Estimation of Treatment Effects Under Non-Compliances

Karin Schiefele

Institute of Statistics and Institute of Epidemiology and Medical Biometry, University of Ulm

in cooperation with Boehringer Ingelheim Pharma GmbH

Workshop 2013

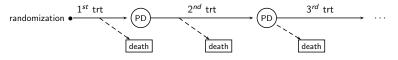
1 / 17

K. Schiefele (Ulm University)

3 Combination of Initial Models for PFS and OS

4 Numerical Examples

- Setting:
 - oncological trials
 - randomized
 - two-arm studies, (placebo-)controlled



PD: progressive disease

- Setting:
 - oncological trials
 - randomized
 - two-arm studies, (placebo-)controlled

PD: progressive disease

- Setting:
 - oncological trials
 - randomized
 - two-arm studies, (placebo-)controlled
- Endpoints:
 - Progression-free Survival (PFS):

 \hookrightarrow time from randomization to (first) progression or death from any cause, whatever comes first

• Overall Survival (OS):

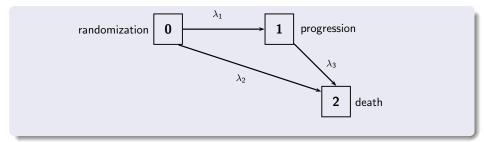
 \hookrightarrow time from randomization to death

Issue:

- controlled trial design commonly only until progression, thereafter control group might receive (similar) treatment
- non-ignorable non-compliances (e.g. because of severe side effects)

► this can lead to confounded estimates of treatment effect

Starting Point: Three-State Model



- assumption of constant transition rates between states gives exponentially distributed transition times
- PFS time is $T_{PFS} := T_0 \sim \operatorname{Exp}(\lambda_1 + \lambda_2)$
- distribution function of OS with $t \in \mathbb{R}_+$

$$F_{T_{OS}}(t) = 1 - rac{\lambda_1}{\lambda_1 + \lambda_2 - \lambda_3} e^{-\lambda_3 t} + rac{\lambda_3 - \lambda_2}{\lambda_1 + \lambda_2 - \lambda_3} e^{-(\lambda_1 + \lambda_2)t}$$

Rank Preserving Structural Failure Time Model

The observed lifetime T_i of subject *i* may be linked to his/her latent baseline survival time U_i via the RPSFTM [Robins J M, Tsiatis A A (1991)]

$$U_i = \int_0^{T_i} \mathrm{e}^{\beta_0 d_i(t)} \,\mathrm{d}t,\tag{1}$$

with β_0 the causal effect and $d_i(t)$ a treatment indicator at time t.

 RPSFTMs are models for counterfactuals, since they presume that individuals can theoretically be observed under different conditions

Rank Preserving Structural Failure Time Model

The observed lifetime T_i of subject *i* may be linked to his/her latent baseline survival time U_i via the RPSFTM [Robins J M, Tsiatis A A (1991)]

$$U_i = \int_0^{T_i} \mathrm{e}^{\beta_0 d_i(t)} \,\mathrm{d}t,\tag{1}$$

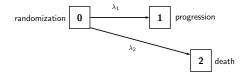
with β_0 the causal effect and $d_i(t)$ a treatment indicator at time t.

- RPSFTMs are models for counterfactuals, since they presume that individuals can theoretically be observed under different conditions
- Full compliance in treatment arm is given by $d_i(t) = 1$ for all t

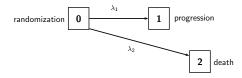
$$U_i = \mathrm{e}^{\beta_0} T_i$$

 $\bullet \ e^{\beta_0}$ fraction of increase or decrease in survival time because of treatment

• restriction on model for PFS



- restriction on model for PFS
- assumption of full compliance in treatment arm



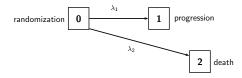
• in control arm:

$$U = T_{PFS} \sim \operatorname{Exp}(\lambda_1^{C} + \lambda_2^{C})$$

• in treatment arm:

$$U = e^{\beta_0} \cdot T_{PFS}$$
 with $T_{PFS} \sim Exp(\lambda_1^T + \lambda_2^T)$

- restriction on model for PFS
- assumption of full compliance in treatment arm



in control arm:

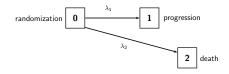
$$U = T_{PFS} \sim \operatorname{Exp}(\lambda_1^{C} + \lambda_2^{C})$$

• in treatment arm: $U = e^{\beta_0} \cdot T_{PFS}$ with $T_{PFS} \sim Exp(\lambda_1^T + \lambda_2^T)$

 \Rightarrow causal parameter of the RPSFTM is ${
m e}^{eta_0}=$

$$e^{\beta_0} = \frac{\lambda_1^T + \lambda_2^T}{\lambda_1^C + \lambda_2^C}.$$

• assumption of partial compliance in treatment arm with time on treatment given by $\tau = p \cdot T_{PFS}$, $p \in [0, 1]$



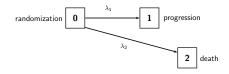
• in control arm:

 $U = T_{PFS} \sim \operatorname{Exp}(\lambda_1^C + \lambda_2^C)$

• in treatment arm:

$$U = \int_0^{\tau} \mathrm{e}^{eta_0} \, \mathrm{d}t + \int_{\tau}^{T_{PFS}} \, \mathrm{d}t \quad \Rightarrow \quad T_{PFS} = U \cdot \left(1 + p(\mathrm{e}^{eta_0} - 1)\right)^{-1}$$

• assumption of partial compliance in treatment arm with time on treatment given by $\tau = p \cdot T_{PFS}$, $p \in [0, 1]$



in control arm:

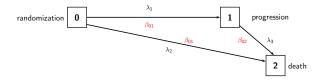
 $U = T_{PFS} \sim \operatorname{Exp}(\lambda_1^C + \lambda_2^C)$

• in treatment arm: $U = \int_0^\tau e^{\beta_0} dt + \int_\tau^{T_{PFS}} dt \quad \Rightarrow \quad T_{PFS} = U \cdot \left(1 + p(e^{\beta_0} - 1)\right)^{-1}$

 \Rightarrow distribution of PFS under partial compliance is

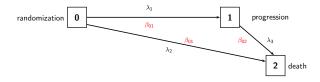
$$T_{PFS} \sim \operatorname{Exp}\left((1-p)\cdot(\lambda_1^{\mathcal{C}}+\lambda_2^{\mathcal{C}})+p\cdot(\lambda_1^{\mathcal{T}}+\lambda_2^{\mathcal{T}})
ight)$$

- assumption of full compliance in treatment arm
- 2nd line treatment after progression



• RPSFTM becomes $U = e^{\beta_{01}} \cdot T_{PFS} + e^{\beta_{02}} \cdot T_1$

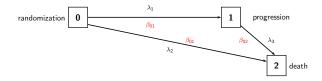
- assumption of full compliance in treatment arm
- 2nd line treatment after progression



- RPSFTM becomes $U = e^{\beta_{01}} \cdot T_{PFS} + e^{\beta_{02}} \cdot T_1$
- assumption of identical progression rates in study arms

$$\frac{\lambda_1^T}{\lambda_1^T + \lambda_2^T} = \frac{\lambda_1^C}{\lambda_1^C + \lambda_2^C}$$
 and $\frac{\lambda_2^T}{\lambda_1^T + \lambda_2^T} = \frac{\lambda_2^C}{\lambda_1^C + \lambda_2^C}$

- assumption of full compliance in treatment arm
- 2nd line treatment after progression

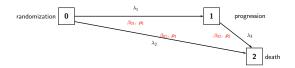


- RPSFTM becomes $U = e^{\beta_{01}} \cdot T_{PFS} + e^{\beta_{02}} \cdot T_1$
- assumption of identical progression rates in study arms

$$\frac{\lambda_1^T}{\lambda_1^T + \lambda_2^T} = \frac{\lambda_1^C}{\lambda_1^C + \lambda_2^C}$$
 and $\frac{\lambda_2^T}{\lambda_1^T + \lambda_2^T} = \frac{\lambda_2^C}{\lambda_1^C + \lambda_2^C}$

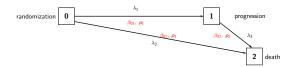
 \Rightarrow causal parameters of the RPSFTM are

$$e^{\beta_{01}} = \frac{\lambda_1^T + \lambda_2^T}{\lambda_1^C + \lambda_2^C}, \qquad e^{\beta_{02}} = \frac{\lambda_3^T}{\lambda_3^C}$$



• assumption of partial compliance in treatment arm with $\tau_1 = p_1 \cdot T_{PFS}$ time on treatment until progression $\tau_2 = p_2 \cdot T_1$ time on treatment between progression and death

• RPSFTM is
$$U = \int_0^{\tau_1} e^{\beta_{01}} dt + \int_{\tau_1}^{\tau_0} dt + \int_0^{\tau_2} e^{\beta_{02}} dt + \int_{\tau_2}^{\tau_1} dt$$



• assumption of partial compliance in treatment arm with $\tau_1 = p_1 \cdot T_{PFS}$ time on treatment until progression $\tau_2 = p_2 \cdot T_1$ time on treatment between progression and death

• RPSFTM is
$$U = \int_0^{\tau_1} e^{\beta_{01}} dt + \int_{\tau_1}^{T_0} dt + \int_0^{\tau_2} e^{\beta_{02}} dt + \int_{\tau_2}^{T_1} dt$$

distribution of OS under partial compliance is given by

$$F_{\mathcal{T}_{OS}}(t) = 1 - \frac{\lambda_1^P}{\lambda_1^P + \lambda_2^P - \lambda_3^P} e^{-\lambda_3^P t} + \frac{\lambda_3^P - \lambda_2^P}{\lambda_1^P + \lambda_2^P - \lambda_3^P} e^{-(\lambda_1^P + \lambda_2^P)t}$$

with $\lambda_1^P = (1 - p_1)\lambda_1^C + p_1\lambda_1^T$, $\lambda_2^P = (1 - p_1)\lambda_2^C + p_1\lambda_2^T$, $\lambda_3^P = (1 - p_2)\lambda_3^C + p_2\lambda_3^T$

G-Estimation

- grid search over sequence of clinically relevant values β
- test for equality of baseline survival time distributions via log-rank statistic $G(\beta)$
- estimate is given by $\hat{eta} = argmin_{eta} |G(eta)|$
- for *n*-dimensional setting, with $n \ge 2$:
 - grid search
 - Nelder-Mead algorithm

Simulation Studies

Estimation for PFS alone:					
True effect β_0	p	$\hat{\beta}$	MSE		
	100%	0.0055	0.0039		
$\log(1) = 0$	75%	0.0039	0.0071		
,	50%	-0.0027	0.0163		
$\log(0.5) = -0.6931$	100%	-0.6862	0.0040		
	75%	-0.6936	0.0612		
	50%	-0.6957	0.2034		
$\log(1/3) = -1.0986$	100%	-1.0949	0.0041		
	75%	-1.0927	0.1757		
	50%	-1.1105	0.5629		

G-Estimation:

- N=1000 patients,
 - 1 : 1 randomization
- 1000 runs
- grid search from -2 to 1, step size 0.01

- estimate \hat{eta} approximates true value eta_0 very well
- absolute difference of estimate and true value less than 0.01 (stepsize of the grid search)
- estimation unaffected by non-compliances
- larger mean squared errors of $\hat{\beta}$ with rising non-compliances

Simulation Studies

Estimation for PFS and OS:								
True	Effect	Complia	ance Rate	Estimate	ed Effect	Mean sqa	ured error	
β_{01}	β_{02}	p_1	<i>p</i> ₂	$\hat{\beta}_{01}$	$\hat{\beta}_{02}$	$MSE(\hat{\beta}_{01})$	$MSE(\hat{\beta}_{02})$	G-Estimation:
log(0.5)	$\log(1)$	100% 100% 75% 75%	100% 75% 100% 75%	-0.6829 -0.6842 -0.6742 -0.6817	-0.0168 -0.0325 -0.0211 -0.0292	0.0246 0.0224 0.0506 0.0502	0.0161 0.0271 0.0141 0.0226	 N=1000 patients, 1 : 1 randomization 1000 runs grid search from -2 to 1 for β₀₁
log(0.5)	log(0.5)	100% 100% 75% 75%	100% 75% 100% 75%	-0.6948 -0.6909 -0.6972 -0.7101	-0.7060 -0.7233 -0.7093 -0.7174	0.0266 0.0252 0.0769 0.0726	0.5137 0.5652 0.5187 0.5551	and from $\beta_{01} - 1$ to $\beta_{01} + 1$ for β_{02} , - step size 0.1

• not as precise estimates as in one-parameter setting for PFS

- estimates of $\hat{\beta}_{02}$ are not as precise as those of $\hat{\beta}_{01}$
- Nelder-Mead algorithm saves computing time but gives less precise estimates than the grid search

data from a non-small-cell lung cancer trial:

Trial arm	Number of patients	Number of progressions	Median PFS time [days]	Number of deaths	Median OS time [days]
Placebo	137	136	29	84	302
Treatment	263	248	85	163	298
Total	400	384	58	247	300

3

- ∢ ≣ →

data from a non-small-cell lung cancer trial:

Trial arm	Number of patients	Number of progressions	Median PFS time [days]	Number of deaths	Median OS time [days]
Placebo	137	136	29	84	302
Treatment	263	248	85	163	298
Total	400	384	58	247	300

hazard ratio for placebo vs. treatment arm

- via Cox-model
 - for OS: 1.043 (0.801, 1.358)
 - for PFS: 0.355 (0.285, 0.442)
- via one-parameter RPSFTM
 - for OS: 1.051 (0.7866, 1.448)
 - for PFS: 0.395 (0.320, 0.472)
- so far used approaches failed to explain the different effect of the treatment on PFS and OS

Real Data

- ► Trial Design:
 - until progression: placebo or test treatment
 - after progression: subsequent therapy (of same substance class as test treatment) in both study arms
- Modelling Approach: two-parameter RPSFTM with varying compliance rates
 - until progression: assumption of full compliance to test treatment in treatment group
 - after progression: compliance to subsequent therapy in both treatment arms

Assumed corr	Hazard Ratio for		
treatment arm control arm		PFS	OS
0.4	0.6	0.517	0.357
0.3	0.7	0.387	0.449
0.2	0.8	0.262	0.468
0.6	0.7	0.538	0.310

- Combination of three-state model with RPSFTM enables to adjust for confounding effects due to
 - subsequent treatment after progression
 - crossin / crossover
 - non-compliances in treatment arm
- Estimation of separate treatment effects before and after progression is possible

Outlook

- a model for random fraction of non-compliances
- suspending the assumption of identical progression rates
- extension to a four-state model with a transient state 'responded' (e.g. for hematologic indications)

For Further Reading

- Fleischer F, Gaschler-Markefski B, Bluhmki E. 2009. A statistical model for the dependence between progression-free survival and overall survival. Statistics in Medicine 28 (21): 2669-2686
- Robins J M, Tsiatis A A. 1991. Correcting for non-compliance in randomized trials using rank preserving structural failure time models. Communications in Statistics; 20: 2609-2631.
- Robins J M, Tsiatis A A. 1992.
 Semiparametric estimation of an accelerated failure time model with time-dependent covariates. Biometrika; 79 (2): 311-319.
- Korhonen P A, Laird N M, Palmgren J. 1999. Correcting for non-compliance in randomized trials: an application to the ATBC study. Statistics in Medicine 18, 2879–2897