On the Coefficients of Expansions in Bases of Smooth Functions

Anna Meleshkina

M. V. Lomonosov Moscow State University, Department of Mathematics and Mechanics

Ulm, August,2-6, 2013

Contents I

1. The Definition
2. Functions of a single variable
3. Functions of several variables

References

The Definition I

Definition. A function $f(\mathbf{x})$ given on the cube $[0,1]^{d}$ belongs to the class Lip α (α-Lipschitz) for $0<\alpha \leq 1$ if there exists a constant M such that, for all \mathbf{x} and \mathbf{y}

$$
|f(\mathbf{x})-f(\mathbf{y})| \leq M \rho^{\alpha}(\mathbf{x}, \mathbf{y})
$$

where $\rho(\mathbf{x}, \mathbf{y})$ is the Euclidean distance between the points.
The function $f(\mathbf{x})$ belongs to the class Lip α for $\alpha=p+\gamma$, where $p \in \mathbb{N}$ and $0<\gamma \leq 1$, if all of its derivatives of order $0 \leq|\mathbf{s}|<p$, $\mathbf{s}=\left(s_{1}, \ldots, s_{d}\right)$,

$$
D^{\mathbf{s}} f=\frac{d^{|\mathbf{s}|} f(\mathbf{x})}{d x_{1}^{s_{1}} \ldots d x_{d}^{s_{d}}}
$$

exist and are continuous; all the higher derivatives $D^{\mathbf{s}} f$, where $|\mathbf{s}|=p$, belong to the class Lip γ.

Function of a single variable I

The following theorem on functions of a single variable is well known.

Theorem 1 (Bernstein) If $f(x) \in \operatorname{Lip} \alpha, \alpha>\frac{1}{2}$, is a periodic function, then the series of its Fourier coefficients in the trigonometric system is absolutely convergent.

There exists a periodic function $f(x) \in \operatorname{Lip} \frac{1}{2}$ such that the series of the Fourier coefficients in its trigonometric system is not absolutely convergent.

Function of a single variable II

In 1964, Mityagin obtained a generalization of the second part of Bernstein's theorem to the case of an arbitrary complete orthonormal system. The following statement holds.

Theorem 2 (Mityagin) Suppose that $\psi=\left\{\psi_{n}(x)\right\}_{n=1}^{\infty}$ is an arbitrary complete orthonormal system on $[0,1]$. There exists a function $f(x) \in \operatorname{Lip} \frac{1}{2}$ for which the series of the Fourier coefficients in the system Ψ is not absolutely convergent.

Function of a single variable III

In 1977, Kashin proved the validity of a similar result for an arbitrary normalized basis in $L_{p}([0,1]), 1<p<\infty$.

Theorem 3 (Kashin) Suppose that $\psi=\left\{\psi_{n}(x)\right\}_{n=1}^{\infty}$ is a basis in $L_{p}([0,1]), 1<p<\infty$, and $\left\|\psi_{n}(x)\right\|_{p}=1, n=1,2, \ldots$ There exists a function $f(x) \in \operatorname{Lip} \alpha, \alpha=\min \left\{\frac{1}{2}, \frac{1}{q}\right\}, \frac{1}{q}+\frac{1}{p}=1$, such that the series of the modules of the coefficients of the expansion of the function $f(x)$ in the basis Ψ is divergent, i.e., $f(x)=\sum_{n=1}^{\infty} a_{n} \psi_{n}(x)$, then $\sum_{n=1}^{\infty}\left|a_{n}\right|=\infty$.

The accuracy of this theorem is confirmed by the examples of the trigonometric system (for $p \geq 2$) and of the normalized Haar system in $L_{p}([0,1])$ (for $\left.1<p \leq 2\right)$.

Functions of several variables I

Analogs of Bernstein's theorem are also known for functions of several variables. The following results are valid for the multiple trigonometric system.

Theorem 4 (Bochner) For any periodic function $f(\mathbf{x}) \in \operatorname{Lip}\left(\frac{d}{2}+\varepsilon\right), \varepsilon>0$, given on $[0,1]^{d}$, the series of the Fourier coefficients in the trigonometric system is absolutely convergent.

Theorem 5 (Wainger) There exists a periodic function $f(\mathbf{x}) \in \operatorname{Lip} \frac{d}{2}$ given on $[0,1]^{d}$ for which the series of the Fourier coefficients in the trigonometric system is not absolutely convergent.

Functions of several variables II

The analog of Theorem 5 for the case of an arbitrary complete orthonormal system of functions of several variables is given. Let us present a particular case of the result of Mityagin.

Theorem 6 (Mityagin) Suppose that $\psi=\left\{\psi_{n}(\mathbf{x})\right\}_{n=1}^{\infty}$ is an arbitrary complete orthonormal system on $[0,1]^{d}$. There exists a function $f(\mathbf{x}) \in \operatorname{Lip} \frac{d}{2}$ for which the series of the Fourier coefficients in the system Ψ is not absolutely convergent.

Functions of several variables III

The following theorem is a similar result for an arbitrary normalized basis in the space $L_{p}\left([0,1]^{d}\right), 1<p<\infty$.

Theorem 7 (A.M.) Suppose that $\psi=\left\{\psi_{n}(\mathbf{x})\right\}_{n=1}^{\infty}$ is an arbitrary normalized basis in the space $L_{p}\left([0,1]^{d}\right), 1<p<\infty$. Suppose that $\alpha=\min \left\{\frac{1}{2}, \frac{1}{q}\right\}, \frac{1}{q}+\frac{1}{p}=1$.

1. If $d \alpha \notin \mathbb{Z}$, then there exists a function $f(\mathbf{x}) \in \operatorname{Lip} d \alpha$ for which the series of modules of the coefficients of the expansion in the basis Ψ is divergent.
2. If $d \alpha \in \mathbb{Z}$, then there exists a function $f(\mathbf{x}) \in \operatorname{Lip}(d \alpha-\varepsilon)$ for which the series of modules of the coefficients of the expansion in the basis Ψ is divergent.

Functions of several variables IV

Some remarks about proof of Th. 7

We inductively define the following systems of functions:

$$
\varphi_{0, k}^{i}(x), i=1,2, \ldots, 2^{k}, k=1,2, \ldots
$$

- are the functions of the Faber-Schauder system;

$$
\varphi_{l, k}^{i}(x)=2^{k+2} \int_{x}^{x+\frac{1}{2^{k+1}}} \varphi_{l-1, k+1}^{2 i}(t) d t
$$

where $i=1,2, \ldots, 2^{k}, k=1,2, \ldots, I=1,2, \ldots, m$.

Functions of several variables V

For the systems of the functions $\left\{\varphi_{l, k}^{i}(x)\right\}, i=1, \ldots, 2^{k}$, $k=1,2, \ldots$ the following statement is valid for any $I=0,1, \ldots$ (this result was obtained by Chiselskii for the Faber-Schauder system).

Lemma. If the coefficients of the series

$$
f(x)=\sum_{k=1}^{\infty} \sum_{i=1}^{2^{k}} A_{k, i} \varphi_{l, k}^{i}(x)
$$

satisfy the relation $\left|A_{k, i}\right| \leq C \frac{1}{2^{k \gamma}}, 0<\gamma<1$, then $f(x) \in \operatorname{Lip} \gamma$.

References I

（10）N．K．Bari．Trigonometric Series．／／Fizmatgiz，Moscow．－ 1961.
（1）B．S．Mityagin．／／SovietMath．Dokl．－V．157．－№5．－ 1964．－ 1083.
囯 B．S．Kashin／／Sibirsk．Mat．Zh．－V．18．－№1．－1977．－ 122.

图 S．Bochner／／Math．Rev．－V．8．－1977．－ 376.
S．Wainger Spesial trigonometric series in k－dimentions／／ Amer．Math．Soc，Providence－V．59．－ 1965.
（R）B．S．Kashin，A．A．Saakyan Orthogonal Series／／Izd． ATTs，Moscow－ 1999.

围 A．V．Meleshkina／／Math．Notes－V．89．－№6．－2011．－ 893－898．

Thank you for your attention!

