ulm university universität **UUUIM** 





#### Rigid analytic curves and their Jacobians Workshop "Probability, Analysis and Geometry"

Sophie Schmieg | September 2013 | Institute of Pure Mathematics

### Contents

Rigid analysis Valuations Consequences Reduction



# Contents

Rigid analysis Valuations Consequences Reduction

#### Jacobian variety

Divisors Line bundles General Definition



# Contents

Rigid analysis Valuations Consequences Reduction

#### Jacobian variety

Divisors Line bundles General Definition

#### The complex case

Topology of Riemann surfaces Theorems of Abel and Jacobi

ヘロン 人間 とくほ とくほ とう

ж

# Contents

Rigid analysis Valuations Consequences Reduction

#### Jacobian variety

Divisors Line bundles General Definition

#### The complex case

Topology of Riemann surfaces Theorems of Abel and Jacobi

The rigid analytic case

# Valuations

To be able to do analysis, one needs a field and an absolute value.

# Definition

A field K together with  $|\cdot|: K \to \mathbb{R}^+_0$  is called a *valued field*, if

(i) 
$$|x| = 0$$
 if and only if  $x = 0$ .

(ii) 
$$|xy| = |x| \cdot |y|$$
 for all  $x, y \in K$ .

(iii) 
$$|x + y| \le |x| + |y|$$
 for all  $x, y \in K$ .

# Valuations

To be able to do analysis, one needs a field and an absolute value.

# Definition

A field K together with  $|\cdot|: K \to \mathbb{R}^+_0$  is called a *valued field*, if

(i) 
$$|x| = 0$$
 if and only if  $x = 0$ .

(ii) 
$$|xy| = |x| \cdot |y|$$
 for all  $x, y \in K$ .

(iii) 
$$|x + y| \le |x| + |y|$$
 for all  $x, y \in K$ .

Usually for  $K = \mathbb{Q}$  one defines

$$\left|\frac{a}{b}\right| = \begin{cases} \frac{a}{b} & \text{if } \frac{a}{b} \ge 0\\ -\frac{a}{b} & \text{if } \frac{a}{b} < 0 \end{cases}$$

# Valuations

Let us instead set

$$\left| egin{smallmatrix} a \ \overline{b} \end{smallmatrix} 
ight| = egin{cases} 0 & ext{if } a = 0 \ p^{
u(b) - 
u(a)} & ext{else} \end{cases}$$

# with

- ▶ *p* prime
- ▶  $\nu(n) = \max\{k \in \mathbb{N} ; p^k | n\}$  for  $n \in \mathbb{N}$

# Valuations

Let us instead set

$$\left|rac{a}{b}
ight| = egin{cases} 0 & ext{if } a = 0 \ p^{
u(b)-
u(a)} & ext{else} \end{cases}$$

with

*p* prime

►  $\nu(n) = \max\{k \in \mathbb{N} ; p^k | n\}$  for  $n \in \mathbb{N}$ For example for p = 5 we get  $|5| = \frac{1}{5}, |75| = \frac{1}{25}, |\frac{17}{1000}| = 125.$ 

# Valuations

Let us instead set

$$\left| rac{a}{b} 
ight| = egin{cases} 0 & ext{if } a = 0 \ p^{
u(b)-
u(a)} & ext{else} \end{cases}$$

with

*p* prime

•  $\nu(n) = \max\{k \in \mathbb{N} ; p^k | n\}$  for  $n \in \mathbb{N}$ 

For example for p = 5 we get  $|5| = \frac{1}{5}$ ,  $|75| = \frac{1}{25}$ ,  $\left|\frac{17}{1000}\right| = 125$ . We get the stronger version of (iii)

(iii)  $|x + y| \le \max(|x|, |y|)$  for all  $x, y \in K$ .

and call the field a non-Archimedean valued field

Totally disconnected topology



- Totally disconnected topology
- No meaningful measures



- Totally disconnected topology
- No meaningful measures
- "Freshman's second dream"

$$\sum_{k=0}^{\infty} a_k \text{ converges } \Leftrightarrow a_k \to 0$$

- Totally disconnected topology
- No meaningful measures
- "Freshman's second dream"

$$\sum_{k=0}^{\infty} a_k \text{ converges } \Leftrightarrow a_k \to 0$$

Hensel's lemma: Newton's method convergence a priori

- Totally disconnected topology
- No meaningful measures
- "Freshman's second dream"

$$\sum_{k=0}^{\infty} a_k \text{ converges } \Leftrightarrow a_k \to 0$$

- Hensel's lemma: Newton's method convergence a priori
- Close connection to the finite field  $\mathbb{F}_{p}$

# Repairing the topology

Totally disconnected topology does not work for geometry.

イロン 不得 とくほ とくほ とうほ

# Repairing the topology

Totally disconnected topology does not work for geometry. Idea: Restrict coverings and open sets to "admissible" ones

# Repairing the topology

Totally disconnected topology does not work for geometry. Idea: Restrict coverings and open sets to "admissible" ones

# Definition

X set,  $\mathfrak{S} \subset \mathcal{P}(X)$  set of subsets of X,  $\{\text{Cov } U\}_{U \in \mathfrak{S}}$  family of coverings.

(i)  $U, V \in \mathfrak{S} \Rightarrow U \cap V \in \mathfrak{S}$ .

(ii) 
$$U \in \mathfrak{S} \Rightarrow \{U\} \in \mathsf{Cov} U$$
.

- (iii) If  $U \in \mathfrak{S}$ ,  $\{U_i\}_{i \in I} \in \text{Cov } U$  and  $\{V_{ij}\}_{j \in J_i} \in \text{Cov } U_i$ , then the covering  $\{V_{ij}\}_{i \in I, j \in J_i}$  is also admissible.
- (iv) If  $U, V \in \mathfrak{S}$  with  $U \subset V$  and  $\{V_i\}_{i \in I} \in \text{Cov } V$ , then the covering  $\{V_i \cap U\}_{i \in I}$  of U is admissible.

# Reduction

If *K* is a Non-Archimedean valued field, then  $R := \{x \in K ; |x| \le 1\}$  is a ring and  $\mathfrak{m} := \{x \in K ; |x| < 1\}$  is a maximal ideal in *R*,  $k := R/\mathfrak{m}$ .

$$\begin{split} & \mathcal{K} = \mathbb{Q}_p, \, a_k \in \{0, \dots, p-1\}, m \in \mathbb{N}_0, \\ & x = \sum_{k=-m}^{\infty} a_k p^k, \, a_{-m} \neq 0. \end{split}$$

# Reduction

If *K* is a Non-Archimedean valued field, then  $R := \{x \in K ; |x| \le 1\}$  is a ring and  $\mathfrak{m} := \{x \in K ; |x| < 1\}$  is a maximal ideal in *R*,  $k := R/\mathfrak{m}$ .

$$egin{array}{ll} \mathcal{K} = \mathbb{Q}_{p}, \, a_k \in \{0, \dots, p-1\}, m \in \mathbb{N}_0, \ x = \sum_{k=-m}^{\infty} a_k p^k, \, a_{-m} 
eq 0. \ |x| = p^m, \end{array}$$

# Reduction

If *K* is a Non-Archimedean valued field, then  $R := \{x \in K ; |x| \le 1\}$  is a ring and  $\mathfrak{m} := \{x \in K ; |x| < 1\}$  is a maximal ideal in *R*,  $k := R/\mathfrak{m}$ .

$$egin{aligned} &\mathcal{K}=\mathbb{Q}_{p},\, a_{k}\in\{0,\ldots,p-1\},\,m\in\mathbb{N}_{0},\ &x=\sum_{k=-m}^{\infty}a_{k}p^{k},\,a_{-m}
eq0.\ &|x|=p^{m},\ &\mathbb{Z}_{p}/\mathfrak{m}=\mathbb{F}_{p},\,\widetilde{x}=a_{0} \end{aligned}$$

# Reduction

If *K* is a Non-Archimedean valued field, then  $R := \{x \in K ; |x| \le 1\}$  is a ring and  $\mathfrak{m} := \{x \in K ; |x| < 1\}$  is a maximal ideal in *R*,  $k := R/\mathfrak{m}$ .

#### Example

$$K = \mathbb{Q}_{p}, a_{k} \in \{0, \dots, p-1\}, m \in \mathbb{N}_{0},$$
  

$$x = \sum_{k=-m}^{\infty} a_{k} p^{k}, a_{-m} \neq 0.$$
  

$$|x| = p^{m},$$
  

$$\mathbb{Z}_{p}/\mathfrak{m} = \mathbb{F}_{p}, \tilde{x} = a_{0}$$
  

$$X \text{ curve over } K, \tilde{X} \text{ curve over } k$$

◆□> ◆□> ◆目> ◆目> ◆日> ◆□>

#### **Divisors**

$$X: y^2 = x(x+1)(x-1)$$
 elliptic curve

# **Divisors**

$$X: y^2 = x(x+1)(x-1)$$
 elliptic curve



#### **Divisors**

$$X: y^2 = x(x+1)(x-1)$$
 elliptic curve



D = (-1,0) + (0,0) - 2(1,0) deg D = 1 + 1 - 2 = 0

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・







◆□ > ◆□ > ◆豆 > ◆豆 > ・ 豆 ・ � Q Q Q





# Line bundles

New curve: circle parametrized by  $\varphi$ .

$$oldsymbol{X}\colon \{(oldsymbol{\cos}arphi, oldsymbol{\sin}arphi) \; ; \; arphi\in [-\pi,\pi]\}$$



# Line bundles

New curve: circle parametrized by  $\varphi$ .

$$X$$
: {(cos  $\varphi$ , sin  $\varphi$ );  $\varphi \in [-\pi, \pi]$ }

# Question

What is meant by saying a scalar field is continuous on *X*?



# Line bundles

New curve: circle parametrized by  $\varphi$ .

$$X$$
: {(cos  $\varphi$ , sin  $\varphi$ );  $\varphi \in [-\pi, \pi]$ }

# Question

What is meant by saying a scalar field is continuous on *X*?

$$f_1 = \cos(5\varphi) \cdot \ell$$
$$f_2 = \cos\left(\frac{11}{2}\varphi\right) \cdot \ell$$



$$f_1 = \cos\left(5\varphi\right) \cdot \ell$$

$$f_2 = \cos\left(\frac{11}{2}\varphi\right) \cdot \ell$$



◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ● ● ●



イロン イロン イヨン イヨン 三日

$$f_1 = \cos\left(5\varphi\right) \cdot \ell$$

イロン イロン イヨン イヨン 三日

$$f_2 = \cos\left(\frac{11}{2}\varphi\right) \cdot \ell$$

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

# Line bundles: Notations

One denotes

- *f*<sub>1</sub> ∈ *H*<sup>0</sup>(*X*, *O*<sub>*X*</sub>), *f*<sub>1</sub> is a global section of the trivial line bundle *O*<sub>*X*</sub>, the bundle of functions on *X*.
- ▶  $f_2 \in H^0(X, \mathcal{L})$ ,  $f_2$  is a global section of the line bundle  $\mathcal{L}$ .

# Line bundles: Notations

One denotes

- ►  $f_1 \in H^0(X, \mathcal{O}_X)$ ,  $f_1$  is a global section of the trivial line bundle  $\mathcal{O}_X$ , the bundle of functions on *X*.
- ▶  $f_2 \in H^0(X, \mathcal{L})$ ,  $f_2$  is a global section of the line bundle  $\mathcal{L}$ .

# Important example

 $\Omega^1_X$ , the line bundle of holomorphic differential forms of a Riemann surface *X*.

The "unit" here is dz with z local parameter on X.

Let X be a smooth, projective, algebraic curve. Then the following is isomorphic:



### Jacobian variety

Let X be a smooth, projective, algebraic curve. Then the following is isomorphic:

(i) Divisors modulo principal divisors

イロン 不得 とくほ とくほ とうほ

### Jacobian variety

Let X be a smooth, projective, algebraic curve. Then the following is isomorphic:

- (i) Divisors modulo principal divisors
- (ii) Line bundles modulo isomorphy

Let X be a smooth, projective, algebraic curve. Then the following is isomorphic:

- (i) Divisors modulo principal divisors
- (ii) Line bundles modulo isomorphy
- (iii) Invertible sheaves

(iv)  $H^1(X, \mathcal{O}_X^{\times})$ .

Let X be a smooth, projective, algebraic curve. Then the following is isomorphic:

- (i) Divisors modulo principal divisors
- (ii) Line bundles modulo isomorphy
- (iii) Invertible sheaves

(iv)  $H^1(X, \mathcal{O}_X^{\times})$ .

This object is a *commutative group*.

Let X be a smooth, projective, algebraic curve. Then the following is isomorphic:

- (i) Divisors modulo principal divisors
- (ii) Line bundles modulo isomorphy
- (iii) Invertible sheaves

(iv)  $H^1(X, \mathcal{O}_X^{\times})$ .

This object is a *commutative group*.

Restriction to divisors of degree 0 is called the *Jacobian variety* of *X*.

X compact Riemann surface of genus g.

(i) 
$$\pi_1(X) = \langle a_i, b_i | a_1 b_1 \dots a_g b_g a_1^{-1} b_1^{-1} \dots a_g^{-1} b_g^{-1} \rangle$$
.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

X compact Riemann surface of genus g.

(i) 
$$\pi_1(X) = \langle a_i, b_i | a_1 b_1 \dots a_g b_g a_1^{-1} b_1^{-1} \dots a_g^{-1} b_g^{-1} \rangle$$
.  
(ii)  $H_1(X, \mathbb{Z}) = \mathbb{Z}^{2g}$ .



X compact Riemann surface of genus g.

(i)  $\pi_1(X) = \langle a_i, b_i | a_1 b_1 \dots a_g b_g a_1^{-1} b_1^{-1} \dots a_g^{-1} b_g^{-1} \rangle$ . (ii)  $H_1(X, \mathbb{Z}) = \mathbb{Z}^{2g}$ . (iii)  $\dim_{\mathbb{C}} H^0(X, \Omega) = g$ .



・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

# Topology of Riemann surfaces

Canonical pairing

$$egin{aligned} &\mathcal{H}_1(X,\mathbb{Z}) imes \mathcal{H}^0(X,\Omega) o \mathbb{C}\ &(\gamma,\omega)\mapsto \int_\gamma\omega \ . \end{aligned}$$

Canonical pairing

$$egin{aligned} &\mathcal{H}_1(X,\mathbb{Z}) imes \mathcal{H}^0(X,\Omega) o \mathbb{C}\ &(\gamma,\omega)\mapsto \int_\gamma\omega \ . \end{aligned}$$

• There is a basis  $\omega_1, \ldots, \omega_g$  of  $H^0(X, \Omega)$  with  $\int_{a_i} \omega_j = \delta_{ij}$ .

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

# Topology of Riemann surfaces

Canonical pairing

$$egin{aligned} &\mathcal{H}_1(X,\mathbb{Z}) imes \mathcal{H}^0(X,\Omega) o \mathbb{C}\ &(\gamma,\omega)\mapsto \int_\gamma\omega\ . \end{aligned}$$

- There is a basis  $\omega_1, \ldots, \omega_g$  of  $H^0(X, \Omega)$  with  $\int_{a_i} \omega_j = \delta_{ij}$ .
- $z_{i,j} := \int_{b_i} \omega_j$  yields  $M = \mathbb{Z}^g \oplus Z\mathbb{Z}^g$  in  $\mathbb{C}^g$ .

Canonical pairing

$$egin{aligned} &\mathcal{H}_1(X,\mathbb{Z}) imes \mathcal{H}^0(X,\Omega) o \mathbb{C}\ &(\gamma,\omega)\mapsto \int_\gamma\omega \ . \end{aligned}$$

- There is a basis  $\omega_1, \ldots, \omega_g$  of  $H^0(X, \Omega)$  with  $\int_{a_i} \omega_j = \delta_{ij}$ .
- $z_{i,j} := \int_{b_i} \omega_j$  yields  $M = \mathbb{Z}^g \oplus Z\mathbb{Z}^g$  in  $\mathbb{C}^g$ .
- ► M lattice in C<sup>g</sup>, composed of every possible value of integrals of ω<sub>i</sub> over closed curves.

### Theorems of Abel and Jacobi

# Theorem

$$\mathsf{Div}^{0} X \to \mathbb{C}^{g} / M$$
$$\sum_{i \in I} [x_{i} - y_{i}] \mapsto \left( \sum_{i \in I} \int_{y_{i}}^{x_{i}} \omega_{j} \right)_{j=1}^{g}$$

is surjective and its kernel are the principal divisors.

◆□ > ◆□ > ◆三 > ◆三 > ・三 · のへの

# Theorems of Abel and Jacobi

# Theorem

$$\mathsf{Div}^{0} X \to \mathbb{C}^{g} / M$$
$$\sum_{i \in I} [x_{i} - y_{i}] \mapsto \left( \sum_{i \in I} \int_{y_{i}}^{x_{i}} \omega_{j} \right)_{j=1}^{g}$$

is surjective and its kernel are the principal divisors.

# Corollary

 $\operatorname{Jac} X \cong \mathbb{C}^g / M.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

# Theorems of Abel and Jacobi

# Theorem

$$\mathsf{Div}^{0} X \to \mathbb{C}^{g} / M$$
$$\sum_{i \in I} [x_{i} - y_{i}] \mapsto \left( \sum_{i \in I} \int_{y_{i}}^{x_{i}} \omega_{j} \right)_{j=1}^{g}$$

is surjective and its kernel are the principal divisors.

# Corollary

 $\operatorname{Jac} X \cong \mathbb{C}^g / M.$ 

 $\operatorname{Jac} X$  has a holomorphic structure.

# Theorems of Abel and Jacobi

We have a group homomorphism in  $\mathbb{C}$ :

 $\exp\colon \mathbb{G}_{a,\mathbb{C}} o \mathbb{G}_{m,\mathbb{C}}$  .



イロン 不得 とくほ とくほ とうほ

### Theorems of Abel and Jacobi

We have a group homomorphism in  $\mathbb{C}$ :

$$\mathsf{exp}\colon \mathbb{G}_{a,\mathbb{C}}\to \mathbb{G}_{m,\mathbb{C}}$$

Theorem Jac  $X \cong \mathbb{G}_{m,\mathbb{C}}^g / \exp(2\pi i M)$ ,  $\exp(2\pi i M)$  is a multiplicative lattice of rang g.

イロン 不得 とくほ とくほ とうほ

# Semi stable reduction

**Theorem** *X* smooth rigid analytic projective curve There is a formal covering  $\mathfrak{U}$  such that the associated reduction has only ordinary double points as singularities.

# Semi stable reduction

# **Theorem** X smooth rigid analytic projective curve There is a formal covering $\mathfrak{U}$ such that the associated reduction has only ordinary double points as singularities.

# Definition $\tilde{X}$ semi-stable, *dual graph G*:

| V(G) = irreducible components | vertex set |
|-------------------------------|------------|
| E(G) = double points          | edge set   |

# Example





・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Example



Χ

\ \

Ñ



0

# Example 0 Ñ Х G

# Example 0 0 $\gamma_1$ Ñ Х G

0

# Example 0 $\gamma_2$ Ñ Х G



イロン 不得 とくほ とくほ とうほ

# The rigid analytic case

Let X be a rigid analytic curve over K. There is an abelian variety B over K and an extension

$$0 
ightarrow \mathbb{G}^t_{m,K} 
ightarrow \hat{J} 
ightarrow B 
ightarrow 0$$

and a lattice M in  $\hat{J}$  such that

$$\operatorname{Jac} X = \hat{J}/M$$

# The lattice

The lattice  $-\log|M| \subset \mathbb{R}^t$  has the base  $(v_i)$  with

$$m{v}_{ij} = \sum_{m{e} \in \gamma_i \cap \gamma_j} - m{d}(m{e}) \cdot \log |m{q}(m{e})| \;\;,$$

#### where

- $\gamma_i$  the simple cycles of *G*,
- d(e) = 1 if γ<sub>i</sub> and γ<sub>j</sub> have the same direction in e, d(e) = −1 otherwise
- ▶ q(e) the height of the annulus corresponding to e.