On an Inequality of Sidon Type for Trigonometric Polynomials

A. O. Radomskii
Moscow State University

Abstract

We establish a lower bound for the uniform norm of the trigonometric polynomial of special form via the sum of the L^{1}-norm of its summands. This result generalizes a theorem due to Kashin and Temlyakov, which, in turn, generalizes the classical Sidon inequality.

We set, as usual, by $\|f\|_{p}$ the norm in $L^{p}(0,2 \pi), 1 \leq p \leq$ ∞ :

$$
\begin{aligned}
\|f\|_{p} & =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{p} d x\right)^{\frac{1}{p}}, 1 \leq p<\infty \\
\|f\|_{\infty} & =\operatorname{ess} \sup _{[0,2 \pi]}|f(x)|
\end{aligned}
$$

By the classical Sidon theorem (see [6]; pp. 393-395) if the sequence of natural numbers $\left\{n_{k}\right\}_{k=1}^{\infty}$, is lacunary with lacunarity index λ (i.e., $n_{k+1} / n_{k} \geq \lambda>1$ for any k), then there exists a positive constant $c(\lambda)$ depending only on the lacunarity index such that, for any trigonometric polynomial of the form

$$
T(x)=\sum_{k=1}^{N} a_{k} \cos n_{k} x, \quad a_{k} \in \mathbb{R},
$$

the following inequality holds:

$$
\|T\|_{\infty} \geq c(\lambda) \sum_{k=1}^{N}\left|a_{k}\right|
$$

Kashin and Temlyakov obtained a more general result in the special case. Namely, they proved (see [1] and also [2])

Theorem A (B.S. Kashin, V.N. Temlyakov). For any trigonometric polynomial of the form

$$
f(x)=\sum_{k=l+1}^{2 l} p_{k}(x) \cos 4^{k} x
$$

where the p_{k} are real trigonometric polynomials of $\operatorname{deg}\left(p_{k}\right) \leq$ 2^{l}, where $k=l+1, \ldots, 2 l$ and $l=1,2, \ldots$, the following inequality holds

$$
\|f\|_{\infty} \geq c \sum_{k=l+1}^{2 l}\left\|p_{k}\right\|_{1}
$$

where $c>0$ is an absolute constant.
Kashin and Temlyakov also introduced $Q C$-norm (see [1] and [2]) and proved that for this norm the previous result is true in a more general case:
for a function $f \in L^{1}(0,2 \pi)$ with Fourier series $f \sim \sum_{s=0}^{\infty} \delta_{s}(f, x)$, where
$\delta_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x, \quad \delta_{s}=\sum_{2^{s-1} \leq|k|<2^{s}} \hat{f}(k) e^{i k x}, s=1,2, \ldots$,
$Q C$-norm of f is defined as

$$
\|f\|_{Q C} \equiv \int_{0}^{1}\left\|\sum_{s=0}^{\infty} r_{s}(\omega) \delta_{s}(f, \cdot)\right\|_{L^{\infty}} d \omega
$$

where $\left\{r_{k}(\omega)\right\}_{k=0}^{\infty}$ is the system of Rademacher.
Theorem B (B. S. Kashin, V. N. Temlyakov). For any real function $f \in L^{1}(0,2 \pi)$ the following inequality holds

$$
\|f\|_{Q C} \geq \frac{1}{16} \sum_{s=0}^{\infty}\left\|\delta_{s}(f)\right\|_{1}
$$

A similar result to the theorem A is proved by the author in the case of an arbitrary lacunarity index and under weaker constraints on the degrees of the polynomials p_{k} (see [3] and [5]).

Theorem 1. Suppose that a sequence of natural numbers $\left\{n_{k}\right\}_{k=1}^{\infty}$ satisfies the condition $n_{k+1} / n_{k} \geq \lambda>1, k=$ $1,2, \ldots$ There exist the constants $c=c(\lambda)>0$ and $\gamma=$ $\gamma(\lambda) \in(0,1)$ depending only on λ such that, for any trigonometric
polynomial of the form

$$
f(x)=\sum_{k=l}^{N} p_{k}(x) \cos n_{k} x
$$

where p_{k} are real trigonometric polynomials of $\operatorname{deg}\left(p_{k}\right) \leq$ $\left[\gamma n_{l}\right], k=l, \ldots, N, N \geq l, l=1,2, \ldots$, the following inequality holds

$$
\|f\|_{\infty} \geq c \sum_{k=l}^{N}\left\|p_{k}\right\|_{1}
$$

In connection with research of $Q C$-norm Grigor'ev proved the following result (see [4]).

Theorem (Grigor'ev). There exists the sequence of trigonometric polynomials $\left\{\sigma_{k}(x)\right\}_{k=1}^{\infty}$ such that
$\sigma_{k}(x)=\sum_{2^{k} \leq|j|<2^{k+1}} c_{j} e^{i j x},\left\|\sigma_{k}\right\|_{1} \geq \frac{\pi}{4},\left\|\sigma_{k}\right\|_{\infty} \leq 6, k=1,2, \ldots$,
and

$$
\left\|\sum_{k=1}^{n} \sigma_{k}\right\|_{\infty} \leq A \sqrt{n}, n=1,2, \ldots
$$

where $A>0$ is an absolute constant.
Using some ideas of Grigor'ev's work we have proved (see [5]) the following result which shows that in theorem 1 (in the case $\left.n_{k}=2^{k}\right)$ the condition $\operatorname{deg}\left(p_{k}\right) \leq\left[\gamma 2^{l}\right]$ can't be substituted for $\operatorname{deg}\left(p_{k}\right) \leq\left[2^{k-k^{\varepsilon}}\right]$ neither any $\varepsilon \in(0,1)$.

Theorem 2. Suppose that $\varepsilon, \widetilde{\varepsilon}$ are real numbers such that $\frac{1}{2}<\varepsilon<\widetilde{\varepsilon}<1$. For any $W \in \mathbb{N}$ there exist the real trigonometric polynomials $p_{k}(x), k=1, \ldots, W$, such that $\operatorname{deg} p_{k} \leq\left[2^{k-k^{\varepsilon}}\right],\left\|p_{k}\right\|_{1} \geq \frac{1}{3},\left\|p_{k}\right\|_{\infty} \leq 70, k=1, \ldots, W$, and

$$
\max _{1 \leq n \leq W}\left\|\sum_{k=1}^{n} p_{k}(x) \cos 2^{k} x\right\|_{\infty} \leq C W^{\widetilde{\varepsilon}}
$$

where $C=C(\varepsilon, \widetilde{\varepsilon})>0$ is a constant depending only on ε and $\widetilde{\varepsilon}$.

REFERENCES

[1] B. S. Kashin, V. N. Temlyakov, On a norm and approximation characteristics of classes of functions of several variables, in Metric Theory of Functions and Related Problems in Analysis, Collection of articles dedicated to P. L. Ul'yanov on his seventieth birthday (AFTs, Moscow, 1999), pp. 69-99 [in Russian].
[2] B. S. Kashin, V. N. Temlyakov, "On a certain norm and related applications", Math. Notes, Vol. 64, No. 4 (1998), pp. 551-554.
[3] A. O. Radomskii, "On an Inequality of Sidon Type for Trigonometric Polynomials", Math. Notes, 2011, Vol. 89, No. 4, pp. 555-561.
[4] P. G. Grigor'ev, "On a sequence of trigonometric polynomials", Math. Notes, 1997, Vol. 61, No. 6, pp. 780-783.
[5] A. O. Radomskii, "On the possibility of an extension of inequalities of Sidon type", Mat. Zametki, (in press).
[6] A. Zygmund Trigonometric Series. V. 1. M.: Mir, 1965 [in Russian].

