

CLT for the volume of excursion sets of stationary associated random fields

Joint work with Vadim Demichev

Judith Schmidt | 6.9.2013 Probability, Analysis and Geometry, Ulm

Overview

- Motivation
- Random fields and their characteristics
- Excursion sets of random fields
- CLT about the volume of excursion sets for growing excursion level
- Proof of the CLT
- Example: Gaussian random field
- Example: Random field on lattices

Motivation

A.V. Ivanov and N.N. Leonenko proved in their book "Statistical analysis of random fields" a CLT for isotropic Gaussian random fields.

Random fields

page 4

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space and $T \subseteq \mathbb{R}^d$. A collection of random variables $X = \{X(t), t \in T\}$ indexed by elements of T is called a random field.

A random field $X = \{X(t), t \in T\}$ is measurable if for each $A \in \mathcal{B}(\mathbb{R})$ it holds that $\{(\omega, t) : X(\omega, t) \in A\} \in \mathcal{F} \otimes \mathcal{B}(T)$, where $\mathcal{F} \otimes \mathcal{B}(T)$ is the product σ -algebra of \mathcal{F} and $\mathcal{B}(T)$.

A random field $X = \{X(t), t \in T\}$ is called stationary if all finite-dimensional distributions of *X* are invariant with respect to translations, that is, for all $k \in \mathbb{N}$, t_1, \ldots, t_k , $s \in T$ it holds that

$$(X(t_1+s),\ldots,X(t_k+s)) \stackrel{d}{=} (X(t_1),\ldots,X(t_k)).$$

Random fields

A random field $X = \{X(t), t \in \mathbb{R}^d\}$ is called positively (PA) or negatively (NA) associated if

$$\operatorname{Cov}\left(f\left(X_{l}
ight),g\left(X_{J}
ight)
ight)\geq0$$
 (\leq 0, resp.)

for all finite disjoint subsets $I, J \subset \mathbb{R}^d$, and for any bounded coordinatewise non–decreasing functions $f : \mathbb{R}^{\operatorname{card}(I)} \to \mathbb{R}$, $g : \mathbb{R}^{\operatorname{card}(J)} \to \mathbb{R}$, where $X_I = \{X(t), t \in I\}$, $X_J = \{X(t), t \in J\}$.

Excursion set

Let $W_n = [0, n]^d$, $n \in \mathbb{N}$ be a sequence of observation windows. Let $v_d(B)$ be the volume of a measurable set $B \in \mathcal{B}(\mathbb{R}^d)$ and let $\mathfrak{l}(C)$ denote the indicator function of a set *C*. Let $|\cdot|$ denote the Euclidean norm in \mathbb{R}^d .

An excursion set of random field X at level $u \in \mathbb{R}$ is defined by

$$A_u(X,T) = \{t \in T : X(t) \geq u\}.$$

Excursion set

Centered Gaussian random field on $[0, 1]^2$, $r(t) = \exp(-||t||_2 / 0.3)$, Levels: u = -1.0, 0.0, 1.0

Excursion set

Fix a sequence of increasing excursion levels $\{u_n\}$, $u_n \to \infty$. The volume of the excursion set of *X* at level u_n is

$$S_n = v_d(A_{u_n}(X, [0, n]^d)) = \int_{[0, n]^d} \mathbb{1}(X(t) \ge u_n) dt.$$

If X is stationary then by Fubini's theorem, the mean of S_n is

$$\mathsf{E}[S_n] = n^d \mathbb{P}(X(0) \ge u_n).$$

Similarly, the variance of S_n can be rewritten as

$$\operatorname{Var}(S_n) = \int_{[0,n]^d} \int_{[-x,n-x]^d} \operatorname{Cov}(\operatorname{1\!I}(X(0) \ge u_n), \operatorname{1\!I}(X(t) \ge u_n)) \, dt dx.$$

Theorem

Let $X = \{X(t), t \in \mathbb{R}^d\}$ be a measurable, stationary and positively associated random field, with bounded density *f* and continuous covariance function Cov(X(x), X(0)) satisfying the following conditions

- 1. $\operatorname{Var}(S_n) \to \infty$ as $n \to \infty$.
- 2. It exists $\mu > 3d$ such that $|\operatorname{Cov}(X(0), X(t))| = \mathcal{O}(|t|^{-\mu})$ as $|t| \to \infty$.
- 3. It exists $\{u_n\} \subset \mathbb{R}, u_n \to \infty$ such that

$$\delta_n := \frac{n^d \gamma^{\frac{2}{3}}(u_n)}{(\operatorname{Var}(S_n))^{\frac{1}{3}(\mu+3)}} \to 0, \text{ as } n \to \infty, \text{ where } \gamma(x) = \sup_{t \ge x} f(t).$$

Then one gets

$$\frac{S_n - \mathsf{E}[S_n]}{\sqrt{\operatorname{Var}(S_n)}} \xrightarrow{d} X \sim \mathsf{N}(0, 1).$$

Proof of the CLT

Under the above assumptions, one can find a sequence $m_n \rightarrow \infty$ such that for $n \rightarrow \infty$

$$\frac{m_n^d}{\operatorname{Var}(S_n)} \to 0 \text{ and } \frac{n^d}{(\operatorname{Var}(S_n))^2} \gamma^{\frac{2}{3}}(u_n) m_n^{d-\frac{\mu}{3}} \to 0.$$

To see this, consider for example

$$m_n = \max\left\{\sqrt{\operatorname{Var}(S_n)}, \delta_n^{\frac{1}{\mu-3}}\operatorname{Var}(S_n)\right\}.$$
Set $q_n^d = \sqrt{\operatorname{Var}(S_n)m_n^d}$ and $r_n = \left\lfloor \frac{n}{q_n} \right\rfloor$. Note that for $n \to \infty$
 $\frac{m_n}{q_n} \to 0, \frac{q_n^d}{\operatorname{Var}(S_n)} \to 0$ and $\frac{n}{q_n} \to \infty$.
It holds that $\operatorname{Var}(S_n) \le const. \cdot n^d$. Set
 $0 < m_n^d < q_n^d < \operatorname{Var}(S_n)$.

Proof

Define
$$\widetilde{S}_n = v_d(A_{u_n}(X, [0, r_n q_n]^d))$$
 and $Z_n = \sum_{k \in \mathbb{Z}^d \cap [1, r_n]^d} \xi_{n,k}$,
where $\{\xi_{n,k}\}$ are i.i.d. and $\xi_{n,k} \stackrel{d}{=} v_d(A_{u_n}(X, [0, q_n]^d))$.
It holds that
 $\operatorname{Var}(Z_n)$

$$rac{\operatorname{Var}(Z_n)}{\operatorname{Var}(S_n)} o 1$$
, as $n \to \infty$ (*).

It suffices to show that

$$\frac{\widetilde{S_n} - \mathsf{E}[\widetilde{S_n}]}{\sqrt{\operatorname{Var}(S_n)}} \stackrel{d}{=} \frac{Z_n - \mathsf{E}[Z_n]}{\sqrt{\operatorname{Var}(S_n)}}, \ n \to \infty \tag{1}$$

and that
$$\frac{Z_n - \mathbb{E}[Z_n]}{\sqrt{\operatorname{Var}(S_n)}} \xrightarrow{d} N(0, 1)$$
 as $n \to \infty$ (2)

Proof

To show (1) it is sufficient to show that

$$\mathsf{E}\left[\exp\left(it\frac{\widetilde{S}_n-\mathsf{E}[\widetilde{S}_n]}{\sqrt{\operatorname{Var}(S_n)}}\right)\right]-\mathsf{E}\left[\exp\left(it\frac{Z_n-\mathsf{E}[Z_n]}{\sqrt{\operatorname{Var}(S_n)}}\right)\right]\right|\to 0, n\to\infty.$$

This can be shown by using Newman's inequality, (*) and the requirement for m_n .

To show (2) one can apply the CLT of Lindeberg by replacing $Var(S_n)$ with $Var(Z_n)$ by (*).

Example: Gaussian random field

Let *X* be a standard Gaussian random field with Cov(X(x), X(0)) = exp(-|x|). Then the requirements of the theorem are fulfilled for the level $u_n^2 = \log \log n$. In this case it holds that

$$\operatorname{Var}(S_n) = \int_{[0,n]^d} \int_{[0,n]^d} \frac{1}{2\pi} \int_0^{r(t_1,t_2)} \frac{1}{\sqrt{1-r^2}} \exp\left(-\frac{u_n^2}{1+r}\right) dr dt_1 dt_2,$$

where $r(t_1, t_2) = \exp(-|t_1 - t_2|)$. This term is greater than or equal to

$$\frac{1}{2\pi}d!(1-\exp(-n))n^d\exp(-u_n^2)$$

and thus the first requirement is shown.

Example: Gaussian random field

To show that

$$\delta_n := \frac{n^d \gamma^{\frac{2}{3}}(u_n)}{(\operatorname{Var}(S_n))^{\frac{1}{3}(\mu+3)}} \to 0, \text{ as } n \to \infty,$$

note that

$$\gamma(u_n) = \frac{1}{2\pi} \exp\left(-\frac{1}{2} u_n^2\right).$$

It holds that

$$n^{-\frac{1}{3}\mu d} \exp\left(\frac{1}{3}(\mu+2)u_n^2\right)
ightarrow 0,$$

as $n \to \infty$ and for $u_n^2 = \log \log n$. Thus it follows that $\delta_n \to 0$, as $n \to \infty$.

Example: Random field on lattices

Consider a random field $X = \{X(t), t \in \mathbb{Z}^d\}$. Let X be a stationary and positively associated random field with bounded density *f*. In that case, $E[S_n] \to \infty$ implies $Var(S_n) \to \infty$. To show this, note that due to the stationarity we get

$$\operatorname{Var}(S_n) = \sum_{k \in \mathbb{Z}^d \cap [0,n]^d} \sum_{l \in \mathbb{Z}^d \cap [0,n]^d} \operatorname{Cov}(\operatorname{I\!I}(X(l-k) \ge u_n), \operatorname{I\!I}(X(0) \ge u_n)).$$

Splitting this sum and taking the advantage of the association then the term above is greater than or equal to

$$(n+1)^d$$
 Var $(1(X(0) \ge u_n)).$

This variance can be easily calculated and we get

$$\operatorname{Var}(\mathcal{S}_n) \geq (n+1)^d \mathbb{P}(X(0) \geq u_n) \ \mathcal{P}(X(0) < u_n).$$

Example: Random field on lattices

For the exponential distribution with parameter $\delta < \frac{\mu}{\mu+3}$, set $u_n = d \log(n)$. Note that

$$arphi(u_n):=\mathbb{P}(X(0)\geq u_n)=\exp(-\delta u_n) ext{ and } \gamma(u_n)=\delta arphi(u_n).$$

Take into account that,

$$\operatorname{Var}(\mathcal{S}_n) \geq n^d \varphi(u_n) \mathbb{P}(X(0) < u_n),$$

and therefore,

$$\frac{n^d \gamma^{\frac{2}{3}}(u_n)}{\left(\operatorname{Var}(\mathcal{S}_n)\right)^{\frac{1}{3}(\mu+3)}} \le \delta^{\frac{2}{3}} n^{-\frac{1}{3}d\mu} \left(\varphi(u_n)\right)^{-\frac{1}{3}(\mu+3)} \left(\mathbb{P}(X(0) < u_n)\right)^{1/3(\mu+3)}$$

Thus, $\delta_n \to 0$ and $E(S_n) \to \infty$, as $n \to \infty$.

Open problem

What happens if $ES_n \rightarrow \lambda$, as $n \rightarrow \infty$?

To discuss this question consider a random field on lattices, where X_1, X_2, \ldots are i.i.d. random variables. Therefore,

$$S_n = \sum_{i=1}^n \mathbb{1}(X(i) \ge u_n).$$

Thus, S_n is the sum of Bernoulli-distributed random variables and therefore binomial distributed with parameters n and $\mathbb{P}(X(0) \ge u_n)$. If $\mathbb{E}S_n = n \mathbb{P}(X(0) \ge u_n) \to \lambda$ for $n \to \infty$ and $P(X(0) \ge u_n) \to 0$, then $S_n \stackrel{d}{\to} Z \sim \text{Poi}(\lambda)$, as $n \to \infty$, see the Poisson limit theorem.

References

- A.V. Ivanov and N.N. Leonenko. Statistical analysis of random fields. Kluwer, Dordrecht, 1989.
- A. Bulinski, E. Spodarev, and F. Timmermann. Central limit theorems for the excursion sets volumes of weakly dependent random fields. Bernoulli, 18(1):100 - 118, 2012.
- E. Spodarev. Limit theorems for excursion sets of stationary random fields. submitted, 2013.
- R.J. Adler and J.E. Taylor. Random Fields and Geometry. Springer, New York, 2007.
- L. Heinrich. In Spodarev, E. (ed.): Stochastic Geometry, Spatial Statistics and Random Fields. Asymptotics Methods, Lecture Notes in Mathematics, volume 2068, chapter Asymptotic methods in statistics of random point processes, pages 115 - 150. Springer, Berlin, 2013.
- G. Last and M.D. Penrose. Probability Theory and Related Fields, volume 150, chapter Poisson process Fock space representation, chaos expansion and covariance inequalities, pages 663 - 690. Springer, Berlin, Heidelberg, 2011.

Thank you for your attention!