Uniqueness Through Noise
 - Encounters between Analysis and Probability

Markus Kunze

Aims of this Lecture

- See similarities and differences between ordinary and stochastic differential equations.
- Glimpse at the connection between stochastic processses and partial differential equations.
- See this connection 'in action' in a specific situation.

1. Introduction

Solving ODE

$$
\left\{\begin{array}{l}
X^{\prime}(t)=f(X(t)) \\
u(0)=x_{0}
\end{array}\right.
$$

Search fixed points of

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s
$$

Solving ODE

$$
\left\{\begin{array}{l}
X^{\prime}(t)=f(X(t)) \\
u(0)=x_{0}
\end{array}\right.
$$

Search fixed points of

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s
$$

Two cases:

- f Lipschitz \rightsquigarrow use Banach's fixed point theorem.
- Existence and uniqueness of solutions.

Solving ODE

$$
\left\{\begin{array}{l}
X^{\prime}(t)=f(X(t)) \\
u(0)=x_{0}
\end{array}\right.
$$

Search fixed points of

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s
$$

Two cases:

- f Lipschitz \rightsquigarrow use Banach's fixed point theorem.
- Existence and uniqueness of solutions.
- f merely continuous (or even only measurable) \rightsquigarrow use Compactness (Peano's Theorem)
- Existence but not necessarily uniqueness of solutions.

Example

Use $f(x)=2 \sqrt{x}$. Then for $x_{0}=0$ both $X_{1} \equiv 0$ and $X_{2}(t):=t^{2}$ solve

$$
\begin{cases}X^{\prime}(t) & =f(X(t)) \\ X(0) & =0\end{cases}
$$

Example

Use $f(x)=2 \sqrt{x}$. Then for $x_{0}=0$ both $X_{1} \equiv 0$ and $X_{2}(t):=t^{2}$ solve

$$
\begin{cases}X^{\prime}(t) & =f(X(t)) \\ X(0) & =0\end{cases}
$$

The situation is worse if f is merely measurable, e.g. $f(x)=\mathbb{1}_{\mathbb{R} \backslash \mathbb{Q}}(x)$. We want to solve

$$
X(t)=x_{0}+\int_{0}^{t} \mathbb{1}_{\mathbb{R} \backslash \mathbb{Q}}(X(s)) d s
$$

If $x_{0} \in \mathbb{Q}$, then $X_{1}(t) \equiv x_{0}$ is a solution and $X_{2}(t):=x_{0}+t$ is a solution.

Uniqueness through speed

Let f be bounded and continuous. Suppose, we want to solve

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s+\lambda t
$$

Uniqueness through speed

Let f be bounded and continuous. Suppose, we want to solve

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s+\lambda t
$$

Let $\Phi^{\prime}(s):=\frac{f(s)}{\lambda+f(s)}$. If X is a solution, put $Y(t):=X(t)-\lambda t$.

Uniqueness through speed

Let f be bounded and continuous. Suppose, we want to solve

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s+\lambda t
$$

Let $\Phi^{\prime}(s):=\frac{f(s)}{\lambda+f(s)}$. If X is a solution, put $Y(t):=X(t)-\lambda t$. Then

$$
\begin{aligned}
Y(t) & =x_{0}+\int_{0}^{t} f(X(s)) d s \\
& =x_{0}+\int_{0}^{t}(\lambda+f(Y(s)+\lambda s)) \Phi^{\prime}(Y(s)+\lambda s) d s \\
& =x_{0}+\Phi(Y(t)+\lambda t)+\Phi\left(x_{0}\right)
\end{aligned}
$$

Uniqueness through speed

Let f be bounded and continuous. Suppose, we want to solve

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s+\lambda t
$$

Let $\Phi^{\prime}(s):=\frac{f(s)}{\lambda+f(s)}$. If X is a solution, put $Y(t):=X(t)-\lambda t$. Then

$$
\begin{aligned}
Y(t) & =x_{0}+\int_{0}^{t} f(X(s)) d s \\
& =x_{0}+\int_{0}^{t}(\lambda+f(Y(s)+\lambda s)) \Phi^{\prime}(Y(s)+\lambda s) d s \\
& =x_{0}+\Phi(Y(t)+\lambda t)+\Phi\left(x_{0}\right)
\end{aligned}
$$

Thus, if X_{1}, X_{2} are solutions, we have

$$
\left|Y_{1}(t)-Y_{2}(t)\right|=\left|\Phi\left(Y_{1}(t)+\lambda t\right)-\Phi\left(Y_{2}(t)+\lambda t\right)\right| \leq L\left|Y_{1}(t)-Y_{2}(t)\right|
$$

\rightsquigarrow Uniqueness if λ is large.

How fast can you go?

Recall: Brownian motion $\left(B_{t}\right)_{t \geq 0}$ is a stochastic process with continuous paths such that
(1) $B_{0} \equiv 0$.
(2) $B_{t+s}-B_{t}$ is independent of $\mathscr{F}_{t}:=\sigma\left(B_{r}: r \leq t\right)$.
(c) $B_{t+s}-B_{t} \sim \mathscr{N}(0, s)$.

How fast can you go?

Recall: Brownian motion $\left(B_{t}\right)_{t \geq 0}$ is a stochastic process with continuous paths such that
(1) $B_{0} \equiv 0$.
(2) $B_{t+s}-B_{t}$ is independent of $\mathscr{F}_{t}:=\sigma\left(B_{r}: r \leq t\right)$.
(3) $B_{t+s}-B_{t} \sim \mathscr{N}(0, s)$.

Known: $t \mapsto B_{t}$ is almost surely not differentiable. $\rightsquigarrow \frac{d}{d t} B_{t}$ is almost surely infinite (\rightsquigarrow Can’t go faster than that!)

How fast can you go?

Recall: Brownian motion $\left(B_{t}\right)_{t \geq 0}$ is a stochastic process with continuous paths such that
(1) $B_{0} \equiv 0$.
(2) $B_{t+s}-B_{t}$ is independent of $\mathscr{F}_{t}:=\sigma\left(B_{r}: r \leq t\right)$.
(c) $B_{t+s}-B_{t} \sim \mathscr{N}(0, s)$.

Known: $t \mapsto B_{t}$ is almost surely not differentiable. $\rightsquigarrow \frac{d}{d t} B_{t}$ is almost surely infinite (\rightsquigarrow Can't go faster than that!)
Thus: consider

$$
\left\{\begin{array}{l}
X^{\prime}(t)=f(X(t))+\frac{d}{d t} B_{t} \\
X(0)=x_{0} .
\end{array}\right.
$$

Of course, this does not make sense. However, we can integrate:

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s+\int_{0}^{t} \frac{d}{d s} B_{s} d s=x_{0}+\int_{0}^{t} f(X(s)) d s+B_{t}
$$

Aim of this lecture

Show uniqueness of solutions for the stochastic integral equation

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s+B_{t}
$$

where f is a bounded, measurable function.
Equivalently, show uniqueness of solutions for the stochastic differential equation

$$
d X(t)=f(X(t)) d t+d B_{t}
$$

2. Stochastic Differential Equations

Solutions of SDE

Definition

A solution of the SDE is a pair (X, B), defined on a stochastic basis $(\Omega, \Sigma, \mathbb{F}, \mathbb{P})$, where B is an \mathbb{F}-Brownian motion and X is a continuous, \mathbb{F}-adapted process such that for $t \geq 0$

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s+B_{t}
$$

almost surely.

Solutions of SDE

Definition

A solution of the SDE is a pair (X, B), defined on a stochastic basis $(\Omega, \Sigma, \mathbb{F}, \mathbb{P})$, where B is an \mathbb{F}-Brownian motion and X is a continuous, \mathbb{F}-adapted process such that for $t \geq 0$

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s+B_{t}
$$

almost surely.
If f is Lipschitz continuous, then solutions of the equation

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s+B_{t}
$$

can be easily constructed by applying the Banach fixed point iteration pathwise, i.e. ω by ω.

Solutions of SDE

Definition

A solution of the SDE is a pair (X, B), defined on a stochastic basis $(\Omega, \Sigma, \mathbb{F}, \mathbb{P})$, where B is an \mathbb{F}-Brownian motion and X is a continuous, \mathbb{F}-adapted process such that for $t \geq 0$

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s+B_{t}
$$

almost surely.
If f is Lipschitz continuous, then solutions of the equation

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s+B_{t}
$$

can be easily constructed by applying the Banach fixed point iteration pathwise, i.e. ω by ω. Note that we can prescribe the stochastic basis and the Brownian motion (we say the solution exists strongly).

The case of measureable f

- If f is merely continuous (or measurable), one cannot solve the equation pathwise, as this does not necessarily yields adapted (not even necessarily measurable) processes.

The case of measureable f

- If f is merely continuous (or measurable), one cannot solve the equation pathwise, as this does not necessarily yields adapted (not even necessarily measurable) processes.
- In general: One cannot construct solutions on a given Probability space/with respect to a given Brownian motion. (One says solutions exist only weakly).

The case of measureable f

- If f is merely continuous (or measurable), one cannot solve the equation pathwise, as this does not necessarily yields adapted (not even necessarily measurable) processes.
- In general: One cannot construct solutions on a given Probability space/with respect to a given Brownian motion. (One says solutions exist only weakly).
- Classical example by Tanaka (with multiplicative noise):

$$
d X(t)=\operatorname{sgn}(X(t)) d B_{t}
$$

- Solution X has to be a Brownian motion, but it has to be different from B.
- Let X be a Brownian motion. One constructs a Brownian motion B such that X solves with respect to this Brownian motion.
- Contradicts notion of causality.

Notions of Uniqueness

As solutions may be defined on different probability spaces, one needs different notions of uniqueness.

- Uniqueness in law (or weak uniqueness): If $\left(X_{1}, B_{1}\right)$ and $\left(X_{2}, B_{2}\right)$ are solutions, then $X_{1}(t)$ has the same distribution as $X_{2}(t)$.

Notions of Uniqueness

As solutions may be defined on different probability spaces, one needs different notions of uniqueness.

- Uniqueness in law (or weak uniqueness): If $\left(X_{1}, B_{1}\right)$ and $\left(X_{2}, B_{2}\right)$ are solutions, then $X_{1}(t)$ has the same distribution as $X_{2}(t)$.
- Pathwise uniqueness (or strong uniquenss):

If $\left(X_{1}, B\right)$ and $\left(X_{2}, B\right)$ are solutions (on the same space and wrt the same BM), then $X_{1}=X_{2}$ almost surely.

Notions of Uniqueness

As solutions may be defined on different probability spaces, one needs different notions of uniqueness.

- Uniqueness in law (or weak uniqueness): If $\left(X_{1}, B_{1}\right)$ and $\left(X_{2}, B_{2}\right)$ are solutions, then $X_{1}(t)$ has the same distribution as $X_{2}(t)$.
- Pathwise uniqueness (or strong uniquenss):

If $\left(X_{1}, B\right)$ and $\left(X_{2}, B\right)$ are solutions (on the same space and wrt the same BM), then $X_{1}=X_{2}$ almost surely.

Theorem (Yamada-Watanabe)

Weak existence and strong uniqueness imply strong existence and weak uniqueness.

Reformulation of the main result

Theorem (Zvonkin)

Strong uniqueness holds for the stochastic differential equation

$$
d X(t)=f(X(t)) d t+d B_{t}
$$

for bounded, measurable f.

Reformulation of the main result

Theorem (Zvonkin)

Strong uniqueness holds for the stochastic differential equation

$$
d X(t)=f(X(t)) d t+d B_{t}
$$

for bounded, measurable f.
Comments:

- This is only a special case of Zvonkin's result.
- (weak) existence of solutions can be proved in a standard way. We thus have strong existence by the YW result.

Reformulation of the main result

Theorem (Zvonkin)

Strong uniqueness holds for the stochastic differential equation

$$
d X(t)=f(X(t)) d t+d B_{t}
$$

for bounded, measurable f.

Comments:

- This is only a special case of Zvonkin's result.
- (weak) existence of solutions can be proved in a standard way. We thus have strong existence by the YW result.
- There is a related result due to Davie: There exists a set $\Gamma \subset C([0,1])$ of full Wiener measure such that for $\omega \in \Gamma$, there exists only one solution of

$$
X(t)=x_{0}+\int_{0}^{t} f(X(s)) d s+\omega(t)
$$

3. Partial Differential Equations

The heat equation

Note: $x+B_{t} \sim \mathscr{N}(x, t)$. Given u_{0}, put

$$
u(t, x):=\mathbb{E} u_{0}\left(x+B_{t}\right)=\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} u_{0}(y) e^{-\frac{(y-x)^{2}}{2 t}} d y
$$

The heat equation

Note: $x+B_{t} \sim \mathscr{N}(x, t)$. Given u_{0}, put

$$
u(t, x):=\mathbb{E} u_{0}\left(x+B_{t}\right)=\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} u_{0}(y) e^{-\frac{(y-x)^{2}}{2 t}} d y
$$

Then

$$
\begin{aligned}
\frac{\partial}{\partial t} u(t, x)= & \frac{-1}{\sqrt{2 \pi}} \frac{1}{2} t^{-\frac{3}{2}} \int_{\mathbb{R}} u_{0}(y) e^{-\frac{(y-x)^{2}}{2 t}} d y \\
& +\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} \frac{(y-x)^{2}}{2 t^{2}} u_{0}(y) e^{-\frac{(y-x)^{2}}{2 t}} d y \\
= & \frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} u_{0}(y) \frac{1}{2}\left(t^{-2}(y-x)^{2}-t^{-1}\right) e^{-\frac{(y-x)^{2}}{2 t}} d y .
\end{aligned}
$$

The heat equation contd

$$
u(t, x):=\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} u_{0}(y) e^{-\frac{(y-x)^{2}}{2 t}} d y
$$

For the x-derivative, we find

$$
\frac{\partial}{\partial x} u(t, x)=\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} u_{0}(y) \frac{(y-x)}{t} e^{-\frac{(y-x)^{2}}{2 t}} d y
$$

The heat equation contd

$$
u(t, x):=\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} u_{0}(y) e^{-\frac{(y-x)^{2}}{2 t}} d y
$$

For the x-derivative, we find

$$
\frac{\partial}{\partial x} u(t, x)=\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} u_{0}(y) \frac{(y-x)}{t} e^{-\frac{(y-x)^{2}}{2 t}} d y
$$

so that

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x^{2}} u(t, x)= & \frac{1}{\sqrt{2 \pi t}}\left(\int_{\mathbb{R}} u_{0}(y) \frac{-1}{t} e^{-\frac{(y-x)^{2}}{2 t}} d y\right. \\
& \left.+\int_{\mathbb{R}} \frac{(y-x)^{2}}{t^{2}} u_{0}(y) e^{-\frac{(y-x)^{2}}{2 t}} d y\right) \\
= & \frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} u_{0}(y)\left(t^{-2}(y-x)^{2}-t^{-1}\right) e^{-\frac{(y-x)^{2}}{2 t}} d y \\
= & 2 \frac{\partial}{\partial t} u(t, x)
\end{aligned}
$$

The heat equation contd

Thus, u solves the Heat equation

$$
\frac{\partial}{\partial t} u(t, x)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} u(t, x)=\frac{1}{2} \Delta u(t, x)
$$

Note: We can thus solve the partial differential equation (Cauchy problem)

$$
\left\{\begin{array}{l}
u_{t}(t, x)=\frac{1}{2} \Delta u(t, x) \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

by computing expected values!

The heat equation contd

Thus, u solves the Heat equation

$$
\frac{\partial}{\partial t} u(t, x)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} u(t, x)=\frac{1}{2} \Delta u(t, x)
$$

Note: We can thus solve the partial differential equation (Cauchy problem)

$$
\left\{\begin{array}{l}
u_{t}(t, x)=\frac{1}{2} \Delta u(t, x) \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

by computing expected values!
Question: What happens if instead we use the solution of

$$
X(t)=x+\int_{0}^{t} f(X(s)) d s+B_{t} ?
$$

The associated PDE

The stochastic differential equation

$$
d X(t)=f(X(t)) d t+d B_{t}
$$

is associated with the differential operator

$$
\mathscr{A} \varphi(x)=f(x) \frac{d}{d x} \varphi(x)+\frac{1}{2} \frac{d^{2}}{d x^{2}} \varphi(x)
$$

The associated PDE

The stochastic differential equation

$$
d X(t)=f(X(t)) d t+d B_{t}
$$

is associated with the differential operator

$$
\mathscr{A} \varphi(x)=f(x) \frac{d}{d x} \varphi(x)+\frac{1}{2} \frac{d^{2}}{d x^{2}} \varphi(x)
$$

Connection:

- If one can solve the Cauchy Problem, then one has uniqueness in law for the SDE.
- Here: We use more information about the Cauchy problem (higher regularity) to prove pathwise uniqueness for the SDE.

Solving the Cauchy problem

Result: For bounded and measurable f and continuous u_{0} not growning to fast, one can 'solve' the Cauchy problem

$$
\begin{cases}\frac{\partial}{\partial t} u(t, x) & =f(x) u_{x}(t, x)+\frac{1}{2} u_{x x}(t, x) \\ u(0, x) & =u_{0}(x)\end{cases}
$$

Solving the Cauchy problem

Result: For bounded and measurable f and continuous u_{0} not growning to fast, one can 'solve' the Cauchy problem

$$
\begin{cases}\frac{\partial}{\partial t} u(t, x) & =f(x) u_{x}(t, x)+\frac{1}{2} u_{x x}(t, x) \\ u(0, x) & =u_{0}(x)\end{cases}
$$

- 'Solving' has to be understood in a weak sense.
- The solution has a certain Sobolev regularity.
- By Sobolev embedding, u_{x} (but not necessarily $u_{x x}$) is continuous.

4. Stochastic calculus in a nutshell

Itô's Integral

Let B_{t} be a Brownian motion with respect to the filtration \mathbb{F}. An elementary step process is a process of the form

$$
\Phi(t, \omega):=\sum_{k=1}^{n} \eta_{k}(\omega) \mathbb{1}_{\left[t_{k-1}, t_{k}\right)}(t)
$$

where $0 \leq t_{0}<t_{1}<\cdots t_{k} \leq T$ and η_{k} is $\mathscr{F}_{t_{k-1}}$-measurable.

Itô's Integral

Let B_{t} be a Brownian motion with respect to the filtration \mathbb{F}. An elementary step process is a process of the form

$$
\Phi(t, \omega):=\sum_{k=1}^{n} \eta_{k}(\omega) \mathbb{1}_{\left[t_{k-1}, t_{k}\right)}(t)
$$

where $0 \leq t_{0}<t_{1}<\cdots t_{k} \leq T$ and η_{k} is $\mathscr{F}_{t_{k-1}}$-measurable. We put

$$
\int_{0}^{T} \Phi(t) d B_{t}:=\sum_{k=1}^{n} \eta_{k}\left(B_{t_{k}}-B_{t_{k-1}}\right)
$$

Itô's Integral

Let B_{t} be a Brownian motion with respect to the filtration \mathbb{F}. An elementary step process is a process of the form

$$
\Phi(t, \omega):=\sum_{k=1}^{n} \eta_{k}(\omega) \mathbb{1}_{\left[t_{k-1}, t_{k}\right)}(t)
$$

where $0 \leq t_{0}<t_{1}<\cdots t_{k} \leq T$ and η_{k} is $\mathscr{F}_{t_{k-1}}$-measurable. We put

$$
\int_{0}^{T} \Phi(t) d B_{t}:=\sum_{k=1}^{n} \eta_{k}\left(B_{t_{k}}-B_{t_{k-1}}\right)
$$

One can prove the Itô isometry

$$
\mathbb{E}\left|\int_{0}^{T} \Phi(t) d B_{t}\right|^{2}=\mathbb{E} \int_{0}^{T}|\Phi(t)|^{2} d t
$$

Thus, we can extend the integral to the closure of elementary step processes in $L^{2}(\Omega \times(0, T))$.

Itô's Formula

Let X satisfy the SDE

$$
d X(t)=f(X(t)) d t+d B_{t}
$$

and let $u \in C^{1,2}$. Then we can write an SDE for $Y(t)=u(t, X(t))$, namely

$$
\begin{aligned}
d u(t, X(t))= & {\left[u_{t}(t, X(t))+f(X(t)) u_{x}(t, X(t))+\frac{1}{2} u_{x x}(t, X(t))\right] d t } \\
& +u_{x}(X(t)) d B_{t}
\end{aligned}
$$

which has to be understood in integral form, i.e.

$$
\begin{aligned}
u(t, X(t))= & u(0, X(0))+\int_{0}^{t}\left[u_{t}(s, X(s))+f(X(s)) u_{x}(s, X(s))\right. \\
& \left.+\frac{1}{2} u_{x x}(s, X(s))\right] d s+\int_{0}^{t} u_{x}(s, X(s)) d B_{s}
\end{aligned}
$$

Some remarks on Itô's formula

Case with no stochastic term:
If $X^{\prime}(t)=f(X(t))$, then

$$
\begin{aligned}
\frac{d}{d t} u(t, X(t)) & =u_{t}(t, X(t))+u_{x}(t, X(t)) X^{\prime}(t) \\
& =u_{t}(t, X(t))+u_{x}(t, X(t)) f(X(t))
\end{aligned}
$$

and Itô's formula reduces to the fundamental theorem of calculus.

Some remarks on Itô's formula

Case with no stochastic term:
If $X^{\prime}(t)=f(X(t))$, then

$$
\begin{aligned}
\frac{d}{d t} u(t, X(t)) & =u_{t}(t, X(t))+u_{x}(t, X(t)) X^{\prime}(t) \\
& =u_{t}(t, X(t))+u_{x}(t, X(t)) f(X(t))
\end{aligned}
$$

and Itô's formula reduces to the fundamental theorem of calculus. Naive approach:

$$
\begin{aligned}
d u(t, X(t)) & =u_{t}(t, X(t)) d t+u_{x}(t, X(t)) d X(t) \\
& =u_{t}\left(t, X(t) d t+u_{x}(t, X(t)) f(X(t)) d t+u_{x}(t, X(t)) d B_{t} .\right.
\end{aligned}
$$

Difference to Itô's formula: $\frac{1}{2} u_{x x}(s, X(s)) d t$ Itô correction (due to use of Itô integral).

Some remarks on Itô's formula

Case with no stochastic term:
If $X^{\prime}(t)=f(X(t))$, then

$$
\begin{aligned}
\frac{d}{d t} u(t, X(t)) & =u_{t}(t, X(t))+u_{x}(t, X(t)) X^{\prime}(t) \\
& =u_{t}(t, X(t))+u_{x}(t, X(t)) f(X(t))
\end{aligned}
$$

and Itô's formula reduces to the fundamental theorem of calculus. Naive approach:

$$
\begin{aligned}
d u(t, X(t)) & =u_{t}(t, X(t)) d t+u_{x}(t, X(t)) d X(t) \\
& =u_{t}\left(t, X(t) d t+u_{x}(t, X(t)) f(X(t)) d t+u_{x}(t, X(t)) d B_{t} .\right.
\end{aligned}
$$

Difference to Itô's formula: $\frac{1}{2} u_{x x}(s, X(s)) d t$ Itô correction (due to use of Itô integral).

5. Showdown

Proof of the main result

Theorem

Let f be a bounded, measurable function. Then pathwise uniqueness holds for the solutions of the equation

$$
d X(t)=f(X(t)) d t+d B_{t}
$$

Proof:

Let X_{1}, X_{2} be two solutions on the same probability space and with respect to the same Brownian motion.

Proof of the main result

Theorem

Let f be a bounded, measurable function. Then pathwise uniqueness holds for the solutions of the equation

$$
d X(t)=f(X(t)) d t+d B_{t}
$$

Proof:

Let X_{1}, X_{2} be two solutions on the same probability space and with respect to the same Brownian motion.
Let u be the solution of

$$
\left\{\begin{array}{ll}
\frac{\partial}{\partial t} u & =-\mathscr{A} u \\
u(T) & =i d
\end{array} .\right.
$$

By ltô's formula:

$$
\begin{aligned}
u\left(t, X_{j}(t)\right) & =\left[u_{t}\left(t, X_{j}(t)\right)+\mathscr{A} u(t, X(t))\right] d t+u_{x}\left(t, X_{j}(t)\right) d B_{t} \\
& =u_{x}\left(t, X_{j}(t)\right) d B_{t} .
\end{aligned}
$$

Proof contdd

Thus

$$
u\left(t, X_{1}(t)\right)-u\left(t, X_{2}(t)\right)=\int_{0}^{t} u_{x}\left(s, X_{1}(s)\right)-u_{x}\left(s, X_{2}(s)\right) d B_{s}
$$

By the Itô isometry

$$
\mathbb{E}\left[u\left(t, X_{1}(t)\right)-u\left(t, X_{2}(t)\right)\right]^{2}=\mathbb{E} \int_{0}^{t}\left[u_{x}\left(s, X_{1}(s)\right)-u_{x}\left(s, X_{2}(s)\right)\right]^{2} d s
$$

Proof contdd

Thus

$$
u\left(t, X_{1}(t)\right)-u\left(t, X_{2}(t)\right)=\int_{0}^{t} u_{x}\left(s, X_{1}(s)\right)-u_{x}\left(s, X_{2}(s)\right) d B_{s}
$$

By the Itô isometry

$$
\mathbb{E}\left[u\left(t, X_{1}(t)\right)-u\left(t, X_{2}(t)\right)\right]^{2}=\mathbb{E} \int_{0}^{t}\left[u_{x}\left(s, X_{1}(s)\right)-u_{x}\left(s, X_{2}(s)\right)\right]^{2} d s
$$

Note that

$$
\begin{aligned}
& u_{x}\left(s, X_{1}(s)\right)-u_{x}\left(s, X_{2}(s)\right) \\
= & \int_{0}^{1} u_{x x}\left(s, \sigma X_{1}(s)+(1-\sigma) X_{2}(s) d \sigma \cdot\left(X_{1}(s)-X_{2}(s)\right)\right.
\end{aligned}
$$

By regularity of the solution, $\int_{0}^{1} u_{x x}$ is bounded.

Proof cont'd

Thus,

$$
\mathbb{E}\left[u\left(t, X_{1}(t)\right)-u\left(t, X_{2}(t)\right)\right]^{2} \leq C \int_{0}^{t} \mathbb{E}\left(X_{1}(s)-X_{2}(s)\right)^{2} d s
$$

Proof contdd

Thus,

$$
\mathbb{E}\left[u\left(t, X_{1}(t)\right)-u\left(t, X_{2}(t)\right)\right]^{2} \leq C \int_{0}^{t} \mathbb{E}\left(X_{1}(s)-X_{2}(s)\right)^{2} d s
$$

Studying the regularity of u, it follows that $|u(t, x)-u(t, y)| \geq \alpha|x-y|$ for some $\alpha>0$. Consequently,

$$
\begin{aligned}
\left.\mathbb{E}\left[X_{1}(t)-X_{2}(t)\right)\right]^{2} & \leq \alpha^{-2} \mathbb{E}\left(u\left(t, X_{1}(t)\right)-u\left(t, X_{2}(t)\right)^{2}\right. \\
& \leq \alpha^{-2} C \int_{0}^{t} \mathbb{E}\left(X_{1}(s)-X_{2}(s)\right)^{2} d s
\end{aligned}
$$

Proof cont'd

Thus,

$$
\mathbb{E}\left[u\left(t, X_{1}(t)\right)-u\left(t, X_{2}(t)\right)\right]^{2} \leq C \int_{0}^{t} \mathbb{E}\left(X_{1}(s)-X_{2}(s)\right)^{2} d s
$$

Studying the regularity of u, it follows that $|u(t, x)-u(t, y)| \geq \alpha|x-y|$ for some $\alpha>0$. Consequently,

$$
\begin{aligned}
\left.\mathbb{E}\left[X_{1}(t)-X_{2}(t)\right)\right]^{2} & \leq \alpha^{-2} \mathbb{E}\left(u\left(t, X_{1}(t)\right)-u\left(t, X_{2}(t)\right)^{2}\right. \\
& \leq \alpha^{-2} C \int_{0}^{t} \mathbb{E}\left(X_{1}(s)-X_{2}(s)\right)^{2} d s
\end{aligned}
$$

By Gronwall's Lemma $\mathbb{E}\left(X_{1}(t)-X_{2}(t)\right)^{2} \equiv 0$. Thus $X_{1}(t)=X_{2}(t)$ almost surely for every t.
By continuity of the paths, $X_{1} \equiv X_{2}$ almost surely. QED.

References

- T. Yamada, S. Watanabe On the uniqueness of solutions of stochachstic differential equations, J. Math. Kyoto Univ. (1971).
- A. Zvonkin, A transformation of the phase space of a diffusion process that removes the drift, Mat. Sbornik (1974)
- A. Veretennikov, On strong solutions and explicit formulas for solutions of stochastic integral equations, Mat. Sbornik (1980)
- A. Davie, Uniquenes of solutions of stochastic differential equations, Int. Maths. Ret. Not. (2007)
- G. daPrato, F. Flandoli, E. Priola, M. Röckner, Strong uniqueness for stochastic evolution equations in Hilbert spaces with bounded measurable drift, Ann. Probab. (2011)

Thank you.

