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1. Introduction

The problem of discrimination between distributions with similar
tails appears in many statistical applications of extreme value
theory.

Herewith it’s often convenient to model distributions of medium
values by standard distributions, that differs from the asymptotical
distribution of tails, but not always.



Fisher-Tippet-Gnedenko theorem (Fisher, Tippet(1928) and
Gnedenko(1943)) lies in the foundation of extreme value theory.

Let X1, . . . ,Xn be independent and identically distributed (i.i.d.)
random variables with the distribution function F (x). Denote
Mn = max(X1, . . . ,Xn). If there exists a sequence of constants
an > 0 and bn (n = 1, 2, . . . ), such that Mn−bn

an
has a

nondegenerate limit distribution as n→∞, i.e.

lim
n→∞

F n(anx + bn) = G (x), (1)

then there exists constants a and b, such that G (x) = Gγ(ax + b),
where the distribution function Gγ belongs to one of three classes
of distributions:



1)Fréchet class of distributions (γ > 0) :

Gγ(x) =

{
0, x ≤ 0,

exp(−x−1/γ), x > 0,
.

2)Gumbel distribution (γ = 0) :

G0(x) = exp(−e−x), x ∈ R.

3)reverse-Weibull class of distributions (γ < 0) :

Gγ(x) =

{
exp(−(−x)1/γ), x < 0,

1, x ≥ 0,
.

The class of distributions F satisfying (1) is called the maximum
domain of attraction of G .



The methods of the ratio of likelihoods and the ratio of maximal
likelihoods (RML-test) are well-known and often used for discriminating
between close types of distributions. These methods were used for
discrimination between distributions belonging to the Gumbel maximum
domain of attraction in the following works:

Gupta, Kundu and Manglick (2001) (between Weibull and generalized
exponential distributions)

Gupta and Kundu (2003) (between Weibull and generalized exponential
distributions)

Kundu and Raqab (2007) (between the generalized Rayleigh and
log-normal distributions)

Dey and Kundu (2012) (between log-normal and Weibull distributions)
etc.



Seem, that contiguity theory of probability measures (see Roussas’s
monograph) is important instrument for discriminating between families
of distributions with close tails and estimating the power of different
criteria of discriminating. The key result of this theory is following:

Let X1, . . . ,Xn be i.i.d. random variables with density f (x , γ0) belonging
to family of densities F = {f (x , γ), γ ∈ Θ}. Let L(x1, . . . , xn; γ) be the
likelihood function. If family of densities F satisfies some regularity
conditions (see Le Cam (1970)), then

ln
L
(
X1, . . . ,Xn; γ0 + h√

n

)
L(X1, . . . ,Xn; γ0)

d−→ N

(
−h2

2
, h2
)
, n→ +∞,

where
d−→ means convergence in distribution, N(0, 1) is standard normal

random variable and h is the arbitrary constant.



The method of the ratio of likelihoods may be also used for
discriminating between close types of distributions by the first order
statistics. Consider the ratio of likelihoods

Rn(u) =
L(X(n), . . . ,X(n−kn+1); γ + t(kn, u))

L(X(n), . . . ,X(n−kn+1); γ)

as n→∞, kn →∞, n
kn
→∞ (X(1) ≤ . . . ≤ X(n) are the n-th order

statistics) for family of densities:

f (x , γ) = C (x , γ) exp(−V (x , γ)),

where C (x , γ) = C1(γ) + C2(γ)x−β + o(x−β), β > 0, as x →∞, the

function S(x , γ) = V (x , γ)− lnC (x , γ) is monotone and four times

continuous differentiable as x > x0(γ) > 0.



2. Regularity conditions and examples

Discuss the regularity conditions, that is imposed on the function S(x , γ).
The first variant of conditions is following:

1. There exists δ = δ(γ) > 0, such that lim
x→+∞

S(x,γ)

x1+δ
= +∞ for all γ.

2. All of the partial derivatives of S(x , γ) up to order 4 either aren’t equal to
0 or are equal to 0 identically as x > x0(γ) for all γ. Furthermore, all of
the partial derivatives of S(x , γ) up to order 3 have a finite or infinite
limit as x → +∞.

3. There exists a finite limit of the expressions like ln |F (x,γ)|
ln S(x,γ)

as x → +∞ for

all γ, where F (x , γ) is any partial derivative of S(x , γ) up to order 3.

Furthermore, lim
x→+∞

ln

∣∣∣∣ ∂k S(x,γ)∂γk

∣∣∣∣
ln S(x,γ)

= 1 for k = 1, 2, 3, if these partial

derivatives aren’t equal to 0 identically.

4. There exists a limit of expressions like
∂ ln |F (x,γ)|

∂x
∂ ln S(x,γ)

∂x

as x → +∞ for all γ,

where F (x , γ) is any partial derivative of S(x , γ) up to order 3, if this
partial derivative isn’t equal to 0 identically.



Despite of complicated regularity conditions, the class of distributions
satisfying the first variant of conditions is the quite extensive. Let’s give
some examples of families of densities satisfying these conditions.

1. Weibull-type family of densities:

fW (x , γ) = C (γ)xa(γ) exp(−xb(γ)), x ≥ 0,

where functions C (γ), a(γ) and b(γ) > 1 are four times continuous
differentiable.

2. Family of normal densities:

fN(x , γ) =
1√
2πγ

e−
x2

2γ , γ > 0.

3. Gumbel-type family of densities

fG (x , γ) = γeγxe−e
γx

, x ≥ 0, γ > 0.



The second variant of conditions is following:

1. There exists δ = δ(γ) > 0, such that lim
x→+∞

S(x,γ)

(ln x)1+δ
= +∞ for all γ.

2. There exists κ = κ(γ), 0 ≤ κ < 1, such that lim
x→+∞

ln
∂S(x,γ)
∂x

(S(x,γ))1−κ = 0 for all
γ.

3. All of the partial derivatives of S(x , γ) up to order 4 either aren’t equal to
0 or are equal to 0 identically as x > x0(γ) for all γ. Furthermore, all of
the partial derivatives of S(x , γ) up to order 3 have a finite or infinite
limit as x → +∞.

4. There exists a finite limit of the expressions like ln |F (x,γ)|
ln
∂S(x,γ)
∂x

as x → +∞ and

lim
x→+∞

ln |F (x,γ)|
S(x,γ)

= 0 for all γ, where F (x , γ) is any partial derivative of

S(x , γ) up to order 3. Furthermore, lim
x→+∞

ln

∣∣∣∣ ∂k S(x,γ)∂γk

∣∣∣∣
ln S(x,γ)

= 1 for k = 1, 2, 3,

if these partial derivatives aren’t equal to 0 identically.

5. There exists a limit of expressions like

∂ ln |F (x,γ)|
∂x

∂ ln S(x,γ)
∂x

,
∂ ln |F (x,γ)|

∂x
∂S(x,γ)
∂x

and

∂ ln

∣∣∣∣ ∂k S(x,γ)∂γk

∣∣∣∣
∂x

∂ ln S(x,γ)
∂x

as x → +∞ for all γ, where F (x , γ) is any partial derivative of S(x , γ) up
to order 3, if this partial derivative isn’t equal to 0 identically.



Let’s give some examples of families of densities satisfying the second
variant of regularity conditions.

1. log-Weibull-type family of densities:

fLW (x , γ) = C (γ)xa(γ) exp(−(ln x)b(γ)), x ≥ 0,

where functions C (γ), a(γ) and b(γ) > 1 are four times continuous
differentiable.

2. Weibull-type family of densities:

fW (x , γ) = C (γ)xa(γ) exp(−xb(γ)), x ≥ 0,

where functions C (γ), a(γ) and b(γ) 6= 1 are four times continuous
differentiable.

3. Family of log-normal densities:

fLN(x , γ) =
1√

2πγx
e−

(ln x)2

2γ , γ > 0, x ≥ 0.



3. Main results

We’ll write Sxγ instead of ∂2S
∂x∂γ and so on. Denote

an/kn = F
←
(
kn
n
, γ

)
,

where F (x , γ) is the distribution function with the density f (x , γ),
F (x , γ) = 1− F (x , γ) and F

←
(x , γ) = inf{t : F (x , γ) = t}.

Denote also

t(kn, u) =
u√
kn

Sx(an/kn , γ)

Sxγ(an/kn , γ)
.



Theorem 1. Suppose, that family of densities f (x , γ) satisfies to
the first type of regularity conditions, n→∞, kn →∞ and
n/kn →∞, and there exists ε, 0 < ε < 2, such that

lim
n→∞

kn
(ln n

kn
)ε

= 1.

Then

lnRn(u)
d−→ N

(
−u2

2
, u2
)
.



Denote

H(x) =
√
knt(kn)


∞∫
x

Sγ(y , γ) exp(−S(y , γ))dx

∞∫
x

exp(−S(y , γ))dx

− Sγ(x , γ)−

−Sxγ(x , γ)

Sx(x , γ)
− Sxxγ(x , γ)

(Sx(x , γ))2
+ 2

Sxx(x , γ)Sxγ(x , γ)

(Sx(x , γ))3

)
.

Note, that H(x) = −Sxx (x,γ)
S2
x (x,γ)

(1 + o(1)) as x → +∞.



Theorem 2. Suppose, that family of densities f (x , γ) satisfies to
the second type of regularity conditions, n→∞, kn →∞ and
n/kn →∞, and there exists ε, 0 < ε < 1, such that

lim
n→∞

kn
nε

= 1.

Then

lnRn(u)−
√

knH(an/kn)
d−→ N

(
−u2

2
, u2
)
.
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