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Valuations

To be able to do analysis, one needs a field and an absolute
value.
Definition
A field K together with |-|: K — R{ is called a valued field, i
(i) |x] =0ifand only if x = 0.
(i) |xy| =|x|-|y| forall x,y € K.
(i) |x +y| < |x[+|y|forall x,y € K.
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Valuations

To be able to do analysis, one needs a field and an absolute
value.

Definition

A field K together with |-|: K — R{ is called a valued field, i
(i) |x| =0ifand only if x = 0.

(i) |xy| =|x|-|y| forall x,y € K.

(i) |x +y| < |x[+|y|forall x,y € K.

Usually for K = Q one defines
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Valuations

Let us instead set

‘f‘ )0 ifa=20
bl | pr®)-+@ else

with
» pprime
» v(n) = max{k € N; pX|n} for n e N
For example for p = 5 we get |5 = 1, |75] = 5, |1465| = 125

We get the stronger version of (iii)
(i) |x 4+ y| < max(|x],|y|) for all x,y € K.
and call the field a non-Archimedean valued field
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Consequences

v

Totally disconnected topology
No meaningful measures

v

v

“Freshman’s second dream”

o0
) " ax converges < ax — 0
k=0

v

Hensel's lemma: Newton’s method convergence a priori
Close connection to the finite field Fp

v
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Repairing the topology

Totally disconnected topology does not work for geometry.
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Repairing the topology

Totally disconnected topology does not work for geometry.
Idea: Restrict coverings and open sets to “admissible” ones

Definition
X set, S C P(X) set of subsets of X, {Cov U} ycs family of
coverings.
iy U Ves=UNVe6.
(i) Ue &= {U} € Cov U.
(iii) 1t U € &,{U}je; € Cov U and {Vjj};cy, € Cov U;, then the
covering { Vj}icsjey is also admissible.

(iv) If U,V e &with U c Vand {V;};c; € Cov V, then the
covering {V; N U}, of U is admissible.
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Reduction

If K is a Non-Archimedean valued field, then

R:={xeK,; |x|<1}isaringandm:={x € K; |x| <1}isa
maximal ideal in R, k := R/m.

Example

K=Qp, a €{0,...,0—1},me Ny,

x=33 apfam#0.
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Reduction

If K is a Non-Archimedean valued field, then
R={xeK; |x|<1}isaringandm:={xec K; x| <1}isa
maximal ideal in R, k := R/m.

Example

K=Qp, a €{0,...,0—1},me Ny,
x=33 apfam#0.

|X| :pm!

Zp/m:Fp,;(:ao



/2B Rigid analysis | Reduction Sophie Schmieg | September 2013

Reduction

If K is a Non-Archimedean valued field, then
R={xeK; |x|<1}isaringandm:={xec K; x| <1}isa
maximal ideal in R, k := R/m.

Example

K=Qp, a €{0,...,0—1},me Ny,
X = Zio:—m akpka am#0.

x| =p™,

Zp/m = Fp,;( = ao

X curve over K, X curve over k.
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Divisors

X: y? = x(x + 1)(x — 1) elliptic curve
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Divisors
X: y? = x(x + 1)(x — 1) elliptic curve
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Divisors and principal divisors: Example 1

2— f(x,y)
|
zi ;
1

f =

x <
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Divisors and principal divisors: Example 1
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Divisors and principal divisors: Example 2

f(xy)
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Divisors and principal divisors: Example 2
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New curve: circle parametrized by ¢.

X:{(cosp,siny); ¢ € [-m, 7|}
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Line bundles

New curve: circle parametrized by .

X:{(cosp,siny); ¢ € [-m, 7|}

Question

What is meant by saying
a scalar field is
continuous on X?

fy = cos(5p) - ¢

11
fo = — .
P 008(24,0) 12 P
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11
f> = cos (?cp) 4
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11
fo = cos (?cp) L
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Line bundles: Notations

One denotes

» f; € HO(X, Ox), f; is a global section of the trivial line
bundle Oy, the bundle of functions on X.

» f € HO(X, L), f» is a global section of the line bundle L.
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Line bundles: Notations

One denotes
» fi € HO(X, Ox), f; is a global section of the trivial line
bundle Oy, the bundle of functions on X.
» f € HO(X, L), f» is a global section of the line bundle L.

Important example
Q}(, the line bundle of holomorphic differential forms of a

Riemann surface X.
The “unit” here is dz with z local parameter on X.
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Jacobian variety

Let X be a smooth, projective, algebraic curve. Then the
following is isomorphic:



ATZXIll Jacobian variety | General Definition Sophie Schmieg | September 2013

Jacobian variety

Let X be a smooth, projective, algebraic curve. Then the
following is isomorphic:

(i) Divisors modulo principal divisors



ATZXIll Jacobian variety | General Definition Sophie Schmieg | September 2013

Jacobian variety
Let X be a smooth, projective, algebraic curve. Then the
following is isomorphic:
(i) Divisors modulo principal divisors
(if) Line bundles modulo isomorphy



ATZXIll Jacobian variety | General Definition Sophie Schmieg | September 2013

Jacobian variety
Let X be a smooth, projective, algebraic curve. Then the
following is isomorphic:
(i) Divisors modulo principal divisors
(if) Line bundles modulo isomorphy
(iii) Invertible sheaves
(iv) HY(X, 0%).
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Jacobian variety
Let X be a smooth, projective, algebraic curve. Then the
following is isomorphic:
(i) Divisors modulo principal divisors
(if) Line bundles modulo isomorphy
(ii) Invertible sheaves
(iv) HY(X, 0%).
This object is a commutative group.
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AETZ< Il Jacobian variety | General Definition

Jacobian variety
Let X be a smooth, projective, algebraic curve. Then the
following is isomorphic:
(i) Divisors modulo principal divisors
(if) Line bundles modulo isomorphy
(ii) Invertible sheaves
(iv) HY(X, 0%).

This object is a commutative group.
Restriction to divisors of degree 0 is called the Jacobian variety

of X.
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Topology of Riemann surfaces

X compact Riemann surface of genus g.
(i) m(X) = (@, bilarby ... agbga; 'by ' ... a5 'by").
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Topology of Riemann surfaces

X compact Riemann surface of genus g.
(i) m(X) = (@, bilarby ... agbga; 'by ' ... a5 'by").
(i) Hy{(X,Z) = 79.

(i) dime HO(X, Q) = g.
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Topology of Riemann surfaces

Canonical pairing

Hi(X,Z) x HO(X,Q) — C
(’y,w)»—>/yw )
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Topology of Riemann surfaces

Canonical pairing

Hi(X,Z) x HO(X,Q) — C
(’y,w)»—>/w )

» There is a basis wy, . . .,wg of HO(X, Q) with fai wj = Ojj-
> Zjji= fb,- w;j yields M = 79 @ Z79 in C9.
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Topology of Riemann surfaces

Canonical pairing

Hi(X,Z) x HO(X,Q) — C
(’y,cu)»—)/w )

» There is a basis w, ...,wg of HO(X, Q) with fa,- wj = 0j.
> Zjj = [, wjyields M = Z9 & Z79 in C9.

» M lattice in CY9, composed of every possible value of
integrals of w; over closed curves.
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Theorems of Abel and Jacobi

Theorem
DIV X — C9/M
Xj 9
S0 -yl o (Z / w,-)
icl iel YYi j=1

is surjective and its kernel are the principal divisors.
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Theorems of Abel and Jacobi

Theorem
DIV X — C9/M
Xj 9
S0 -yl o (Z / w,-)
icl iel YYi j=1

is surjective and its kernel are the principal divisors.

Corollary
Jac X = C9/M.
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Theorems of Abel and Jacobi

Theorem

DIV X — C9/M
Xj 9
Sty (3
icl iel YYi j=1
is surjective and its kernel are the principal divisors.

Corollary
Jac X = C9/M.
Jac X has a holomorphic structure.
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Theorems of Abel and Jacobi

We have a group homomorphism in C:

eXp Ga’(c — Gm7(c .
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Theorems of Abel and Jacobi

We have a group homomorphism in C:

eXp G’a’(c — Gm’(c .

Theorem
Jac X = G, ./ exp(2wiM),
exp(2riM) is a multiplicative lattice of rang g.
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Semi stable reduction

Theorem

X smooth rigid analytic projective curve

There is a formal covering 1 such that the associated reduction
has only ordinary double points as singularities.
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Semi stable reduction

Theorem

X smooth rigid analytic projective curve

There is a formal covering 1 such that the associated reduction
has only ordinary double points as singularities.

Definition
X semi-stable, dual graph G:

V(G) = irreducible components vertex set
E(G) = double points edge set



LAVZ<IN The rigid analytic case Sophie Schmieg | September 2013

Example




LAVZ<IN The rigid analytic case Sophie Schmieg | September 2013

Example




LAVZ<IN The rigid analytic case Sophie Schmieg | September 2013

Example




LAVZ<IN The rigid analytic case Sophie Schmieg | September 2013

Example




LAVZ<IN The rigid analytic case Sophie Schmieg | September 2013

Example




LAVZ<IN The rigid analytic case

Example

1

Sophie Schmieg | September 2013



LrlZ<Bl The rigid analytic case Sophie Schmieg | September 2013

The rigid analytic case

Let X be a rigid analytic curve over K. There is an abelian
variety B over K and an extension

0-Ghyx—J—>B—=0
and a lattice M in J such that

Jac X = J/M
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The lattice
The lattice — log|M| C R! has the base (v;) with

vj= Y —d(e)-loglq(e)|
€M
where
» ~; the simple cycles of G,

» d(e) = 1if v; and ~; have the same direction in e,
d(e) = —1 otherwise

» g(e) the height of the annulus corresponding to e .
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