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Valuations

To be able to do analysis, one needs a field and an absolute
value.

Definition
A field K together with |·| : K → R+

0 is called a valued field, if
(i) |x | = 0 if and only if x = 0.
(ii) |xy | = |x | · |y | for all x , y ∈ K .
(iii) |x + y | ≤ |x |+ |y | for all x , y ∈ K .

Usually for K = Q one defines

∣∣∣a
b

∣∣∣ =

{
a
b if a

b ≥ 0
−a

b if a
b < 0
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Valuations

Let us instead set ∣∣∣a
b

∣∣∣ =

{
0 if a = 0
pν(b)−ν(a) else

with
I p prime
I ν(n) = max{k ∈ N ; pk |n} for n ∈ N

For example for p = 5 we get |5| = 1
5 , |75| = 1

25 ,
∣∣ 17

1000

∣∣ = 125.
We get the stronger version of (iii)
(iii’) |x + y | ≤ max(|x |, |y |) for all x , y ∈ K .
and call the field a non-Archimedean valued field
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Consequences

I Totally disconnected topology

I No meaningful measures
I “Freshman’s second dream”

∞∑
k=0

ak converges ⇔ ak → 0

I Hensel’s lemma: Newton’s method convergence a priori
I Close connection to the finite field Fp
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Repairing the topology

Totally disconnected topology does not work for geometry.

Idea: Restrict coverings and open sets to “admissible” ones

Definition
X set, S ⊂ P(X ) set of subsets of X , {Cov U}U∈S family of
coverings.

(i) U,V ∈ S⇒ U ∩ V ∈ S.
(ii) U ∈ S⇒ {U} ∈ Cov U.
(iii) If U ∈ S, {Ui}i∈I ∈ Cov U and {Vij}j∈Ji ∈ Cov Ui , then the

covering {Vij}i∈I,j∈Ji is also admissible.
(iv) If U,V ∈ S with U ⊂ V and {Vi}i∈I ∈ Cov V , then the

covering {Vi ∩ U}i∈I of U is admissible.
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Reduction

If K is a Non-Archimedean valued field, then
R := {x ∈ K ; |x | ≤ 1} is a ring and m := {x ∈ K ; |x | < 1} is a
maximal ideal in R, k := R/m.

Example
K = Qp, ak ∈ {0, . . . ,p − 1},m ∈ N0,
x =

∑∞
k=−m akpk ,a−m 6= 0.

|x | = pm,
Zp/m = Fp, x̃ = a0

X curve over K , X̃ curve over k .
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Divisors

X : y2 = x(x + 1)(x − 1) elliptic curve

D = (−1,0) + (0,0)− 2(1,0) deg D = 1 + 1− 2 = 0
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Divisors and principal divisors: Example 1

f1 =
y
x
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Divisors and principal divisors: Example 1

f1 =
y
x

div f1 = (−1,0)− (0,0) + (1,0)−∞
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Divisors and principal divisors: Example 2

f2 =
x + 1
x − 1
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Divisors and principal divisors: Example 2

f2 =
x + 1
x − 1

div f2 = 2(−1,0)− 2(0,0)
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Line bundles

New curve: circle parametrized by ϕ.

X : {(cosϕ, sinϕ) ; ϕ ∈ [−π, π]}

Question
What is meant by saying
a scalar field is
continuous on X?

f1 = cos (5ϕ) · `

f2 = cos
(

11
2
ϕ

)
· `
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Line bundles: Example 1

f1 = cos (5ϕ) · `
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Line bundles: Example 1
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(

11
2
ϕ
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Line bundles: Example 2

f1 = cos (5ϕ) · `
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Line bundles: Notations

One denotes
I f1 ∈ H0(X ,OX ), f1 is a global section of the trivial line

bundle OX , the bundle of functions on X .
I f2 ∈ H0(X ,L), f2 is a global section of the line bundle L.

Important example
Ω1

X , the line bundle of holomorphic differential forms of a
Riemann surface X .
The “unit” here is dz with z local parameter on X .
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Jacobian variety

Let X be a smooth, projective, algebraic curve. Then the
following is isomorphic:

(i) Divisors modulo principal divisors
(ii) Line bundles modulo isomorphy
(iii) Invertible sheaves
(iv) H1(X ,O×X ).
This object is a commutative group.
Restriction to divisors of degree 0 is called the Jacobian variety
of X .
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Topology of Riemann surfaces

X compact Riemann surface of genus g.
(i) π1(X ) = 〈ai ,bi |a1b1 . . . agbga−1

1 b−1
1 . . . a−1

g b−1
g 〉.

(ii) H1(X ,Z) = Z2g .
(iii) dimC H0(X ,Ω) = g.
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Topology of Riemann surfaces

Canonical pairing

H1(X ,Z)× H0(X ,Ω)→ C

(γ, ω) 7→
∫
γ
ω .

I There is a basis ω1, . . . , ωg of H0(X ,Ω) with
∫

ai
ωj = δij .

I zi,j :=
∫

bi
ωj yields M = Zg ⊕ ZZg in Cg .

I M lattice in Cg , composed of every possible value of
integrals of ωj over closed curves.
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Theorems of Abel and Jacobi

Theorem

Div0 X → Cg/M∑
i∈I

[xi − yi ] 7→

(∑
i∈I

∫ xi

yi

ωj

)g

j=1

is surjective and its kernel are the principal divisors.

Corollary
Jac X ∼= Cg/M.
Jac X has a holomorphic structure.
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Theorems of Abel and Jacobi

We have a group homomorphism in C:

exp : Ga,C → Gm,C .

Theorem
Jac X ∼= Gg

m,C/exp(2πiM),
exp(2πiM) is a multiplicative lattice of rang g.
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Semi stable reduction

Theorem
X smooth rigid analytic projective curve
There is a formal covering U such that the associated reduction
has only ordinary double points as singularities.

Definition
X̃ semi-stable, dual graph G:

V (G) = irreducible components vertex set
E(G) = double points edge set
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Example

0• 1• •0

X

X̃ G
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The rigid analytic case

Let X be a rigid analytic curve over K . There is an abelian
variety B over K and an extension

0→ Gt
m,K → Ĵ → B → 0

and a lattice M in Ĵ such that

Jac X = Ĵ/M
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The lattice

The lattice − log|M| ⊂ Rt has the base (vi) with

vij =
∑

e∈γi∩γj

−d(e) · log|q(e)| ,

where
I γi the simple cycles of G,
I d(e) = 1 if γi and γj have the same direction in e,

d(e) = −1 otherwise
I q(e) the height of the annulus corresponding to e .
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