Spectra of quantum graphs 00000

Spectral gap 00 00000 000 Conclusion

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Spectra of Quantum Graphs

Gabriela Malenová

Ulm University

September 4, 2013

Jointly with Pavel Kurasov (Stockholm University)

Quantum	graphs
•0	
000000	

Spectral gap

Conclusion

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Layout

Quantum graphs Motivation

Definitions

Spectra of quantum graphs Basic properties

Spectral gap Discrete graphs Quantum graphs Optimization problems

Quantum	graphs
00	
000000	

Spectral gap

Conclusion

Motivation

Quantum graph is a linear network-like structure. It was first employed in 30's to model the motion of free electrons in molecules (eg. naphthalene, graphene).

 They may arise when solving various problems: quantum waveguides, quantum chaos, photonic crystals, periodic structures.

Quantum graphs oo •ooooo	Spectra of quantum g 00000	raphs	Spectral gap oo oooooo ooo	Conclusion

Layout

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Quantum graphs

Motivation Definitions

Spectra of quantum graphs Basic properties

Spectral gap Discrete graphs Quantum graphs Optimization problems

Spectra of quantum graphs

Spectral gap

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Conclusion

Historical remarks

References:

- P. Exner and P. Šeba, Free quantum motion on a branching graph, Rep. Math. Phys., 28 (1989), 7-26.
- P. Kuchment, Quantum Graphs I: Some Basic Structures, Waves Random Media, 14, 107-128, 2004.
- V. Kostrykin, P. Schrader, *Kirchhoff's Rule for Quantum Wires*, J. Phys. A, 32, **595-630**, 1999.
- T. Kottos, U. Smilansky, Periodic Orbit Theory and Spectral Statistics for Quantum Graphs, Ann. Physics, 274, no. 1, 76-124, 1999.
- P. Kurasov, *Quantum Graphs: Spectral Theory and Inverse Problems*, in preparation.

Quantum	graphs
00	
000000	

Spectral gap

Conclusion

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Definition

Definition of a quantum graph consists of three parts:

- metric graph
- differential operator acting on the edges
- matching and boundary conditions at internal and external vertices respectively

Quantum graphs 00 000000	Spectra of quantum graphs 00000	Spectral gap 00 00000 000	Conclusion
	Metric grap	h	

Metric graph is a collection of vertices and edges characterized by its length.

Edges and vertices are defined as follows:

$$E_n = \begin{cases} [x_{2n-1}, x_{2n}], & n = 1, 2, \dots, N_c \\ [x_{2n-1}, \infty), & n = N_c + 1, \dots, N_c + N_i = N, \end{cases}$$
$$\mathbf{V} = \{x_{2n-1}, x_{2n}\}_{n=1}^{N_c} \cup \{x_{2n-1}\}_{n=N_c+1}^{N},$$

Quantum graphs

Spectral gap

Conclusion

Differential operator

Magnetic Schrödinger operator

$$L_{q,a} = \left(i\frac{d}{dx} + a(x)\right)^2 + q(x),$$

where $q(x), a(x) \in \mathbb{R}$.

Maximal operator L^{max} is defined on $H^2(\Gamma \setminus V)$ and minimal operator L^{min} on $C_0^{\infty}(\Gamma \setminus V)$.

Extended normal derivatives

$$\partial u(x_j) = \begin{cases} \lim_{x \to x_j} \left(\frac{d}{dx} u(x) - ia(x)u(x) \right), & x_j \text{ left endpoint,} \\ -\lim_{x \to x_j} \left(\frac{d}{dx} u(x) - ia(x)u(x) \right), & x_j \text{ right endpoint,} \end{cases}$$

Spectra of quantum graphs 00000 Spectral gap

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Conclusion

Matching and boundary conditions

The maximal Laplace operator (a, q = 0) is self-adjoint if the form

$$\langle L^{\max}u,v\rangle - \langle u,L^{\max}v,\rangle = \sum_{x_j\in\mathbf{V}} \left(\partial u(x_j)\overline{v(x_j)} - u(x_j)\overline{\partial v(x_j)}\right)$$

is equal to zero.

Spectra of quantum graphs 00000

Spectral gap

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Conclusion

Matching and boundary conditions

The maximal Laplace operator (a, q = 0) is self-adjoint if the form

$$\langle L^{\max}u,v\rangle - \langle u,L^{\max}v,
angle = \sum_{x_j\in \mathbf{V}} \left(\partial u(x_j)\overline{v(x_j)} - u(x_j)\overline{\partial v(x_j)}\right)$$

is equal to zero.

<

Standard matching conditions in each V_m

 $\begin{cases} u \text{ is continuous at } V_m \\ \sum_{x_j \in V_m} \partial u(x_j) = 0. \end{cases}$

- for two edges- the middle point may be removed
- define free (standard) Laplace operator

Quantum	graphs	
00		
000000		

Spectra of quantum graphs $\bullet 0000$

Spectral ga

Conclusion

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Layout

Quantum graphs Motivation Definitions

Spectra of quantum graphs Basic properties

Spectral gap Discrete graphs Quantum graphs Optimization problems

Quantum	graphs
00	
000000	

Spectral gap

Conclusion

Spectrum

In quantum mechanics, physical observables are described by eigenvalues of self-adjoint operators. For Hamiltonian, they correspond to energy levels.

Basic properties

- If Γ is compact and finite, then the spectrum is purely discrete with unique accumulation point $+\infty$.
- Given $k_n^2 \neq 0$ is an eigenvalue of a Laplace operator L on graph Γ consisting of basic lengths $(l_j = n_j \Delta)$. Then $(k_n + \frac{2\pi}{\Delta})^2$ also belongs to the spectrum.
- 0 is the first eigenvalue of the free Laplacian with multiplicity equal to number of connected components.

Spectra of quantum graphs 00000

Spectral gap

Conclusion

Explicitly solvable cases

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Spectra of quantum graphs 00000

Spectral gap

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Conclusion

Example: Equilateral star graph

Star graph's eigenvalues:

$$k_{p} = \left\{ egin{array}{c} rac{\pi}{2\ell} + rac{p\pi}{\ell}, & ext{multiplicity } n-1, \ rac{\pi p}{\ell}, & ext{multiplicity } 1, \end{array}
ight.$$

where *n* is the number of edges and ℓ is the edge length.

Spectra of quantum graphs $0000 \bullet$

Spectral gap 00 00000 000 Conclusion

Equilateral star graph

◆□ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Spectra of quantum graphs 00000

Spectral gap ●O ○○○○○ ○○○

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Conclusion

Layout

Quantum graphs

Motivation Definitions

Spectra of quantum graphs Basic properties

Spectral gap Discrete graphs

Quantum graphs Optimization problems

Spectra of quantum graphs 00000 Spectral gap O● OOOOO OOO

Sac

Spectral gap for discrete graphs

Definition

Spectral gap is the difference between smallest two eigenvalues of an operator.

Formerly investigated on discrete (combinatorial) graphs: Laplacian L for discrete graph is defined as L = V - A where

$$A_{ij} = \begin{cases} 1 & \text{if the vertices } i \text{ and } j \text{ are connected,} \\ 0 & \text{otherwise,} \end{cases}$$

$$V = \operatorname{diag}(v_1, v_2, \ldots, v_n),$$

 v_k being the *k*th vertex valency.

- for Laplacian sometimes called Fiedler value or algebraic connectivity on discrete graphs
- measure of synchonizability and robustness
- internet, neuron networks, signal transfer, social interaction

Quantum	graphs
00	
000000	

Spectral gap

Conclusion

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Layout

Quantum graphs

Motivation Definitions

Spectra of quantum graphs Basic properties

Spectral gap

Discrete graphs Quantum graphs Optimization problem

Quantum and discrete graphs- adding an edge

Let us consider a quantum graph with free Laplacian and a discrete graph. Provided we have the same set of vertices.

Discrete graph

Adding one edge always *increases* the spectral gap or keeps it unchanged.

Quantum graph

Adding one edge between nodes m_1 and m_2 might cause either increase or decrease in the spectral gap. Sufficient condition for λ_1 to drop is to be able to choose the eigenfunction u_1 corresponding to the spectral gap such that

$$u_1(m_1) = u_1(m_2).$$

Quantum graphs Spectra of quantum gra 00 00000 000000 00000	Spectra of quantum graphs 00000	Spectral gap	Conclusion	
Example				

$$\lambda_n(\Gamma) = \left(\frac{\pi}{a}\right)^2 n^2, \qquad \lambda_n(\Gamma') = \left(\frac{2\pi}{a+b}\right)^2 n^2.$$

Any relation between these values is possible:

$$\begin{split} b > a \ \Rightarrow \ \lambda_1(\Gamma) > \lambda_1(\Gamma'), \\ b < a \ \Rightarrow \ \lambda_1(\Gamma) < \lambda_1(\Gamma'). \end{split}$$

Always:

 $\lambda_1(\Gamma'') \leq \lambda_1(\Gamma').$

Quantum and discrete graphs- adding a pending edge

Let us consider a quantum graph with free Laplacian and a discrete graph. Adding a pending edge gives the same result for both types.

Discrete & quantum graph

Adding one pending edge always *decreases* the spectral gap or keeps is unchanged.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Spectra of quantum graphs 00000 Spectral gap

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Conclusion

Quantum graphs- adding an edge

Let Γ be a connected finite compact metric graph of length $\mathcal{L}(\Gamma)$ and let Γ' be a graph constructed from Γ by adding an edge of length ℓ between certain two vertices. If

 $\ell > \mathcal{L}(\Gamma),$

then the eigenvalues of the corresponding free Laplacians satisfy the estimate

 $\lambda_1(\Gamma) \geq \lambda_1(\Gamma').$

Quantum graphs 00 000000	Spectra of quantum graphs 00000	Spectral gap 00 00000 000	Conclusion

Layout

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quantum graphs

Motivation Definitions

Spectra of quantum graphs Basic properties

Spectral gap

Discrete graphs Quantum graphs Optimization problems

Spectra of quantum graphs 00000 Spectral gap

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Conclusion

Minimizing the spectral gap

Rayleigh estimate (P. Kurasov, S. Naboko 2012)

The string graph Δ has the smallest spectral gap among all quantum graphs with the same total length, i.e. for all graphs Γ :

$\lambda_1(\Gamma) \geq \lambda_1(\Delta).$

Spectra of quantum graphs 00000

Spectral gap

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Conclusion

Maximizing the spectral gap

Conjecture

The *complete graph* has the highest spectral gap among all quantum graphs with the same total length and fixed number of vertices.

Quantum graphs 00 000000	Spectra of quantum graphs 00000	Spectral gap 00 00000 0000 000	Conclusion
	Papers		

- P. Kurasov, S. Naboko, *Rayleigh Estimates for Differential Operators on Graphs*, in preparation.
- P. Kurasov, G. Malenova, S. Naboko, Spectral gap for quantum graphs and their edge connectivity, J. Phys. A: Math. Theor. 46 (2013) 275309.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Spectra of quantum graphs 00000 Spectral gap

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

- Spectra of quantum graphs have been investigated
- Main focus on spectral gap
- In the pipeline: Maximization problem? Third eigenvalue?

Spectra of quantum graphs 00000

Spectral gap 00 00000 000 Conclusion

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

On the audience

THANK YOU FOR YOUR ATTENTION