

Rigid analytic curves and their Jacobians
Workshop "Probability, Analysis and Geometry"

Contents

Rigid analysis
Valuations
Consequences
Reduction

Contents

Rigid analysis
Valuations
Consequences
Reduction
Jacobian variety
Divisors
Line bundles
General Definition

Contents

Rigid analysis
Valuations
Consequences
Reduction
Jacobian variety
Divisors
Line bundles
General Definition
The complex case
Topology of Riemann surfaces
Theorems of Abel and Jacobi

Contents

Rigid analysis
Valuations
Consequences
Reduction
Jacobian variety
Divisors
Line bundles
General Definition
The complex case
Topology of Riemann surfaces
Theorems of Abel and Jacobi
The rigid analytic case

Valuations

To be able to do analysis, one needs a field and an absolute value.

Definition
A field K together with $|\cdot|: K \rightarrow \mathbb{R}_{0}^{+}$is called a valued field, if
(i) $|x|=0$ if and only if $x=0$.
(ii) $|x y|=|x| \cdot|y|$ for all $x, y \in K$.
(iii) $|x+y| \leq|x|+|y|$ for all $x, y \in K$.

Valuations

To be able to do analysis, one needs a field and an absolute value.

Definition
A field K together with $|\cdot|: K \rightarrow \mathbb{R}_{0}^{+}$is called a valued field, if
(i) $|x|=0$ if and only if $x=0$.
(ii) $|x y|=|x| \cdot|y|$ for all $x, y \in K$.
(iii) $|x+y| \leq|x|+|y|$ for all $x, y \in K$.

Usually for $K=\mathbb{Q}$ one defines

$$
\left|\frac{a}{b}\right|= \begin{cases}\frac{a}{b} & \text { if } \frac{a}{b} \geq 0 \\ -\frac{a}{b} & \text { if } \frac{a}{b}<0\end{cases}
$$

Valuations

Let us instead set

$$
\left|\frac{a}{b}\right|= \begin{cases}0 & \text { if } a=0 \\ p^{\nu(b)-\nu(a)} & \text { else }\end{cases}
$$

with

- p prime
- $\nu(n)=\max \left\{k \in \mathbb{N} ; p^{k} \mid n\right\}$ for $n \in \mathbb{N}$

Valuations

Let us instead set

$$
\left|\frac{a}{b}\right|= \begin{cases}0 & \text { if } a=0 \\ p^{\nu(b)-\nu(a)} & \text { else }\end{cases}
$$

with

- p prime
- $\nu(n)=\max \left\{k \in \mathbb{N} ; p^{k} \mid n\right\}$ for $n \in \mathbb{N}$

For example for $p=5$ we get $|5|=\frac{1}{5},|75|=\frac{1}{25},\left|\frac{17}{1000}\right|=125$.

Valuations

Let us instead set

$$
\left|\frac{a}{b}\right|= \begin{cases}0 & \text { if } a=0 \\ p^{\nu(b)-\nu(a)} & \text { else }\end{cases}
$$

with

- p prime
- $\nu(n)=\max \left\{k \in \mathbb{N} ; p^{k} \mid n\right\}$ for $n \in \mathbb{N}$

For example for $p=5$ we get $|5|=\frac{1}{5},|75|=\frac{1}{25},\left|\frac{17}{1000}\right|=125$. We get the stronger version of (iii)
(iii') $|x+y| \leq \max (|x|,|y|)$ for all $x, y \in K$.
and call the field a non-Archimedean valued field

Consequences

- Totally disconnected topology

Consequences

- Totally disconnected topology
- No meaningful measures

Consequences

- Totally disconnected topology
- No meaningful measures
- "Freshman's second dream"

$$
\sum_{k=0}^{\infty} a_{k} \text { converges } \Leftrightarrow a_{k} \rightarrow 0
$$

Consequences

- Totally disconnected topology
- No meaningful measures
- "Freshman's second dream"

$$
\sum_{k=0}^{\infty} a_{k} \text { converges } \Leftrightarrow a_{k} \rightarrow 0
$$

- Hensel's lemma: Newton's method convergence a priori

Consequences

- Totally disconnected topology
- No meaningful measures
- "Freshman's second dream"

$$
\sum_{k=0}^{\infty} a_{k} \text { converges } \Leftrightarrow a_{k} \rightarrow 0
$$

- Hensel's lemma: Newton's method convergence a priori
- Close connection to the finite field \mathbb{F}_{p}

Repairing the topology

Totally disconnected topology does not work for geometry.

Repairing the topology

Totally disconnected topology does not work for geometry. Idea: Restrict coverings and open sets to "admissible" ones

Repairing the topology

Totally disconnected topology does not work for geometry. Idea: Restrict coverings and open sets to "admissible" ones
Definition
X set, $\mathfrak{S} \subset \mathcal{P}(X)$ set of subsets of $X,\{\operatorname{Cov} U\}_{U \in \mathfrak{S}}$ family of coverings.
(i) $U, V \in \mathfrak{S} \Rightarrow U \cap V \in \mathfrak{S}$.
(ii) $U \in \mathfrak{S} \Rightarrow\{U\} \in \operatorname{Cov} U$.
(iii) If $U \in \mathfrak{S},\left\{U_{i}\right\}_{i \in I} \in \operatorname{Cov} U$ and $\left\{V_{i j}\right\}_{j \in J_{i}} \in \operatorname{Cov} U_{i}$, then the covering $\left\{V_{i j}\right\}_{i \in I, j \in J_{i}}$ is also admissible.
(iv) If $U, V \in \mathfrak{S}$ with $U \subset V$ and $\left\{V_{i}\right\}_{i \in I} \in \operatorname{Cov} V$, then the covering $\left\{V_{i} \cap U\right\}_{i \in I}$ of U is admissible.

Reduction

If K is a Non-Archimedean valued field, then
$R:=\{x \in K ;|x| \leq 1\}$ is a ring and $\mathfrak{m}:=\{x \in K ;|x|<1\}$ is a maximal ideal in $R, k:=R / \mathfrak{m}$.

Example

$K=\mathbb{Q}_{p}, a_{k} \in\{0, \ldots, p-1\}, m \in \mathbb{N}_{0}$,
$x=\sum_{k=-m}^{\infty} a_{k} p^{k}, a_{-m} \neq 0$.

Reduction

If K is a Non-Archimedean valued field, then
$R:=\{x \in K ;|x| \leq 1\}$ is a ring and $\mathfrak{m}:=\{x \in K ;|x|<1\}$ is a maximal ideal in $R, k:=R / \mathfrak{m}$.

Example

$K=\mathbb{Q}_{p}, a_{k} \in\{0, \ldots, p-1\}, m \in \mathbb{N}_{0}$,
$x=\sum_{k=-m}^{\infty} a_{k} p^{k}, a_{-m} \neq 0$.
$|x|=p^{m}$,

Reduction

If K is a Non-Archimedean valued field, then
$R:=\{x \in K ;|x| \leq 1\}$ is a ring and $\mathfrak{m}:=\{x \in K ;|x|<1\}$ is a maximal ideal in $R, k:=R / \mathfrak{m}$.

Example
$K=\mathbb{Q}_{p}, a_{k} \in\{0, \ldots, p-1\}, m \in \mathbb{N}_{0}$,
$x=\sum_{k=-m}^{\infty} a_{k} p^{k}, a_{-m} \neq 0$.
$|x|=p^{m}$,
$\mathbb{Z}_{p} / \mathfrak{m}=\mathbb{F}_{p}, \tilde{x}=a_{0}$

Reduction

If K is a Non-Archimedean valued field, then
$R:=\{x \in K ;|x| \leq 1\}$ is a ring and $\mathfrak{m}:=\{x \in K ;|x|<1\}$ is a maximal ideal in $R, k:=R / \mathfrak{m}$.

Example

$K=\mathbb{Q}_{p}, a_{k} \in\{0, \ldots, p-1\}, m \in \mathbb{N}_{0}$,
$x=\sum_{k=-m}^{\infty} a_{k} p^{k}, a_{-m} \neq 0$.
$|x|=p^{m}$,
$\mathbb{Z}_{p} / \mathfrak{m}=\mathbb{F}_{p}, \tilde{x}=a_{0}$
X curve over K, \tilde{X} curve over k.

Divisors

$$
X: y^{2}=x(x+1)(x-1) \text { elliptic curve }
$$

Divisors

$X: y^{2}=x(x+1)(x-1)$ elliptic curve

Divisors

$$
X: y^{2}=x(x+1)(x-1) \text { elliptic curve }
$$

$$
D=(-1,0)+(0,0)-2(1,0) \quad \operatorname{deg} D=1+1-2=0
$$

Divisors and principal divisors: Example 1

Divisors and principal divisors: Example 1

$$
f_{1}=\frac{y}{x} \quad \operatorname{div} f_{1}=(-1,0)-(0,0)+(1,0)-\infty
$$

Divisors and principal divisors: Example 2

Divisors and principal divisors: Example 2

Line bundles

New curve: circle parametrized by φ.

$$
X:\{(\cos \varphi, \sin \varphi) ; \varphi \in[-\pi, \pi]\}
$$

Line bundles

New curve: circle parametrized by φ.

$$
X:\{(\cos \varphi, \sin \varphi) ; \varphi \in[-\pi, \pi]\}
$$

Question

What is meant by saying a scalar field is continuous on X ?

Line bundles

New curve: circle parametrized by φ.

$$
X:\{(\cos \varphi, \sin \varphi) ; \varphi \in[-\pi, \pi]\}
$$

Question

What is meant by saying a scalar field is continuous on X ?

$$
\begin{aligned}
& f_{1}=\cos (5 \varphi) \cdot \ell \\
& f_{2}=\cos \left(\frac{11}{2} \varphi\right) \cdot \ell
\end{aligned}
$$

Line bundles: Example 1

$$
f_{1}=\cos (5 \varphi) \cdot \ell
$$

Line bundles: Example 1

$$
f_{2}=\cos \left(\frac{11}{2} \varphi\right) \cdot \ell
$$

Line bundles: Example 2

$$
f_{1}=\cos (5 \varphi) \cdot \ell
$$

Line bundles: Example 2

$$
f_{2}=\cos \left(\frac{11}{2} \varphi\right) \cdot \ell
$$

Line bundles: Notations

One denotes

- $f_{1} \in H^{0}\left(X, \mathcal{O}_{X}\right), f_{1}$ is a global section of the trivial line bundle \mathcal{O}_{X}, the bundle of functions on X.
- $f_{2} \in H^{0}(X, \mathcal{L}), f_{2}$ is a global section of the line bundle \mathcal{L}.

Line bundles: Notations

One denotes

- $f_{1} \in H^{0}\left(X, \mathcal{O}_{X}\right), f_{1}$ is a global section of the trivial line bundle \mathcal{O}_{X}, the bundle of functions on X.
- $f_{2} \in H^{0}(X, \mathcal{L}), f_{2}$ is a global section of the line bundle \mathcal{L}.

Important example
Ω_{X}^{1}, the line bundle of holomorphic differential forms of a Riemann surface X.
The "unit" here is $\mathrm{d} z$ with z local parameter on X.

Jacobian variety

Let X be a smooth, projective, algebraic curve. Then the following is isomorphic:

Jacobian variety

Let X be a smooth, projective, algebraic curve. Then the following is isomorphic:
(i) Divisors modulo principal divisors

Jacobian variety

Let X be a smooth, projective, algebraic curve. Then the following is isomorphic:
(i) Divisors modulo principal divisors
(ii) Line bundles modulo isomorphy

Jacobian variety

Let X be a smooth, projective, algebraic curve. Then the following is isomorphic:
(i) Divisors modulo principal divisors
(ii) Line bundles modulo isomorphy
(iii) Invertible sheaves
(iv) $H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)$.

Jacobian variety

Let X be a smooth, projective, algebraic curve. Then the following is isomorphic:
(i) Divisors modulo principal divisors
(ii) Line bundles modulo isomorphy
(iii) Invertible sheaves
(iv) $H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)$.

This object is a commutative group.

Jacobian variety

Let X be a smooth, projective, algebraic curve. Then the following is isomorphic:
(i) Divisors modulo principal divisors
(ii) Line bundles modulo isomorphy
(iii) Invertible sheaves
(iv) $H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)$.

This object is a commutative group.
Restriction to divisors of degree 0 is called the Jacobian variety of X.

Topology of Riemann surfaces

X compact Riemann surface of genus g.
(i) $\pi_{1}(X)=\left\langle a_{i}, b_{i} \mid a_{1} b_{1} \ldots a_{g} b_{g} a_{1}^{-1} b_{1}^{-1} \ldots a_{g}^{-1} b_{g}^{-1}\right\rangle$.

Topology of Riemann surfaces

X compact Riemann surface of genus g.
(i) $\pi_{1}(X)=\left\langle a_{i}, b_{i} \mid a_{1} b_{1} \ldots a_{g} b_{g} a_{1}^{-1} b_{1}^{-1} \ldots a_{g}^{-1} b_{g}^{-1}\right\rangle$.
(ii) $H_{1}(X, \mathbb{Z})=\mathbb{Z}^{2 g}$.

Topology of Riemann surfaces

X compact Riemann surface of genus g.
(i) $\pi_{1}(X)=\left\langle a_{i}, b_{i} \mid a_{1} b_{1} \ldots a_{g} b_{g} a_{1}^{-1} b_{1}^{-1} \ldots a_{g}^{-1} b_{g}^{-1}\right\rangle$.
(ii) $H_{1}(X, \mathbb{Z})=\mathbb{Z}^{2 g}$.
(iii) $\operatorname{dim}_{\mathbb{C}} H^{0}(X, \Omega)=g$.

Topology of Riemann surfaces

Canonical pairing

$$
\begin{aligned}
H_{1}(X, \mathbb{Z}) \times H^{0}(X, \Omega) & \rightarrow \mathbb{C} \\
(\gamma, \omega) & \mapsto \int_{\gamma} \omega .
\end{aligned}
$$

Topology of Riemann surfaces

Canonical pairing

$$
\begin{aligned}
H_{1}(X, \mathbb{Z}) \times H^{0}(X, \Omega) & \rightarrow \mathbb{C} \\
(\gamma, \omega) & \mapsto \int_{\gamma} \omega .
\end{aligned}
$$

- There is a basis $\omega_{1}, \ldots, \omega_{g}$ of $H^{0}(X, \Omega)$ with $\int_{a_{i}} \omega_{j}=\delta_{i j}$.

Topology of Riemann surfaces

Canonical pairing

$$
\begin{aligned}
H_{1}(X, \mathbb{Z}) \times H^{0}(X, \Omega) & \rightarrow \mathbb{C} \\
(\gamma, \omega) & \mapsto \int_{\gamma} \omega .
\end{aligned}
$$

- There is a basis $\omega_{1}, \ldots, \omega_{g}$ of $H^{0}(X, \Omega)$ with $\int_{a_{i}} \omega_{j}=\delta_{i j}$.
- $z_{i, j}:=\int_{b_{i}} \omega_{j}$ yields $M=\mathbb{Z}^{g} \oplus Z \mathbb{Z}^{g}$ in \mathbb{C}^{g}.

Topology of Riemann surfaces

Canonical pairing

$$
\begin{aligned}
H_{1}(X, \mathbb{Z}) \times H^{0}(X, \Omega) & \rightarrow \mathbb{C} \\
(\gamma, \omega) & \mapsto \int_{\gamma} \omega
\end{aligned}
$$

- There is a basis $\omega_{1}, \ldots, \omega_{g}$ of $H^{0}(X, \Omega)$ with $\int_{a_{i}} \omega_{j}=\delta_{i j}$.
- $z_{i, j}:=\int_{b_{i}} \omega_{j}$ yields $M=\mathbb{Z}^{g} \oplus Z \mathbb{Z}^{g}$ in \mathbb{C}^{g}.
- M lattice in \mathbb{C}^{g}, composed of every possible value of integrals of ω_{j} over closed curves.

Theorems of Abel and Jacobi

Theorem

$$
\begin{aligned}
\operatorname{Div}^{0} X & \rightarrow \mathbb{C}^{g} / M \\
\sum_{i \in I}\left[x_{i}-y_{i}\right] & \mapsto\left(\sum_{i \in I} \int_{y_{i}}^{x_{i}} \omega_{j}\right)_{j=1}^{g}
\end{aligned}
$$

is surjective and its kernel are the principal divisors.

Theorems of Abel and Jacobi

Theorem

$$
\begin{aligned}
\operatorname{Div}^{0} X & \rightarrow \mathbb{C}^{g} / M \\
\sum_{i \in I}\left[x_{i}-y_{i}\right] & \mapsto\left(\sum_{i \in l} \int_{y_{i}}^{x_{i}} \omega_{j}\right)_{j=1}^{g}
\end{aligned}
$$

is surjective and its kernel are the principal divisors.

Corollary

$\operatorname{Jac} X \cong \mathbb{C}^{g} / M$.

Theorems of Abel and Jacobi

Theorem

$$
\begin{aligned}
\operatorname{Div}^{0} X & \rightarrow \mathbb{C}^{g} / M \\
\sum_{i \in I}\left[x_{i}-y_{i}\right] & \mapsto\left(\sum_{i \in I} \int_{y_{i}}^{x_{i}} \omega_{j}\right)_{j=1}^{g}
\end{aligned}
$$

is surjective and its kernel are the principal divisors.

Corollary

$\operatorname{Jac} X \cong \mathbb{C}^{g} / M$.
Jac X has a holomorphic structure.

Theorems of Abel and Jacobi

We have a group homomorphism in \mathbb{C} :

$$
\exp : \mathbb{G}_{a, \mathbb{C}} \rightarrow \mathbb{G}_{m, \mathbb{C}} .
$$

Theorems of Abel and Jacobi

We have a group homomorphism in \mathbb{C} :

$$
\exp : \mathbb{G}_{a, \mathbb{C}} \rightarrow \mathbb{G}_{m, \mathbb{C}}
$$

Theorem
$\operatorname{Jac} X \cong \mathbb{G}_{m, \mathbb{C}}^{g} / \exp (2 \pi i M)$, $\exp (2 \pi i M)$ is a multiplicative lattice of rang g.

Semi stable reduction

Theorem
X smooth rigid analytic projective curve
There is a formal covering \mathfrak{U} such that the associated reduction has only ordinary double points as singularities.

Semi stable reduction

Theorem
X smooth rigid analytic projective curve
There is a formal covering \mathfrak{U} such that the associated reduction has only ordinary double points as singularities.

Definition
\tilde{X} semi-stable, dual graph G :

$$
\begin{array}{lr}
V(G)=\text { irreducible components } & \text { vertex set } \\
E(G)=\text { double points } & \text { edge set }
\end{array}
$$

Example

x

Example

Example

G

Example

G

Example

x
$\tilde{\chi}$
G

Example

x
$\tilde{\chi}$
G

The rigid analytic case

Let X be a rigid analytic curve over K. There is an abelian variety B over K and an extension

$$
0 \rightarrow \mathbb{G}_{m, K}^{t} \rightarrow \hat{\jmath} \rightarrow B \rightarrow 0
$$

and a lattice M in $\hat{\jmath}$ such that

$$
\operatorname{Jac} X=\hat{\jmath} / M
$$

The lattice

The lattice $-\log |M| \subset \mathbb{R}^{t}$ has the base $\left(v_{i}\right)$ with

$$
v_{i j}=\sum_{e \in \gamma_{i} \cap \gamma_{j}}-d(e) \cdot \log |q(e)|,
$$

where

- γ_{i} the simple cycles of G,
- $d(e)=1$ if γ_{i} and γ_{j} have the same direction in e, $d(e)=-1$ otherwise
- $q(e)$ the height of the annulus corresponding to e.

