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Aims of this Lecture

See similarities and differences between ordinary and stochastic
differential equations.
Glimpse at the connection between stochastic processses and
partial differential equations.
See this connection ‘in action’ in a specific situation.
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1. Introduction
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Solving ODE

{
X ′(t) = f (X (t))

u(0) = x0

Search fixed points of

X (t) = x0 +

∫ t

0
f (X (s)) ds.

Two cases:
f Lipschitz use Banach’s fixed point theorem.

I Existence and uniqueness of solutions.
f merely continuous (or even only measurable) use
Compactness (Peano’s Theorem)

I Existence but not necessarily uniqueness of solutions.
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Example

Use f (x) = 2
√

x . Then for x0 = 0 both X1 ≡ 0 and X2(t) := t2 solve{
X ′(t) = f (X (t))

X (0) = 0

The situation is worse if f is merely measurable, e.g. f (x) = 1R\Q(x).
We want to solve

X (t) = x0 +

∫ t

0
1R\Q(X (s)) ds.

If x0 ∈ Q, then X1(t) ≡ x0 is a solution and X2(t) := x0 + t is a solution.

Markus Kunze (Ulm University) Ulm, September 2nd 2013 5 / 29



Example

Use f (x) = 2
√

x . Then for x0 = 0 both X1 ≡ 0 and X2(t) := t2 solve{
X ′(t) = f (X (t))

X (0) = 0

The situation is worse if f is merely measurable, e.g. f (x) = 1R\Q(x).
We want to solve

X (t) = x0 +

∫ t

0
1R\Q(X (s)) ds.

If x0 ∈ Q, then X1(t) ≡ x0 is a solution and X2(t) := x0 + t is a solution.

Markus Kunze (Ulm University) Ulm, September 2nd 2013 5 / 29



Uniqueness through speed
Let f be bounded and continuous. Suppose, we want to solve

X (t) = x0 +

∫ t

0
f (X (s)) ds + λt .

Let Φ′(s) := f (s)
λ+f (s) . If X is a solution, put Y (t) := X (t)− λt .Then

Y (t) = x0 +

∫ t

0
f (X (s)) ds

= x0 +

∫ t

0
(λ+ f (Y (s) + λs))Φ′(Y (s) + λs) ds

= x0 + Φ(Y (t) + λt) + Φ(x0).

Thus, if X1,X2 are solutions, we have

|Y1(t)− Y2(t)| =
∣∣Φ(Y1(t) + λt)− Φ(Y2(t) + λt)

∣∣ ≤ L|Y1(t)− Y2(t)|.

 Uniqueness if λ is large.
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How fast can you go?
Recall: Brownian motion (Bt )t≥0 is a stochastic process with
continuous paths such that

1 B0 ≡ 0.
2 Bt+s − Bt is independent of Ft := σ(Br : r ≤ t).
3 Bt+s − Bt ∼ N (0, s).

Known: t 7→ Bt is almost surely not differentiable.  d
dt Bt is almost

surely infinite ( Can’t go faster than that!)
Thus: consider {

X ′(t) = f (X (t)) + d
dt Bt

X (0) = x0.

Of course, this does not make sense. However, we can integrate:

X (t) = x0 +

∫ t

0
f (X (s)) ds +

∫ t

0

d
ds

Bs ds = x0 +

∫ t

0
f (X (s)) ds + Bt
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Aim of this lecture

Show uniqueness of solutions for the stochastic integral equation

X (t) = x0 +

∫ t

0
f (X (s)) ds + Bt ,

where f is a bounded, measurable function.
Equivalently, show uniqueness of solutions for the stochastic
differential equation

dX (t) = f (X (t))dt + dBt
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2. Stochastic Differential Equations
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Solutions of SDE
Definition
A solution of the SDE is a pair (X ,B), defined on a stochastic basis
(Ω,Σ,F,P), where B is an F-Brownian motion and X is a continuous,
F-adapted process such that for t ≥ 0

X (t) = x0 +

∫ t

0
f (X (s)) ds + Bt

almost surely.

If f is Lipschitz continuous, then solutions of the equation

X (t) = x0 +

∫ t

0
f (X (s)) ds + Bt

can be easily constructed by applying the Banach fixed point iteration
pathwise, i.e. ω by ω.
Note that we can prescribe the stochastic basis and the Brownian
motion (we say the solution exists strongly).
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The case of measureable f

If f is merely continuous (or measurable), one cannot solve the
equation pathwise, as this does not necessarily yields adapted
(not even necessarily measurable) processes.

In general: One cannot construct solutions on a given Probability
space/with respect to a given Brownian motion. (One says
solutions exist only weakly).
Classical example by Tanaka (with multiplicative noise):

dX (t) = sgn(X (t))dBt .

I Solution X has to be a Brownian motion, but it has to be different
from B.

I Let X be a Brownian motion. One constructs a Brownian motion B
such that X solves with respect to this Brownian motion.

I Contradicts notion of causality.
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Notions of Uniqueness

As solutions may be defined on different probability spaces, one needs
different notions of uniqueness.

Uniqueness in law (or weak uniqueness):
If (X1,B1) and (X2,B2) are solutions, then X1(t) has the same
distribution as X2(t).

Pathwise uniqueness (or strong uniquenss):
If (X1,B) and (X2,B) are solutions (on the same space and wrt
the same BM), then X1 = X2 almost surely.

Theorem (Yamada-Watanabe)
Weak existence and strong uniqueness imply strong existence and
weak uniqueness.
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Reformulation of the main result
Theorem (Zvonkin)
Strong uniqueness holds for the stochastic differential equation

dX (t) = f (X (t))dt + dBt

for bounded, measurable f .

Comments:
This is only a special case of Zvonkin’s result.
(weak) existence of solutions can be proved in a standard way.
We thus have strong existence by the YW result.
There is a related result due to Davie:
There exists a set Γ ⊂ C([0,1]) of full Wiener measure such that
for ω ∈ Γ, there exists only one solution of

X (t) = x0 +

∫ t

0
f (X (s)) ds + ω(t)
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3. Partial Differential Equations
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The heat equation

Note: x + Bt ∼ N (x , t). Given u0, put

u(t , x) := Eu0(x + Bt ) =
1√
2πt

∫
R

u0(y)e−
(y−x)2

2t dy .

Then

∂

∂t
u(t , x) =

−1√
2π

1
2

t−
3
2

∫
R

u0(y)e−
(y−x)2

2t dy

+
1√
2πt

∫
R

(y − x)2

2t2 u0(y)e−
(y−x)2

2t dy

=
1√
2πt

∫
R

u0(y)
1
2

(
t−2(y − x)2 − t−1

)
e−

(y−x)2

2t dy .
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The heat equation cont’d

u(t , x) :=
1√
2πt

∫
R

u0(y)e−
(y−x)2

2t dy .

For the x-derivative, we find

∂

∂x
u(t , x) =

1√
2πt

∫
R

u0(y)
(y − x)

t
e−

(y−x)2

2t dy

so that

∂2

∂x2 u(t , x) =
1√
2πt

(∫
R

u0(y)
−1
t

e−
(y−x)2

2t dy

+

∫
R

(y − x)2

t2 u0(y)e−
(y−x)2

2t dy
)

=
1√
2πt

∫
R

u0(y)
(

t−2(y − x)2 − t−1
)

e−
(y−x)2

2t dy

= 2
∂

∂t
u(t , x).
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The heat equation cont’d

Thus, u solves the Heat equation

∂

∂t
u(t , x) =

1
2
∂2

∂x2 u(t , x) =
1
2

∆u(t , x).

Note: We can thus solve the partial differential equation (Cauchy
problem) {

ut (t , x) = 1
2∆u(t , x)

u(0, x) = u0(x)

by computing expected values!

Question: What happens if instead we use the solution of

X (t) = x +

∫ t

0
f (X (s)) ds + Bt ?
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The associated PDE

The stochastic differential equation

dX (t) = f (X (t))dt + dBt

is associated with the differential operator

A ϕ(x) = f (x)
d
dx
ϕ(x) +

1
2

d2

dx2ϕ(x).

Connection:
If one can solve the Cauchy Problem, then one has uniqueness in
law for the SDE.
Here: We use more information about the Cauchy problem (higher
regularity) to prove pathwise uniqueness for the SDE.
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Solving the Cauchy problem

Result: For bounded and measurable f and continuous u0 not
growning to fast, one can ‘solve’ the Cauchy problem{

∂
∂t u(t , x) = f (x)ux (t , x) + 1

2uxx (t , x)

u(0, x) = u0(x)

‘Solving’ has to be understood in a weak sense.
The solution has a certain Sobolev regularity.
By Sobolev embedding, ux (but not necessarily uxx ) is continuous.
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4. Stochastic calculus in a nutshell
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Itô’s Integral
Let Bt be a Brownian motion with respect to the filtration F. An
elementary step process is a process of the form

Φ(t , ω) :=
n∑

k=1

ηk (ω)1[tk−1,tk )(t)

where 0 ≤ t0 < t1 < · · · tk ≤ T and ηk is Ftk−1-measurable.

We put∫ T

0
Φ(t) dBt :=

n∑
k=1

ηk (Btk − Btk−1).

One can prove the Itô isometry

E
∣∣∣ ∫ T

0
Φ(t) dBt

∣∣∣2 = E
∫ T

0
|Φ(t)|2 dt .

Thus, we can extend the integral to the closure of elementary step
processes in L2(Ω× (0,T )).
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Thus, we can extend the integral to the closure of elementary step
processes in L2(Ω× (0,T )).
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Itô’s Formula
Let X satisfy the SDE

dX (t) = f (X (t))dt + dBt

and let u ∈ C1,2. Then we can write an SDE for Y (t) = u(t ,X (t)),
namely

du(t ,X (t)) =
[
ut (t ,X (t)) + f (X (t))ux (t ,X (t)) +

1
2

uxx (t ,X (t))
]
dt

+ ux (X (t))dBt

which has to be understood in integral form, i.e.

u(t ,X (t)) = u(0,X (0)) +

∫ t

0

[
ut (s,X (s)) + f (X (s))ux (s,X (s))

+
1
2

uxx (s,X (s))
]

ds +

∫ t

0
ux (s,X (s)) dBs
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Some remarks on Itô’s formula

Case with no stochastic term:
If X ′(t) = f (X (t)), then

d
dt

u(t ,X (t)) = ut (t ,X (t)) + ux (t ,X (t))X ′(t)

= ut (t ,X (t)) + ux (t ,X (t))f (X (t))

and Itô’s formula reduces to the fundamental theorem of calculus.

Naive approach:

du(t ,X (t)) = ut (t ,X (t))dt + ux (t ,X (t))dX (t)
= ut (t ,X (t)dt + ux (t ,X (t))f (X (t))dt + ux (t ,X (t))dBt .

Difference to Itô’s formula: 1
2uxx (s,X (s))dt Itô correction (due to use of

Itô integral).
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5. Showdown
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Proof of the main result
Theorem
Let f be a bounded, measurable function. Then pathwise uniqueness
holds for the solutions of the equation

dX (t) = f (X (t))dt + dBt

Proof:
Let X1,X2 be two solutions on the same probability space and with
respect to the same Brownian motion.

Let u be the solution of {
∂
∂t u = −A u
u(T ) = id

.

By Itô’s formula:

u(t ,Xj(t)) =
[
ut (t ,Xj(t)) + A u(t ,X (t))

]
dt + ux (t ,Xj(t))dBt

= ux (t ,Xj(t))dBt .
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Proof cont’d

Thus

u(t ,X1(t))− u(t ,X2(t)) =

∫ t

0
ux (s,X1(s))− ux (s,X2(s)) dBs.

By the Itô isometry

E
[
u(t ,X1(t))− u(t ,X2(t))

]2
= E

∫ t

0

[
ux (s,X1(s))− ux (s,X2(s))

]2 ds.

Note that

ux (s,X1(s))− ux (s,X2(s))

=

∫ 1

0
uxx (s, σX1(s) + (1− σ)X2(s) dσ · (X1(s)− X2(s)).

By regularity of the solution,
∫ 1

0 uxx is bounded.
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Proof cont’d

Thus,

E
[
u(t ,X1(t))− u(t ,X2(t))

]2 ≤ C
∫ t

0
E(X1(s)− X2(s))2 ds.

Studying the regularity of u, it follows that |u(t , x)− u(t , y)| ≥ α|x − y |
for some α > 0. Consequently,

E
[
X1(t)− X2(t))

]2 ≤ α−2E(u(t ,X1(t))− u(t ,X2(t))2

≤ α−2C
∫ t

0
E(X1(s)− X2(s))2 ds.

By Gronwall’s Lemma E(X1(t)− X2(t))2 ≡ 0. Thus X1(t) = X2(t)
almost surely for every t .
By continuity of the paths, X1 ≡ X2 almost surely. QED.
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