Inverse Problems in the Estimation of the Lévy-Triplet of Infinitely Divisible Random Fields

Stefan Roth

Institute of Stochastics Ulm University

6th of September, 2013

Contents

- **Basic Concepts**
- - Plug-In Approach

 - Linearized Least-Squares-Approach

δ -Ring

Definition (δ -Ring)

A (non-empty) system of sets \mathcal{R} is called a δ -ring, if for arbitary sets $A, B \in \mathcal{R}$ and any sequence $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{R}$ it holds:

- $\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{R}$

Example

- $\mathcal{R} = \{A \in \mathcal{B}(\mathbb{R}^d) : A \text{ bounded}\} =: \mathcal{B}_0(\mathbb{R}^d)$
- $\mathcal{R} = \{A \in \mathcal{B}(\mathbb{R}^d) : \nu_d(A) < \infty\}, \nu_d$ -Lebesgue-measure in \mathbb{R}^d

Outlook

ID Random Measures

Let $D \neq \emptyset$ be a non-empty set and \mathcal{D} a δ -ring of subsets of D, such that \exists an increasing sequence $\{D_n\}_{n\in\mathbb{N}}\subset\mathcal{D}$ with

$$\bigcup_{n=1}^{\infty} D_n = D$$

Definition (ID random measure)

A stochastic process $\Lambda = \{\Lambda(A), A \in \mathcal{D}\}\$ is called **ID** random measure, if for any sequence of pairwise disjoint sets $\{E_n\}_{n\in\mathbb{N}}$ it holds:

- $\Lambda(E_n)$, $n=1,2,\ldots$ are independent random variables (independently scattered)
- **3** $\Lambda(A)$ is an **ID** random variable for every set $A \in \mathcal{D}$

For $A \in \mathcal{D}$ the characteristc function $\varphi_{\Lambda(A)}$ of $\Lambda(A)$ is given by

$$\varphi_{\Lambda(A)}(z) = \exp\left\{iz\zeta_0(A) - \frac{1}{2}z^2\zeta_1(A) + \int\limits_{\mathbb{R}} (e^{izx} - 1 - izx\tau(x))v_A(dx)\right\}$$

Estimation Approaches

where $-\infty < \zeta_0(A) < \infty$, $0 \le \zeta_1(A) < \infty$ and v_A denotes the Lévy-measure. The function $\tau:\mathbb{R}\to\mathbb{R}$ is defined by

$$\tau(x) = \begin{cases} 1 & ; |x| \le 1 \\ \frac{1}{|x|} & ; |x| > 1 \end{cases}$$

The continuation of measure $\lambda: \mathcal{D} \to [0, \infty)$ to $\sigma(\mathcal{D})$, defined by

$$\lambda(A) = |\zeta_0|(A) + \zeta_1(A) + \int\limits_{\mathbb{R}} \min\{1, x^2\} \nu_A(dx), \ A \in \mathcal{D},$$

is referred to as control measure.

Examples

Stable Random Measures:

 $\beta: \mathbb{R}^d \to [-1, 1]$ measurable (skewness intensity), $M = \{M(A), A \in \mathcal{B}_0(\mathbb{R}^d)\}$ **ID** random measure with

$$M(A) \sim S_{\alpha}((\nu_{d}(A))^{1/\alpha}, \frac{\int_{A} \beta(x) dx}{\nu_{d}(A)}, 0).$$

Poisson Random Measures:

 $\Theta: \mathcal{B}(\mathbb{R}^d) \to [0, \infty], \ \Theta(A) < \infty, \ \text{for every } A \in \mathcal{B}_0(\mathbb{R}^d), \ \psi = \{\psi(A), \ A \in \mathcal{B}_0(\mathbb{R}^d)\} \ \text{ID} \ \text{random measure with}$

$$\psi(A) \sim Poi(\Theta(A)).$$

Integration w.r.t. **ID** Measures

Definition (**ID** stochastic integral)

Let Λ be an **ID** random measure and $A \in \sigma(\mathcal{D})$.

1 For a simple function $f: D \to \mathbb{R}, x \mapsto \sum_{i=1}^n x_i \mathbf{1}_{A_i}(x)$ the **ID** integral is defined by

$$\int_A f(x)\Lambda(dx) = \sum_{i=1}^n x_i\Lambda(A\cap A_i)$$

Estimation Approaches

 $n \in \mathbb{N}, A_1, \ldots, A_n \in \mathcal{D}$ pairwise disjoint, $x_1, \ldots, x_n \in \mathbb{R}$.

2 For a Λ-integrable function $f: D \to \mathbb{R}$ one defines

$$\int_{A} f(x) \Lambda(dx) = \lim_{n \to \infty} \int_{A} f_n(x) \Lambda(dx)$$

with a sequence $\{f_n\}_{n\in\mathbb{N}}$ of simple functions, such that $f_n \stackrel{n\to\infty}{\longrightarrow} f$, λ a.e.

- The Inverse Problem
- - Plug-In Approach

 - Linearized Least-Squares-Approach

Let $X = \{X(t); t \in T\}, T \subset \mathbb{R}^d$ be a stationary random field with an integral representation

Estimation Approaches

$$X(t) = \int_{\mathbb{R}^d} f(x - t) \Lambda(dx), \quad t \in T,$$
 (1)

where $\Lambda = \{\Lambda(A); A \in \mathcal{B}_0(\mathbb{R}^d)\}$ is a homogeneous infinitely divisible (**ID**) random measure and f is a deterministic Λ -integrable function. The above integral is understood as an ID stochastic integral. Let

$$\varphi_{\Lambda(A)}(z) = \exp\left\{iz\zeta_0(A) - \frac{z^2}{2}\zeta_1(A) + \int\limits_{\mathbb{R}} \left(e^{ixz} - 1 - izx\tau(x)\right)v_A(dx)\right\},\,$$

 $z \in \mathbb{R}, A \in \mathcal{B}_0(\mathbb{R}^d)$ be the characteristic function of $\Lambda(A)$ with $\tau : \mathbb{R} \to \mathbb{R}$ being defined as

$$\tau(x) = \begin{cases} 1 & , \text{ if } |x| \le 1 \\ 1/|x| & , \text{ if } |x| > 1. \end{cases}$$

Setting (continued)

The random measure Λ is assumed to be homogeneous, i.e. we have

$$\zeta_0(du) = a_0 du, \quad \zeta_1(du) = b_0 du, \quad v_A(du) = V_0(du) \cdot \nu_d(A),$$

Estimation Approaches

for each bounded Borel set A, where $a_0 \in \mathbb{R}$, $b_0 \ge 0$ and V_0 is a Lévy measure on \mathbb{R} . ν_d denotes the d-dimensional Lebesque measure. Furthermore it is assumed, that

$$V_0(du) = v_0(u)du$$

i.e. V_0 is absolutely continuous w.r.t. the Lebesgue measure on \mathbb{R}^d . For abbreviation in the following we denote by (a_0, b_0, v_0) the characteristic triplet of $\Lambda(A)$.

Notice that X is an **ID** random field since Λ is **ID**.

Consider observations $X(t_1), \ldots, X(t_l)$ of the field in (1), $l \in \mathbb{N}, t_1, \ldots, t_l \in T$.

How to estimate the characteristic triplet (a_0, b_0, v_0) of Λ given the Lévy characteristics of X(0)?

$$X(t) = \int f(x-t)\Lambda(dx) \quad \stackrel{?}{\longmapsto} \quad \Lambda$$

- **Estimation Approaches**
 - Plug-In Approach
 - Spectral Approach
 - Linearized Least-Squares-Approach

Now assume

- **1** bounded Borel sets $\Delta_1, \ldots, \Delta_m$ with $\nu_d(\Delta_k) = \nu_d(\Delta_1)$, for all k
- 2 $f(x) = \sum_{k=1}^{m} f_k \mathbf{1}_{\Delta_k}(x), x \in \mathbb{R}^d$ a simple function with coefficients $f_k \in [-1, 1] \setminus \{0\}$ for all k.

Estimation Approaches

•000000000

Under these assumptions one can easily show, that the characteristic triplet (a_1,b_1,V_1) of X(0) has the following representation:

$$a_1 = a_0 \sum_{k=1}^m f_k + \nu_d(\Delta_1) \sum_{k=1}^m \frac{1}{f_k} \int_{\mathbb{R}} x \mathbf{1}_{[-1,1] \setminus [-|f_k|,|f_k|]}(x) \nu_0(\frac{x}{f_k}) dx$$
 (2)

$$b_1 = b_0 \sum_{k=1}^{11} f_k^2 \tag{3}$$

$$v_1(x) = \nu_d(\Delta_1) \sum_{k=1}^m \frac{1}{f_k} v_0(\frac{x}{f_k})$$
 (4)

where $V_1(dx) = v_1(x)dx$.

Iterating these relations one gets

$$v_0(x) = \frac{1}{\nu_d(\Delta_1)} \left(f_1 v_1(f_1 x) + \sum_{k=1}^{\infty} (-1)^k \sum_{i_1, \dots, i_k=2}^m \frac{f_1^{k+1}}{f_{i_1} \dots f_{i_k}} v_1(\frac{f_1^{k+1}}{f_{i_1} \dots f_{i_k}} x) \right)$$
(5)

by solving (4) recursively, provided that this series converges.

Lemma

The series in (5) converges absolutely pointwise for all $x \in \mathbb{R} \setminus \{0\}$, if

$$|f_1| > \max\{|f_2|, \dots, |f_m|\} \text{ and } v_1(x) = \mathcal{O}(|x|^{-\alpha}),$$
 (6)

where $\alpha > 1 + \frac{\log(m-1)}{\log(|f_1|/\max\{|f_2|,...,|f_m|\})}$. The convergence is furthermore uniform on every compact interval, which does not contain zero.

Now let $\hat{f}_1, \dots, \hat{f}_m$ and \hat{v}_1 be estimators for the coefficients f_1, \dots, f_m and the Lévy density v_1 . Then the relation (5) leads to the following plug-in estimator \hat{v}_0 for v_0 :

$$\hat{v}_0(x) = \frac{1}{\nu_{\sigma}(\Delta)} \left[\hat{f}_1 \hat{v}_1(\hat{f}_1 x) + \sum_{k=1}^{n_l} (-1)^k \sum_{i_1, \dots, i_k = 2}^m \frac{\hat{f}_1^{k+1}}{\hat{i}_{i_1} \dots \hat{i}_{i_k}} \hat{v}_1 \left(\frac{\hat{f}_1^{k+1}}{\hat{f}_{i_1} \dots \hat{f}_{i_k}} x \right) \right]$$
(7)

Estimation Approaches

000000000

with $\{n_l\}$ being a sequence that grows to infinity with the sample size l going to infinity. By relations (2) and (3) one can easily obtain estimators \hat{a}_0 and \hat{b}_0 for a_0 and b_0 substituting a_1 , b_1 , v_0 by their estimators \hat{a}_1 , \hat{b}_1 , \hat{v}_0 . It turned out that the estimator (7) is sensitive to noise and outliers.

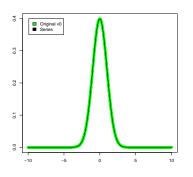
Example

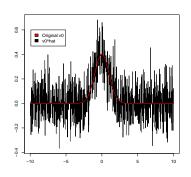
①
$$m = 9$$
, $f_1 = 0.5$, $f_2 = \cdots = f_9 = 0.0625$, $\hat{f}_k = f_k$, for all $k = 1, \dots, 9$

$$v_1(x) = \frac{8}{0.0625\sqrt{2\pi}}e^{-\frac{x^2}{2\cdot 0.0625^2}} + \frac{1}{0.5\sqrt{2\pi}}e^{-\frac{x^2}{2\cdot 0.5^2}}, \ x \in \mathbb{R}$$

3
$$v_0(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, x \in \mathbb{R}$$

Now set $\hat{v}_1(x) = v_1(x) + \varepsilon(x)$, $x \in \mathbb{R}$, with $\varepsilon(x) \sim N(0, \sigma^2)$, for all $x \in \mathbb{R}$, being a Gaussian Noise and choose $n_l = 3$.





(a) v_0 and the series (5).

(b) v_0 and \hat{v}_0 , $\sigma = 0.000001$.

Figure: Example

It turned out that the estimator (7) is sensitive to noise and outliers. For this reason we consider the estimator \tilde{v}_0 defined by

$$\tilde{v}_0(x) = \left[\hat{v}_0 * \psi_h\right](x)$$

and

$$\tilde{\tilde{v}}_{0}(x) = \frac{1}{\nu_{d}(\Delta)} \left[\hat{f}_{1} \left[\hat{v}_{1} * \psi_{h} \right] (\hat{f}_{1}x) + \sum_{k=1}^{n_{l}} (-1)^{k} \sum_{i_{1}, \dots, i_{k}=2}^{m} \frac{\hat{f}_{1}^{k+1}}{\hat{f}_{i_{1}} \dots \hat{f}_{i_{k}}} \left[\hat{v}_{1} * \psi_{h} \right] \left(\frac{\hat{f}_{1}^{k+1}}{\hat{f}_{i_{1}} \dots \hat{f}_{i_{k}}} x \right) \right]$$

where ψ_h denotes a kernel function with bandwidth h > 0. Instead of pointwise convergence of \tilde{v}_0 we want to prove consistency results in $L_1(\mathbb{R}\setminus[-\varepsilon,\varepsilon])$ and $L_2(\mathbb{R}\setminus[-\varepsilon,\varepsilon]), \varepsilon>0.$

Most approaches for non-parametric estimation of the Lévy triplet in the case of Lévy processes are based on Fourier techniques. Instead of using plug-in estimators as above, we can estimate the Fourier transform of xv₁ directly from the data $X(t_1), \dots, X(t_l)$ Multiplying both sides of equation (5) with x and taking the Fourier transform \mathcal{F} one gets

$$\mathcal{F}[xv_0](x) = \frac{1}{\nu_d(\Delta_1)} \left(\frac{1}{f_1} \mathcal{F}[xv_1] \left(\frac{1}{f_1} x \right) + \sum_{k=1}^{\infty} (-1)^k \sum_{i_1, \dots, i_k = 2}^m \frac{f_{i_1} \cdots f_{i_k}}{f_1^{k+1}} \mathcal{F}[xv_1] \left(\frac{f_{i_1} \cdots f_{i_k}}{f_1^{k+1}} x \right) \right)$$

Estimation Approaches

000000000

If it is assumed that the series on the right-hand side converges and that the observations $X(t_1), \ldots, X(t_l)$ are independent, then one could use directly the formulae in to estimate the Fourier transform of of xv_1 :

$$\widehat{\mathcal{F}[x\nu_1]}(x) = (-i)\frac{\hat{\varphi}_l'(x)}{\hat{\varphi}_l(x)} \mathbf{1}_{|\{\hat{\varphi}_l(x)| > l^{-\frac{1}{2}}\}},$$

where φ_l denotes the empirical characteristic function of $X(t_1), \dots, X(t_l)$.

The resulting estimator \bar{v}_0 for the density v_0 then is given by

$$\bar{v}_{0}(u) = \frac{1}{u \cdot \nu_{d}(\Delta_{1})} \mathcal{F}^{-1} \left[\left(\frac{1}{\hat{f}_{1}} \widehat{\mathcal{F}[xv_{1}]} (\frac{1}{\hat{f}_{1}} x) + \sum_{k=1}^{\infty} (-1)^{k} \sum_{i_{1}, \dots, i_{k}=2}^{m} \frac{\hat{f}_{i_{1}} \dots \hat{f}_{i_{k}}}{\hat{f}_{1}^{k+1}} \widehat{\mathcal{F}[xv_{1}]} (\frac{\hat{f}_{i_{1}} \dots \hat{f}_{i_{k}}}{\hat{f}_{1}^{k+1}} x) \right) \right] (u)$$

Estimation Approaches

000000000

We would like to show the L_1 - or L_2 consistency of $\bar{\nu}_0$ and the rate of convergence to ν_0 under the assumption of weakly dependent observations.

Now assume for simplicity that $u^2v_0(u)$ is integrable on \mathbb{R} and $f(-x)=f(x), x \in \mathbb{R}^d$. Moreover let all natural powers of f be integrable on \mathbb{R}^d . Then one can show that the cumulant of X(t) looks like

0000000000

$$\log \varphi_{X(t)}(z) = ia_0 z \int\limits_{\mathbb{R}^d} f(x) dx - b_0 \frac{z^2}{2} \int\limits_{\mathbb{R}^d} f^2(x) dx - z^2 \int\limits_{\mathbb{R}} \zeta(z, y) y^2 v_0(y) dy,$$

where

$$\zeta(z,y) = \sum_{k=2}^{\infty} \frac{(izy)^{k-2}}{k!} \int_{\mathbb{R}^d} f^k(x) dx, \quad z,y \in \mathbb{R}.$$

The above cumulant function can be approximated by a sequence of functions $g_M:\mathbb{R}\to\mathbb{R}$ as $M\to\infty$ given by

$$g_{M}(z) = ia_{0}z \int_{\mathbb{R}^{d}} f(x)dx - b_{0}\frac{z^{2}}{2} \int_{\mathbb{R}^{d}} f^{2}(x)dx - z^{2} \int_{-M}^{M} \zeta(z, y)y^{2}v_{0}(y)dy$$

Fix an orthonormal basis $\{\psi_i\}_{i\in\mathbb{N}}$ in $L_2([-M, M])$ with scalar product $\langle h_1, h_2 \rangle_2 = \int_{-M}^{M} h_1(x) h_2(x) dx, h_1, h_2 \in L_2([-M, M]).$ Then it holds

$$g_{M}(z) = ia_{0}z\int\limits_{\mathbb{R}^{d}}f(x)dx - b_{0}\frac{z^{2}}{2}\int\limits_{\mathbb{R}^{d}}f^{2}(x)dx - z^{2}\sum_{j=1}^{\infty}\left\langle \zeta(z,\cdot),\psi_{j}\right\rangle_{2}\left\langle y^{2}v_{0}(\cdot),\psi_{j}\right\rangle_{2}.$$

Estimation Approaches

000000000

Introduce the parameter vector $\beta = (\beta_i)_{i=-1,0,1,2,...}$ given by $\beta_{-1} = a_0, \ \beta_0 = b_0$, $\beta_i = \langle \zeta(z,\cdot), \psi_i \rangle_2$, $j \in \mathbb{N}$ as well as the vector-valued function

$$F_{z} = \left(iz \int_{\mathbb{R}^{d}} f(x) dx, -\frac{z^{2}}{2} \int_{\mathbb{R}^{d}} f^{2}(x) dx, -z^{2} \left\{ \left\langle y^{2} v_{0}(\cdot), \psi_{j} \right\rangle_{2} \right\}_{j \in \mathbb{N}} \right), \quad z \in \mathbb{R}.$$

Then we can formally write

$$g_M(z) = \langle F_z, \beta \rangle$$

as a linear function of $\beta \in I_2$ with coefficients in F_z .

Let $W_l = [0, n_l]^d$ be an observation window, where $n_l \to \infty$ as $l \to \infty$. Assume that a sample $X(t_1), \dots, X(t_l)$ is given, where $t_1, \dots, t_l \in W_l$ for any $l \in \mathbb{N}$. Introduce the empirical characteristic function of X(0) by

Estimation Approaches

000000000

 $\hat{\varphi}_{X(0)}(z) = (\nu_d(W_l)^{-1}) \int_{W_l} e^{izX(t)} dt, \ z \in \mathbb{R}$. Due to the stationarity of X it then holds that $E\hat{\varphi}_{X(0)}(z) = \varphi_{X(0)}(z)$ for any $z \in \mathbb{R}$.

The idea now is to use a least squares method to define

$$\hat{\beta}_k^M = \operatorname{argmin}_{\beta \in I_2^k} \left(\sup_{z \in \mathbb{R}} |\langle F_z, \beta \rangle - \log \hat{\varphi}_l(z)|^2 + \lambda \operatorname{Pen}(\beta) \right)$$

where $l_2^k = \{x \in l_2 : x = (x_{-1}, x_0, x_1, x_2, \dots, x_k, 0, 0, 0, \dots)\}$ for any $k \in \mathbb{N}, \lambda \geq 0$ is a weight parameter and Pen(β) is a penalty function which governs e.g. the smoothness of Lévy densities v_0 we would like to get at the end of the estimation procedure. As a final estimator of the Lévy triplet (a_0, b_0, v_0) we propose

$$\hat{\beta} = \lim_{k \to \infty} \lim_{M \to \infty} \hat{\beta}_k^M.$$

- - Plug-In Approach

 - Linearized Least-Squares-Approach
- Outlook

Basic Concepts

Investigate

- consistency and robustness
- upper and lower bounds for the estimation error
- asymptotic distribution

of the above estimators and compare their performance.

- - Plug-In Approach

 - Linearized Least-Squares-Approach
- Bibliography

S. Guaushvili.

Nonparametric inference for discretely sampled Lévy processes.

Ann. Inst. H. Poincaré Probab. Statist., Vol. 48, 282-307, 2012.

M.H. Neumann and M. Reiß.

Nonparametric estimation for Lévy processes from low-frequency observations. Journal of Functional Analysis, Vol. 263, 3306-3332, 2012.

Estimation Approaches

B.S. Rajput and J. Rosinski.

Spectral representations of infinitely divisible processes.

Probability Th. Rel. Fields. Vol. 82, 451-487, 1989.

F. Comte. V. Genon-Catalot.

Non-parametric estimation for pure jump irregularly sampled or noisy Lévy processes. Statist. Neerlandica, Vol. 64(3), 290-313, 2010.

S. Guaushvili.

Nonparametric inference for discretely sampled Lévy processes.

Ann. Inst. H. Poincaré Probab. Statist, Vol. 48, No. 1, 282-307, 2009.

W. Karcher.

On Infnitely Divisible Random Fields with an Application in Insurance.

Dissertation Universität Ulm. 2012.

M. H. Neumann, M. Reiß.

Nonparamtetric estimation for Lévy processes from low-frequency observations.

Bernoulli, Vol. 15, No. 1, 223-248. 2009.

Thank you for your attention!