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Let u = (ul, u”, U3), u = (ul, ’UQ). Indices
1,7 range 1,2, and £k — from 1 to 3. Space

variables are z = (x1,z,23) Of x,y,2;, ' =

(z1,72).

Let Q = Q' x [0,1], where Q' is a 2D domain
with a piecewise smooth boundary 90; 9 =
S'U Sy, where S is a lateral part of 0S2.



The system of primitive equations is
ﬁt — VA/ﬁ — l/fuﬁzz ‘I_ [u —I_ V/p ‘I_ U/kﬁmk — f,

op

8333 — —4gp,

divu=¢, pt—plA'p—03(u(pz)03p) + uppz, =0,

—~

u-n

_ o

= —xn=0 on S x|[0,T],
on

u3z = 0, Oz3u] = 03up =0 on 57 X [O,T],

1
/O div'tigdz = 0, p(x,0) = po(z); /Q odxr = 0O,
(1)

we assume summation over repeating indices
in products; g is acceleration of gravity, n is
an outer unit normal to the boundary, a x b =

a1bo — aoby. The operator [u is of the form

i = w(us, —uq).



Stratification means that the viscosity coeffi-
cient u, depends on p,. We impose the follow-

ing conditions on uy:

1) uy(s) is bounded, smooth and
non-increasing for s < 0O;
2) uy(s) is constant for s > 0.

T he problem consists in proving existence and
uniqueness of a solution to (1) "in the large”,
i.e. the norm |[ug|| has to be continuous in
time on any finite time interval [0,T] without
assumptions on smallness of initial data, vis-
cosity coefficients or size of a domain.



A priori estimates. Multiply the equation

pt — uA'p — (pvpz)z + ugpz, =0

by p3 and integrate over 2. After simple esti-
mation we get

max t < i 2
DA%, lp(t)]la < cllpolla (2)

From the second equation of (1)

o _
s 9P
and (2) it follows
max_||03p(t)|la < cllpolla- (3)

0<t<T



Multiply the first equation of (1)
Uy — vA'U — vyl + 10+ Vip 4 ugtiy, =1,
by G and integrate over 2:
1d . _ - - o .
5 |G| 2 + || 0 |* 4ol 822 — (p, div'd) = (f, T).
(4)
Estimate the scalar product from the left-hand

side of (4). From the incompressibility equa-
tion and boundary conditions it follows

|us]| < cl|Ozuz|| < c||t,|- (5)
Then
|(p, div’)| = |(p, O3uz)| = |(93p, u3)|
. | NN 2 C 2
< cl|0zp]| [[uy|| < 5 [ » |03p]|~.
So

d ~
12 + ealloll? < ea (03012 + I£2,).

Integrating this inequality in ¢t from O to 7" and



taking into account (3), we get

max AP+ [ [a.l?dt<c. ()
0<t<T 0 v -

For uz from (5) and (6):

(7 (sl + losul?) ae <. (7

Estimation of the norm ||p||z. Represent p as
p = p1 +p2, where p(t,z,y) = fg p(t, =y, 2)dz.
Then py is an antiderivative of d3p in z and
/o podz = 0. Since p is determined from (1) up

to a constant, in what follows we shall assume
3.0
o pidz- = 0. Then,

|p2lla < c||03p2||la < c. (8)

Estimate the norm of p;. Take the scalar prod-
uct of the first equation and V/(A/)~1p3; after
some estimations we have

Ip1lla < c(llvzll*2 + lo)| Y2 4+ D)|jv]|}/2, v = &2

(9)



Here we used the inequality
vla < e (lug |2 + o] 1/2) [v]*/2 (10)

being valid for 2D case and |-| means the norm
in x, y variables. As for estimation of the inte-
gral over 02, we differentiate the first b.c. in
the tangent direction and use the second b.c.
So, this integral is reduced to the one contain-
ing derivatives of the normal components. It
gives possibility to estimate this integral prop-
erly.

Estimation of the norm max; ||il|4. Multiply
(1) by 6%d and integrate over Q:
1 d

4 o IROIE = v(A8,578) - vo(Tzz, 0°0)

+(V'p, 621) + (uliz,, G%0) = 0.

(11)

The last scalar product in (11) equals zero.



Then,

—v(A'G, [6]20) — vy (2, G20) >

c (/Q v [Vi|2dz + ||vx||2> |

so (11) may be rewritten as

d R ~) ~
oI er ([ 0IVaPde + les]?) < el (V'p,5%)
(12)

Using the estimates for p; and p», it is possible
to estimate the scalar product of (12):

[(V'p, 620)| = |(p, div/(§%0))] < |(pd, V'G?)]
+|(pti?, div'd)| < c(|p|v, |Tiz|)

< c((|p1lv, [uz|) + (Ip2|v, [Uz])).
(13)
Estimate scalar products of (13) separately:

~ v 2 0 Cn2na 112
(Ip1lv, [8z]) < o flozll® + — [lo]| | e
(14)
+ellvll?ll8z]l + cllvll18ell,



1 1
(|p2]v, |tz]) < p2lalv]a|tz|dz = |p2la [ |v|a|lz|dz
0 0

~ v 2 2 ~ 12
< el |2 ||v]|H 2] ]| < 5 lvzl|” - ellvll= 4 ef [t ]|~
(15)
So, from (12) we have

d R . —~ —~
L o(o)|2e [ 8200 2de < ool 20182+ 8]
(16)

From Gronwall’'s inequality and (16), it follows
max_ |(u(t < c. 17
max [[a(b)]la < c (17)
In turn, (16) and (17) yield

I 2 2
/ / 82|{iz| 2dzdt < c. (18)
0 2

Since ||Uj83U3|| = ||uj(81u1—|—82u2)||, then from



(18) we have

/T/ w2(Bz3uz)2dedt < ¢, j=1,2. (19)
0o Jo - ’

Differentiate equations (1) in z. Denote
u, =v, v= (Ul,vz); SO

i\’t — VA/{} — I/U{\fzz _I_ V/pz _I_ Ukﬁgjk _I_ Uki\/'ajk — 0,

divv = 0.
(20)

Multiply the first equation of (20) by v and
integrate over €2:

1 d . _ - o
5 7 19112 + v||92]|% = (p2, div'¥)
t (21)
T he last scalar product equals zero. Estimate
the two remaining scalar products in (21):

o~ )~ P TR
|(pz, div'¥)] < [|pz]| [|div¥|| < ef|divv]| < 2 9[>+



Further,

|(Witiay, 9)| = (v, V)| < (07T, V)| + [ (31, Vs
< cl[all4|[Vllall¥zll + [(div'a - @, Tas)| < |||/

e I~~~ TN ~ . f~ o~
+WWMFWW%HSZWN2+¢ﬂF+dWWﬁ4MZ

So, from (21) it follows

d

2 = 2 5112 iv/d - |2
S92+ eall¥al < 2 (19112 + lldiv /G- 512)

(22)
From (22) and Gronwall's inequality one ob-
tains

T
max t -+ dt < c. 23
O§t§T||V( )” V/O ||Vx|| ~C ( )



Multiply (20) by ¥2¥ and integrate over:

LW+ [ (FPENZIE?) de
oo [ (@24 515202 do

—(pz, div/(¥29)) + (vgliz;, ¥29) = 0.
(24)

Estimate the scalar products in (24):

I = |(pz, div/(329))| < [(pz, ¥2div'9)| + |(pz, VV'¥2))
(25)
The first term is estimated with the use of the
Holder inequality for the functions p., |v|div/v
and |v| with the powers 4, 2 and 4. Taking
into account the boundedness of the norms of
p-in Lg in t and the estimate ||wl||4 < c||wz||1/2||w]|1/?
being valid for 2D case, we obtain

|(pz, v2div'9)| < |lpzlla ||V - div/¥| (9|4

<e [ 92E)%da + e (19202 +1191)



The second term is estimated in a similar way.
So

(p, div/(929)| < & | 92(92)?datce (||\7x||2(+ )|ff||2)
26

Estimate the second scalar product of (24):

I = |(vgliay, ¥29)| < [(vjliz;, ¥29)| + [(v3liaz, V2V))

=1L+ 14

T he first scalar product is estimated as
|(’Ujﬁ$j7{;2{’)| < |(d|V V- i\77{72{1”

+(vyt, ¥92 )| + (08, ¥292;)|.

Estimate, e.g. the third scalar product. Use

the HOlder inequality for the functions vj\“r;,;j, u
and v2 with the powers 2, 4 and 4:

/ . o e \1/4
b = |(058,92%,)| < cl[9-%al [ally ( [ 9%z )"



Taking into account the boundedness of ||il|4
in ¢ and the estimate |Jw||s < c|lwe|/3/4||w|*/*
being hold in 3D case, one obtains

PSP 3/4 1/4
5 < ||¥ - || Jwg |3/ 4| |w] | /4,

where w = v2. From this inequality we have

/ 275 \2 ~2 2 ~14
T, < €/Q 92(95) daz—l—s/Q [(92) ] da;+c€||zfz||;.)

Estimate Ié’:
14 =|(v3ligs, V29)| = |(div/d - 9,929)| =|(@ - 92, V'92)|
< ||il|4 |92]l4 IV'92]] < c|lwg|[3/4 |Jw||Y/4 || V/¥2)|

< s/Q 92(92)2dx + a/Q [(92)2]2dz + co||9||3.
(28)

Thus, using (26) — (28), from (26) we have
d o, 1.
SI9IE e [ (V22 + 512 da

< co (192012 + 9012 + [9113)



from what follows

max 93+ [ [ (@)% + [(¢7)a]?) dadt < e
(29)

All the above inequalities vield

max |4 + max a4

T 22
+v | /Q (6202, + 02, +u3.. + 62u3,. ) dedt < c
(30)

Let us now obtain the estimate for p,. Differ-
entiation of the equation for p in z gives

Pzt_,UA/Pz—(Mvpz)zz+uz'vp+u'vpz = 0. (31)
Scalar multiplication of (31) by p, gives

1 d
2 dt ||PZ||2 + MHPza: || + (Bopzz, pzz)
(32)

+(ypzz, p2zzpz) + (uz - Vp, pz) = 0.



Due to the properties imposed on uy, we have
(M%,Ozzapzzpz) > 0.

Estimation of the last scalar product gives

(uz - Vp, p2)| < €llpzall® + cc(|V2)1 + llo2l?) + ¢

(33)
Then, from (32) it follows
2 I 2
max ol + [ llpsalPdr e (34)

Differentiate (1) in t:

Uyt — VAT + 1Ty 4+ Vpy + ugylia, + ugtigg, =0,
divu; = 0,
pit — A pt — (poptz)z — (Wyp2tp2) 2

(35)



Take the scalar product of the first equation
of (35) and 1y, and the third equation of (35)

and p;. One has
1 d

5 a ||ﬁt||2 + V“ﬁtac’HQ + Vv||ﬁtz||2 + (V/pt, uy)

_I_(uktﬁxk»a ﬁt) — 07

1d

2 2 2
§£||Pt|| +:LL||ptaz’H ‘|‘(Mv,,0tz)

+(1ypz, p7,) + (ugtpay, pt) = O.
(36)

The scalar products in (36) may be estimated
as

((V'pr, 6| < el + callodl?;

|(uptlizy, Be)| < ell8ea|® + cl|@e]|*.



Further,

| (upzy,s P = [(upt s pray )| < |(wjtps pra; )|+ 1(uzep, pras)|
[(ujips pra;)| < clltella [lplla [l ptall < cllella [lpta|
< ellptell? 4 clltgl|F < ellpell? + elltge||? + cl|Tel|?;
|(uztp, ptas)| < [(uzizp, pr)| + [(u3gpz, pr)| = I3 + 14,
I3 <|luze|l lolla llptlla < clltig]l | pella < ellbge||? + cllptll3

< el + ellptall* + clloel

' 2 diviisd da'd
/O /Q, ( /O v/t z) prapr da'das
1 1 o ,
< [ (|, | 1div'adds - x| lor] da' ) das.

1
Denote /0 ldiv'tig|dz = ¢q(2’). Then, to esti-

In=1|(u3ztpz, pt)| =




mate I, we have

1 1
/
I4 < /0 (/Q, q |pasl |pt| dx ) dx3 < /o q| |pz|a |pt|adz

1
1/2 1/2 1/2 1/2
< clal [ 1ozl 210212 pyos /2 o] 2tz

Applying the Cauchy inequality and taking into
account the estimate

2
1
2 2 3./ R /
q|* = | q°dx //(/o div ut|dz> dx

1
< [ [ ldiv'agPdede’ < el
Q' JO
we have

Iy < el ozl Y2 =112 ot 12 [l pel 12

< elltitz]|® + ellptll® + cllpzzl|® [l ol >



Choose sufficiently small . Then

d

L2 2 R
— aell* + lleel|*) + callGel]
dt

37

Feollprall? = esllpell? (37)
—calltgl|? — esllpzzl? llpel? < O,

from what follows

T
max (18Ol + @D + [ (I8l + llora]?)

0<t<T

< ez (15012 + (1o (0)]?)
(38)

The right-hand side of (38) may be estimated
by some constant depending on the norms ||ug |2,
3

||po||W22. Thus, the final a priori estimate is of



the form
max (|[plla + [|ez|| + [|0z|| + [[us]| + [|0z]|l4 4 ||G]]

0<t<T

T 2 2 2 = 112
HlodD) + [ (lezll? 4 llpzal® + lloral® + 1]
Tz + [[figl® + | G6a]|? + [[0-820?) de

< er (11Gollf > + lIeoll?, )
(39)

Let us now proceed to the proof of existence
of a solution.



Introduce the spaces

e Vo — the space of vector functions v =
(v1,v2) from W3(Q7), satisfying boundary
conditions and such that v, € Wi(Qr) and

1
/O div'v (s, 2,t) dz = O;

e R — the space of functions r € W3(Q7)
such that r, € W3 (Qr).

The weak form of the density equation is

/Q (_,O'r't _I_ V1 PxTx — U]gp”“xk) dxdt
t
(40)

_.d —/ _dz=0.
‘|‘/Q Pr|t_t €L O POT|t_0 L



The weak form of the motion equation is
/Q (—6V; + vieVe + 167 + V'p - 9 + uplie, V) dodt
t
v :daz—/ fig¥],—odz = O
‘|‘/Q = o, o t=0
(41)

here w3z is uniquely determined from the rela-
tions divu = 0, uz(¢,z’,0) = 0.

It is possible to eliminate p and uz from (41)

X
/ (—ﬁ\?t + vilig ¥y 4 1iiv — gp/ ® div'y dz
Q¢ 0
3
]uvg,{7 -+ / div't dz uvg;3> dxdt

-+ uv|i—s — unvl);—n = O.
/Q |t t /Q 0 |t—O
(42)

Weak solution is a pair of functions u € Vo,
p € R satisfying for any v € Vo, r € R and
arbitrary t € [0,T] relations (40), (42).



Using obtained a priori estimates it is not dif-
ficult to prove uniqueness of a solution.

As for existence, we use the theorem on ex-
istence "in small’” and obtained a priori esti-
mates. It gives existence "in the large”.

Thus, the following statement is proven

Theorem. Let tg € W3(2), po € W5(RQ)
satisfy = boundary  conditions (1”) and

1
/o div'tigdz = 0. Then for any v, p, vy > 0,

(uy satisfies the properties discussed above)
and arbitrary T > O problem (1) has in Qp a

unique weak solution such that G2, 42, iy, 02,, iy, U,

LQ(QT); and p27 Pz, Pzx, Ptx € LQ(QT) For ﬁ? P
estimate (36) holds and the norm ||iz|| is con-

tinuous in t.

Sometimes, one chooses uy, as

Vmin



Direct calculations give us the following suffi-
cient restriction

Vmax < 86

Vmin

for the inequality

(Hopzz, pzz) + (Wypzz, p2zpz) > O

to be valid. So, the theorem is fulfilled for this
case as well.
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