mathbf{u}\|_{4}$ $\leq c\left\|\mathbf{u}_{t x}\right\|^{7 / 4}\left\|\mathbf{u}_{t}\right\|^{1 / 4}\left\|\mathbf{u}_{x}\right\|^{3 / 4}\|\mathbf{u}\|^{1 / 4}$
$\leq c M^{1 / 4}\left\|\mathbf{u}_{t x}\right\|^{7 / 4}\left\|\mathbf{u}_{t}\right\|^{1 / 4}\left\|\mathbf{u}_{x}\right\|^{3 / 4}$

$$
\leq \frac{\nu}{2}\left\|\mathbf{u}_{t x}\right\|^{2}+c(M, \nu)\left\|\mathbf{u}_{x}\right\|^{6}\left\|\mathbf{u}_{t}\right\|^{2}
$$

