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Motivation

Quantum graph is a linear network-like structure. It was first
employed in 30’s to model the motion of free electrons in
molecules (eg. naphthalene, graphene).

• They may arise when solving various problems: quantum
waveguides, quantum chaos, photonic crystals, periodic
structures.
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Definition

Definition of a quantum graph consists of three parts:

• metric graph

• differential operator acting on the edges

• matching and boundary conditions at internal and external
vertices respectively
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Metric graph

Metric graph is a collection of vertices and edges characterized by
its length.

Edge Vertex

Edges and vertices are defined as follows:

En =

{
[x2n−1, x2n] , n = 1, 2, . . . ,Nc

[x2n−1,∞) , n = Nc + 1, . . . ,Nc + Ni = N,

V = {x2n−1, x2n}Nc
n=1 ∪ {x2n−1}Nn=Nc+1,
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Differential operator

Magnetic Schrödinger operator

Lq,a =

(
i

d

dx
+ a(x)

)2

+ q(x),

where q(x), a(x) ∈ R.

Maximal operator Lmax is defined on H2(Γ\V ) and minimal
operator Lmin on C∞0 (Γ\V ).

Extended normal derivatives

∂u(xj) =

{
limx→xj

(
d
dx u(x)− ia(x)u(x)

)
, xj left endpoint,

− limx→xj

(
d
dx u(x)− ia(x)u(x)

)
, xj right endpoint,
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Matching and boundary conditions

The maximal Laplace operator (a, q = 0) is self-adjoint if the form

〈Lmaxu, v〉 − 〈u, Lmaxv , 〉 =
∑
xj∈V

(
∂u(xj)v(xj)− u(xj)∂v(xj)

)
is equal to zero.

Standard matching conditions in each Vm{
u is continuous at Vm∑

xj∈Vm
∂u(xj) = 0.

• for two edges- the middle point may be removed

• define free (standard) Laplace operator
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Spectrum

In quantum mechanics, physical observables are described by
eigenvalues of self-adjoint operators. For Hamiltonian, they
correspond to energy levels.

Basic properties

• If Γ is compact and finite, then the spectrum is purely discrete
with unique accumulation point +∞.

• Given k2
n 6= 0 is an eigenvalue of a Laplace operator L on

graph Γ consisting of basic lengths (lj = nj∆). Then
(kn + 2π

∆ )2 also belongs to the spectrum.

• 0 is the first eigenvalue of the free Laplacian with multiplicity
equal to number of connected components.
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Explicitly solvable cases

x1

x2

x1

x2

x3 x4
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Example: Equilateral star graph

Star graph’s eigenvalues:

kp =

{
π
2` + pπ

` , multiplicity n − 1,
πp
` , multiplicity 1,

where n is the number of edges and ` is the edge length.
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Equilateral star graph
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Spectral gap for discrete graphs

Definition

Spectral gap is the difference between smallest two eigenvalues of
an operator.

Formerly investigated on discrete (combinatorial) graphs:
Laplacian L for discrete graph is defined as L = V − A where

Aij =

{
1 if the vertices i and j are connected,
0 otherwise,

V = diag(v1, v2, . . . , vn),

vk being the kth vertex valency.

• for Laplacian sometimes called Fiedler value or algebraic
connectivity on discrete graphs

• measure of synchonizability and robustness

• internet, neuron networks, signal transfer, social interaction
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Quantum and discrete graphs- adding an edge

Let us consider a quantum graph with free Laplacian and a
discrete graph. Provided we have the same set of vertices.

Discrete graph

Adding one edge always increases the spectral gap or keeps it
unchanged.

Quantum graph

Adding one edge between nodes m1 and m2 might cause either
increase or decrease in the spectral gap. Sufficient condition for λ1

to drop is to be able to choose the eigenfunction u1 corresponding
to the spectral gap such that

u1(m1) = u1(m2).
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Example

a

a

b

a

b

c

λn(Γ) =
(π

a

)2
n2, λn(Γ′) =

(
2π

a + b

)2

n2.

Any relation between these values is possible:

b > a ⇒ λ1(Γ) > λ1(Γ′),

b < a ⇒ λ1(Γ) < λ1(Γ′).

Always:
λ1(Γ′′) ≤ λ1(Γ′).
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Quantum and discrete graphs- adding a pending edge

Let us consider a quantum graph with free Laplacian and a discrete
graph. Adding a pending edge gives the same result for both types.

Discrete & quantum graph

Adding one pending edge always decreases the spectral gap or
keeps is unchanged.
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Quantum graphs- adding an edge

Let Γ be a connected finite compact metric graph of length L(Γ)
and let Γ′ be a graph constructed from Γ by adding an edge of
length ` between certain two vertices. If

` > L(Γ),

then the eigenvalues of the corresponding free Laplacians satisfy
the estimate

λ1(Γ) ≥ λ1(Γ′).
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Minimizing the spectral gap

Rayleigh estimate (P. Kurasov, S. Naboko 2012)

The string graph ∆ has the smallest spectral gap among all
quantum graphs with the same total length, i.e. for all graphs Γ:

λ1(Γ) ≥ λ1(∆).
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Maximizing the spectral gap

Conjecture

The complete graph has the highest spectral gap among all
quantum graphs with the same total length and fixed number of
vertices.
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Papers

P. Kurasov, S. Naboko, Rayleigh Estimates for Differential
Operators on Graphs, in preparation.

P. Kurasov, G. Malenova, S. Naboko, Spectral gap for quantum
graphs and their edge connectivity, J. Phys. A: Math. Theor.
46 (2013) 275309.
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Conclusion

Conclusion:

• Spectra of quantum graphs have been investigated

• Main focus on spectral gap

• In the pipeline: Maximization problem? Third eigenvalue?
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