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Motivation

A.V. Ilvanov and N.N. Leonenko proved in their book "Statistical
analysis of random fields” a CLT for isotropic Gaussian random
fields.
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Random fields

Let (Q, F,P) be a complete probability space and T € R9. A
collection of random variables X = {X(t),t € T} indexed by
elements of T is called a random field.

A random field X = {X(f),t € T} is measurable if for each
A € B(R) it holds that {(w, t) : X(w,t) € A} € F @ B(T), where
F ® B(T) is the product o-algebra of F and B(T).

A random field X = {X(t),t € T} is called stationary if all
finite-dimensional distributions of X are invariant with respect to
translations, thatis, forall k e N, &, ..., t, s € T it holds that

(X(t + ), ..., X(t+8) < (X(t), ..., X(t)).
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Random fields

A random field X = {X(t),t € R%} is called positively (PA) or
negatively (NA) associated if

Cov(f(X),g(X;)>0 (L0, resp.)

for all finite disjoint subsets I, J C RY, and for any bounded
coordinatewise non—decreasing functions f : Re@d() _ R,
g :RedV) 4 R where X; = {X(t),t € I}, X; = {X(1),t € J}.
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Excursion set

Let W, = [0,n]9, n € N be a sequence of observation windows.
Let v4(B) be the volume of a measurable set B € B(RY) and let
1(C) denote the indicator function of a set C. Let | - | denote the
Euclidean norm in R?.

An excursion set of random field X at level u € R is defined by

AuX,T)={te T:X(t)> u}.
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Excursion set

Centered Gaussian random field on [0, 1]2,

r(t) = exp(—|[tll» /0.3),
Levels: u= —-1.0,0.0,1.0
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Excursion set

Fix a sequence of increasing excursion levels {up}, up — oo.
The volume of the excursion set of X at level up, is

Sp = Vg(Au,(X, [0, n]9)) = /[0 » (X(E) > up) dt.

If X is stationary then by Fubini’s theorem, the mean of S, is

E[Sh] = n° P(X(0) > up).

Similarly, the variance of S, can be rewritten as

ar(Sy) = /[0 y /[ g COVXO) 2 ) AX(D) = ) el
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Theorem

Let X = {X(t),t € R9} be a measurable, stationary and
positively associated random field, with bounded density f and
continuous covariance function Cov(X(x), X(0)) satisfying the
following conditions
1. Var(Sp) — ocoas n— oo.
2. It exists u > 3d such that | Cov(X(0), X(t))| = O(|t|™*) as
|t| — oc.
3. Itexists {un} C R, up — oo such that
2
Gp = —"3W) 0 a5 0o, where v(x) = sup £(£).
T (Var(8a)) 340 = 7x) o (1

Then one gets
Sn - E[Sn] d
—_ _>

T X ~N(0, 1).
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Proof of the CLT
Under the above assumptions, one can find a sequence
mn, — oo such that for n — oo
d d
mp n 2

—— —0and ——~—~57v3(up)m

Var(Sn) (Var(S,2 1 (Un)
To see this, consider for example

1
m, = max {\/\m, 6p3 Var(S,,)} .
Set q¢ = \/\W and r, = L#J Note that for n — oo

Mp qrq n
— =0, — 0and — — oo.
o Var(Sy) o

It holds that Var(S,) < const. - n?. Set
0 < mf < q9 < Var(Sp).

a— i
n ° —0.
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Proof

Define Sp = Vg(Au,(X, [0, 7mgnl?)) and Z, = S5 &

keZdN[1,ry]d
where {¢,x} are ii.d. and &nx < va(Au, (X, [0, Gnl?)).

It holds that
Var(Z,)

Var(Sp)
It suffices to show that

— 1,as n — oo (%).

- E[é\;r] d Zn — E[Z)]
Var(S,)  \/Var(S)’

n— oo (1)

and that Z2=ElZl & N(0,1)as n — oo (2)

\/ Var(Sp)
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Proof

To show (1) it is sufficient to show that

E exp ItSn—iE[Sn] —E exp ItLE[Zrl:l

Var(Sp) Var(Sp)
This can be shown by using Newman'’s inequality, (x) and the
requirement for my,.

‘—)0,n—>oo.

To show (2) one can apply the CLT of Lindeberg by replacing
Var(Sp) with Var(Z,) by (x).
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Example: Gaussian random field

Let X be a standard Gaussian random field with

Cov(X(x), X(0)) = exp(—|x|). Then the requirements of the
theorem are fulfilled for the level u2 = loglog n.

In this case it holds that

(S) 1 r(t1,t2) 1
Var :/ / / ex <—
5 [0, J[o,n)e 27 Jo V1 —r2 P

where r(ty, ) = exp(—|t; — f2|). This term is greater than or
equal to

Un Y gratt, ot
1+r 1UL2,

21701!(1 — exp(—n))n? exp(—u5)

and thus the first requirement is shown.
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Example: Gaussian random field

To show that

bp 1= n 7%(?”) —0,as N — oo,
(Var(Sp))s+9)
note that
) = 5. o0 (<5 8)
It holds that

n319 exp (;(u + 2)u§> -0,

as n — oo and for u2 = loglog n. Thus it follows that 6, — 0, as
n— oo.
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Example: Random field on lattices

Consider a random field X = {X(t),t € Z%}. Let X be a
stationary and positively associated random field with bounded
density f. In that case, E[S;;] — oo implies Var(S,) — oc.

To show this, note that due to the stationarity we get

Var(Sp) = ) D" Cov((X(I—k) > un), U(X(0) > up)).

kezdn[0,n)? IeZ9N[0,n]d

Splitting this sum and taking the advantage of the association
then the term above is greater than or equal to

(n+1)? Var(1(X(0) > un)).
This variance can be easily calculated and we get

Var(Sp) > (n+ 1) P(X(0) > up) P(X(0) < up).
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Example: Random field on lattices

For the exponential distribution with parameter ¢ < ﬁ set
un = dlog(n). Note that

©(Un) :=P(X(0) = un) = exp(—dun) and v(un) = d¢(un).
Take into account that,
Var(Sy) > n%(un)P(X(0) < up),

and therefore,

< 5507 3% (p(up)) 30+ (B(X(0) < up))' 2+,

Thus, §, — 0 and E(Sp) — o0, as n — oc.
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Open problem

What happens if ES, — A\, as n — o0?
To discuss this question consider a random field on lattices,
where Xi, Xo,... are i.i.d. random variables. Therefore,

S,,-Zﬂ i) > up).

Thus, S, is the sum of Bernoulli-distributed random variables
and therefore binomial distributed with parameters n and
P(X(0) > un).

If ES, = nP(X(0) > up) — A for n — oo and

P(X(0) > up) — 0, then S, 47~ Poi()), as n — oo, see the
Poisson limit theorem.
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Thank you for your attention!



