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Basic Concepts

0-Ring

Definition (6-Ring)
A (non-empty) system of sets R is called a §-ring, if for arbitary sets A, B € R and any
sequence {Anp}nen C R it holds:

@ AuBeRr

@ AB=ANB°ecR

©Q NAacr

neN

@ R ={AcB(R?) : Abounded} =: By(RY)
@ R={AcBRY): vy(A) < =}, v4-Lebesgue-measure in RY

\
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ID Random Measures

Let D # 0 be a non-empty set and D a §-ring of subsets of D, such that 3 an
increasing sequence {Dn}peny C D with

(@
o
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W]

>
I

Definition (ID random measure )

A stochastic process A = {A(A), A € D} is called ID random measure , if for any
sequence of pairwise disjoint sets { Ep}nen it holds:

0 A(En), n=1,2,... are independent random variables (independently scattered)

O AU En)'= S AE), if U En € D (o-additivity)
n=1 n=1 n=1

© A(A) is an ID random variable for every set A € D
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For A € D the characteristc function o4y of A(A) is given by

ona(2) = exp {/ZCO(A) - S2aA+ [ -1- szT(x))vA(dx)}
R

where —oo < (g(A) < 00, 0 < ¢1(A) < oo and v, denotes the Lévy-measure. The
function 7 : R — R is defined by

T<x):{11 e

K Vx| > 1

The continuation of measure A : D — [0, c0) to o(D), defined by

AA) = [Gol(A) + 1 (A) + / min{1, x2}ua(dx), A€ D,
R

is referred to as control measure.
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Examples

@ Stable Random Measures:
B : RY — [—1, 1] measurable (skewness intensity), M = {M(A), A € By(R?)}
ID random measure with

B(x)dx
M(A) ~ So((vg(A 1/a,f/‘i,o_
(A) ~ Sa((va(A)'/*, 24220 0)
@ Poisson Random Measures:
© : B(RY) — [0, oo], ©(A) < oo, for every A € By(R),
¥ = {y(A), A€ By(R?)} ID random measure with

P(A) ~ Poi(©(A)).
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Integration w.r.t. ID Measures

Definition (ID stochastic integral)

Let A be an ID random measure and A € o (D).

n
0 For a simple function f : D — R, x — >~ x;14.(x) the ID integral is defined by
i=1

/ f(xX)A(dx) = zn: XiNAN A})
A i=1

neN, Aq,...,An € D pairwise disjoint, xy,...,Xn € R.
@ For a A-integrable function 7 : D — R one defines

/ f(X)A(dx) = plim / f()A(dx)
A A

with a sequence {f,}»cn of simple functions, such that f, "=3° f, A a.e.
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The Inverse Problem

Setting

Let X = {X(t); t € T}, T C R be a stationary random field with an integral
representation

X(t):/f(x—t)/\(dx), teT, )
R

where A = {A(A); A € By(RY)} is a homogeneous infinitely divisible (ID) random
measure and f is a deterministic A-integrable function. The above integral is
understood as an ID stochastic integral. Let

) 72 ; )
wna)(2) = exp {lzéo(A) - EG (A) + / (e'xz -1- /ZXT(X)> VA(dX)} ;
R
z € R, A€ By(RY) be the characteristic function of A(A) with 7 : R — R being defined

as
_ )1 x| <1
) = {1/x| i x> 1.
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Setting (continued)

The random measure A is assumed to be homogeneous, i.e. we have
Co(du) = apdu, ¢1(du) = bodu, va(du) = Vo(du) - v4(A),

for each bounded Borel set A, where ag € R, by > 0 and Vj is a Lévy measure on R.
vy denotes the d-dimensional Lebesgue measure. Furhtermore it is assumed, that

Vo(du) = vo(u)du,

i.e. V, is absolutely continuous w.r.t. the Lebesgue measure on RY. For abbreviation in
the following we denote by (ag, by, vp) the characteristic triplet of A(A).

Notice that X is an ID random field since A is ID.
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Inverse Estimation Problem

Consider observations X(t;),..., X(t;) of thefieldin (1), /e N, &,...,4 € T.

How to estimate the characteristic triplet (ag, bg, vo) of A given
the Lévy characteristics of X(0)?

X(t):/f(xft)/\(dx) A
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Estimation Approaches
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Plug-In Approach

Now assume
@ bounded Borel sets A1, ..., Ap With vg(Ax) = vg(A1), for all k

m
Q (x) = > fila, (x), x € RY a simple function with coefficients f € [—1,1]\{0}
k=1

for all k.

Under these assumptions one can easily show, that the characteristic triplet
(ay, by, Vi) of X(0) has the following representation:

i U X
a=a ) K +Vd(A1)Z7/Xi[—1,1]\[—\fk\,\fk\](X)VO(’T)dX 2
k=1 k=1 'K % k
m
by =bo Y (3)
=1
() = rea) 3" LX) @)
1 a(Dq 2.7, o5,

where V;(dx) = vq(x)dx.
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Plug-In Approach

Iterating these relations one gets

m fk+1 fk+1
VO(X):]/(A) fivy f1x)+2( 1)k Z f-1...f/. v1(f1”.f‘ X) (5)

ity nyig=2 "

by solving (4) recursively, provided that this series converges.

The series in (5) converges absolutely pointwise for all x € R\{0}, if

1| > max{|fa|, ..., |fm|} and vi(x) = O(|x|~7), (6)

log(m—1) : :
where a > 1+ 4 g T/ max (TGl Tl - The convergence is furthermore uniform on

every compact interval, which does not contain zero.
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Plug-In Approach

Now let ..., 7m and ¥ be estimators for the coefficients fi, . . ., f and the Lévy
density v4. Then the relation (5) leads to the following plug-in estimator ¥ for vq:

1 m 'fk+1 'fk+1
VO(X) = m f1 V1 f1 Jr Z( 1)k Z 'f ! ] ? ‘71 (/f ! 'f\ X> (7)
ik i

i yeensig=2 " T it g

with {n;} being a sequence that grows to infinity with the sample size / going to infinity.
By relations (2) and (3) one can easily obtain estimators 3y and BO for ag and by
substituting a;, by, v by their estimators a;, by, . It turned out that the estimator
(7) is sensitive to noise and outliers.

Example
o m=29, f; =0.5, fg:'-':fg20.0625,?;(:fk,forallk:1,...,9
x2 _ x2
e vi(x) = me_ 2:0.0625% 5 5\1/279 2052 x € R

n

X

Q wx) = e~ 7, xcR

Now set ¥ (x) = vy (x) +e(x), x € R, with £(x) ~ N(0, 02), for all x € R, being a
Gaussian Noise and choose n; = 3.
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Plug-In Approach

S
@ Original v
Eh
= Original vO
- vohat

(a) vo and the series (5). (b) vo and ¥, o = 0.000001.
Figure : Example
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Plug-In Approach

It turned out that the estimator (7) is sensitive to noise and outliers. For this reason we
consider the estimator ¥, defined by

Vo(x) = [Vo * ¥n] (x)

and

. R R n m )Ack+1 ?k+1
o(x) Rlon) () + 3 0(-0F D0 s [ ) <e' Ax>

k=1 i yeeig=2 'H T, fiy - fie

1
RZN)
where v, denotes a kernel function with bandwidth h > 0. Instead of pointwise
convergence of 7, we want to prove consistency results in Ly (R\[—¢, €]) and
Lo(R\[—¢,€]),e > 0.
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{ o]
Spectral Approach

Most approaches for non-parametric estimation of the Lévy triplet in the case of Lévy
processes are based on Fourier techniques. Instead of using plug-in estimators as
above, we can estimate the Fourier transform of xv; directly from the data

X(t), ..., X() Multiplying both sides of equation (5) with x and taking the Fourier
transform F one gets

U

o, foof
F [xv] (x) = (1A )< F vl (5 X)+Z ‘ D 1fk+1 F xv]( fk+1kx)>

If it is assumed that the series on the right-hand side converges and that the
observations X(t), ..., X(t) are independent, then one could use directly the
formulae in to estimate the Fourier transform of of xv;:

@ (x)
(X)1 0> 2y

Flovl(x) = (=)

where ¢, denotes the empirical characteristic function of X(t),..., X(#).
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oe
Spectral Approach

The resulting estimator v, for the density vy then is given by

_ B 1 1
Wu) = m}— {(7‘1}—[)(\/1](?1)()
SO S R SO )
DD G 1?k+1k}—[xv1]( PR x))}(U)
k=1 iyik=2 N 1

We would like to show the L;- or L consistency of vy and the rate of convergence to v
under the assumption of weakly dependent observations.
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[ ele}

Linearized Least-Squares-Approach

Now assume for simplicity that u? vy (u) is integrable on R and f(—x) = f(x), x € RY.
Moreover let all natural powers of f be integrable on RY. Then one can show that the
cumulant of X(t) looks like

. 72
09 ¢x(0(2) = iaoz [ fx)ax —~bo % [ Flx)ax = 2 [ czyyPun)ay,
R Rd R

where ‘o
ay) =y B /fk X, zyeR,

l\')

The above cumulant function can be approximated by a sequence of functions
v : R — Ras M — oo given by

M
2
on(z) = iaoz [ ok~ % [ Fodx -2 [z yyPudy
RA RY -M
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Linearized Least-Squares-Approach

Fix an orthonormal basis {1;};en in L2([—M, M]) with scalar product
(hy, ho), = fﬁ”M hy(x)h2(x)dx, hy, ho € Lo([—M, M]). Then it holds

2 o0
o(2) = iaoz [ 1(x)x— by [ (a2 121 (€(2), 1), (Y20 0y), -
R RY -

Introduce the parameter vector 8 = (8j)j=—1,0,1,2,... given by 8_1 = ag, Bo = bo,
B; = (¢(2,-), %)), , J € N as well as the vector-valued function

Fz= iz/f(x)dx,—zzj/fz(x)dx, —zz{<y2vo(-),1/;j>2}jeN , Z€eR.
Rrd Rrd

Then we can formally write
m(z) = (Fz,B)

as a linear function of 8 € kL with coefficients in F.
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ooe

Linearized Least-Squares-Approach

Let W, = [0, /]9 be an observation window, where n; — oo as | — co. Assume that a
sample X(t), ..., X(t) is given, where t1,...,t € W, for any / € N. Introduce the
empirical charactenstlc function of X(0) by

¢x0)(2) = (ra(W)™") [, e?X(Ddt, z € R. Due to the stationarity of X it then holds

that E@x(0)(2) = ¢x(0)(2) for any z € R.
The idea now is to use a least squares method to define

B = argmin <Suﬂg |(Fz,8) —log 21(2)[* + APen(ﬂ))
ze

where [f = {x € b : x = (x_1, X0, X1, X2, ..., X, 0,0,0,... )} forany k e N, A\ > Ois a
weight parameter and Pen(3) is a penalty function which governs e.g. the smoothness
of Lévy densities vy we would like to get at the end of the estimation procedure. As a
final estimator of the Lévy triplet (ag, by, Vo) we propose

B= lim lim AM.

k— 0o M— oo
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Outlook

Open Questions

Investigate
@ consistency and robustness
@ upper and lower bounds for the estimation error
@ asymptotic distribution

of the above estimators and compare their performance.
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