
A.N. Shiryaev
Steklov Mathematical Institute

and Lomonosov Moscow State University

Optimal stopping problems for

Brownian motion with drift and disorder;

application to

mathematical finance and engineering

1



§ 1. ESTIMATION of the DRIFT of BROWNIAN MOTION

INTRODUCTION

We consider two models of observed processes (Xt)t≥0 driven by

Brownian motion (Bt)t≥0.

Model A: (Part I)

Xt = µt+Bt or, in differentials, dXt = µdt+ dBt,

where µ is a random parameter which does not depend on B.

Model B: (Part II)

Xt = µ(t− θ)+ +Bt or dXt =




dBt, t < θ,

µ dt+ dBt, t ≥ θ,

where (µ, θ) are random parameters which do not depend on B.
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Our presentation are based on the recent works:

• U. Cetin, A. A. Novikov, A. Shiryaev. A Bayesian estimation

of drift of fractional Brownian motion

(Preprints, LSE, UTS.)

• A. Shiryaev, M. Zhitlukhin. A Bayesian sequential testing

problem of three hypotheses for Brownian motion.

(Statistics & Risk Modeling, 2011, No. 3)

• M. Zhitlukhin, A. Shiryaev. Bayesian disorder problems on

filtered probability spaces

(TPA, 2012, No. 3)
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• A. Aliev Towards a problem of detection of a disorder which

depends on trajectories of the process (TPA, 2012, No. 3)

• M. Zhitlukhin, A. Muravlev. Solution of a Chernoff problem

of testing hypotheses on drift of Brownian motion

(TPA, 2012, No. 4)

• A. Shiryaev, M. Zhitlukhin. Optimal stopping problems for a

Brownian motion with a disorder on a finite interval

(TPA, 2013)
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We consider some problems of financial economics which can be

solved by the methods of optimal stopping. The general problem

of such type can be formulated as follows: To find the value

function

V (T) = sup
τ≤T

EGτ ,

where τ is a stopping time, T is a finite horizon. Of course, it is

interesting to find also the optimal stopping time τ∗ for which

EGτ∗ = V (T) (if this stopping time exists).

A lot of books are written on optimal stopping. For example,

G. Peskir and A. Shiryaev.

Optimal stopping and free-boundary problems.

We would like to expose here our results obtained together with

several our colleagues (A. Novikov, X. Y. Zhou,...).
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ESTIMATION of the DRIFT COEFFICIENT

We observe a process X = (Xt)t≥0

Xt = µt+Bt

where µ is a random parameter which does not depend on B.

Decision rule based on FX-observations (FX = (FX
t )t≥0, FX

t =

σ(Xs, s ≤ t)), is a pair δ = (τ, d), where

◮ τ is a FX-stopping time (i.e., {τ ≤ t} ∈ FX
t for any t ≥ 0);

◮ d is a FX
τ -measurable function (taking values in R).
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The Bayesian risk which we consider is given by

R = inf
(τ,d)

E[cτ +W (µ, d)],

where

◮ E is the mean with respect to the measure generated by

(independent) µ and B;

◮ W is a penalty function; Eτ <∞.

Due to the representation

E[cτ +W (µ, d)] = E

{
E

[
cτ +W (µ, d)

∣∣∣FX
τ

]}

and the FX
τ -measurability of τ and d, we need to find

E

[
W (µ, d)

∣∣∣FX
τ

]
.
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The conditional distribution of µ is determined by

P

(
µ ≤ y

∣∣∣FX
t

)
=

y∫
−∞

dP(Xt
0 |µ = z)

dP(Xt
0 |µ = 0)

dPµ(z)

∞∫
−∞

dP(Xt
0 |µ = z)

dP(Xt
0 |µ = 0)

dPµ(z)

,

with the Radon–Nikodým derivative

dP(Xt
0 |µ = z)

dP(Xt
0 |µ = 0)

of the measure of the process Xt
0 = (Xs, s ≤ t) with µ = z w.r.t.

the measure of the process Xt
0 = (Xs, s ≤ t) with µ = 0.
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Calculating explicitly the Radon–Nykodým derivative, we find

P

(
µ ≤ y

∣∣∣FX
t

)
=

y∫
−∞

ezXt−z2t/2 dPµ(z)

∞∫
−∞

ezXt−z2t/2 dPµ(z)
.

If Pµ(z) has a density, dPµ(z) = p(z)dz,

then the conditional density µ admits the representation

p(y,Xt; t) :=
dP(µ ≤ y | FX

t )

dy
=

eyXt−y2t/2p(y)
∞∫

−∞
ezXt−z2t/2p(z) dz

.
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Thus, for d = d(τ) we have

E[W (µ, d) | FX
τ ] =

∫

R

W (y, d(τ)) · p(y,Xτ , τ) dy.

If for each τ there exists an FX
τ -measurable function d∗(τ) such

that

inf
d∈FX

τ

∫

R

W (y, d) · p(y,Xτ ; τ)dy =

=

∫

R

W (y, d∗(τ)) · p(y,Xτ ; τ)dy (≡ G(τ,Xτ)) ,

then (with the notation p = Lawµ)

inf
(τ,d)

E[cτ +W (µ, d)] = inf
τ

E[cτ +G(τ,Xτ)] (≡ V (p)).

If τ∗ is an optimal time for the right-hand side,

then (τ∗, d∗(τ∗)) is an optimal solution of the initial problem.
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EXAMPLE 1 (classical mean-square criterion)

W (µ, d) = (µ− d)2 and µ ∼ N (m,σ2)

In this case

V (p) = inf
τ

E[cτ + v(τ)], where v(t) = 1/(t+ σ−2).

The optimal time τ∗ is deterministic, at that

(a) if
√
c < σ2, then τ∗ is a unique solution to the

equation v(τ∗) =
√
c, i.e., τ∗ = c−1/2 − σ−2;

(b) if
√
c ≥ σ2, then τ∗ = 0.

Optimal d∗ coincides with the a posteriori mean E(µ | FX
τ∗):

(c) d∗ =





√
cXτ∗ +m

√
c/σ2, if

√
c < σ2,

m, if
√
c ≥ σ2.
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How can one get the representation

V (p) = inf
τ

E[cτ + v(τ)] for v(t) = 1/(t+ σ−2) ?

Consider

inf
(τ,d)

E[cτ + (µ− d)2].

For a given τ the optimal d∗(τ) is E(µ | FX
τ ):

d∗(τ) =

∫

R

y · p(y,Xτ ; τ) dy.
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It is interesting to observe that if we denote

A(t, x) =

∫

R

y · p(y, x; t) dy,

then from the explicit form of p(y, x; t) we can see that

A′
x(t, x) =

∫

R

y2 · p(y, x; t) dy −A2(t, x).

So, A′(t, Xt) = E

[
(µ− E(µ | FX

t ))2
∣∣∣ FX

t

]
. Thus,

A′
x(t, Xt) is the variance of µ conditioned on FX

t .

Consequently,

V (p) = inf
τ

E[cτ +A′
x(τ,Xτ)]

(
≡ inf

τ
E[cτ +G(τ,Xτ)]

)
.
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If µ ∼ N (m,σ2), then the conditional variance has the form

Ax(t,Xt) = v(t),

where v(t) solves the Riccati equation (Kalman–Bucy filter)

v′(t) = −v2(t), v(0) = σ2,

i. e.,

v(t) =
1

t+ σ−2
.

Thus,

V (p) = inf
τ

E

[
cτ +

1

t+ σ−2

]
,

which proves (a) and (b) for τ∗.
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Representation (c) for d∗ = E(µ | FX
τ∗) follows from the formula

d∗(τ∗) =
∫

R

yp(y,Xτ∗; τ
∗) dy

= Xτ∗v(τ
∗) +m exp

(
−
∫ τ∗

0
v(s) ds

)

= Xτ∗
σ2

1 + σ2τ∗
+

m

1 + σ2τ∗
,

whence we find

d∗(τ∗) =





√
cXτ∗ +m

√
c/σ2, if

√
c < σ2 (τ∗ = c−1/2 − σ−2),

m, if
√
c ≥ σ2 (τ∗ = 0).
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EXAMPLE 2 (criterion connected with the precise detection,

when d∗
= µ)

W (µ, ·) = −ǫµ(·)

where ǫµ is a Dirac function. In this case

∫

R

W (µ, d)p(τ, Xτ , y) dy = −p(τ,Xτ , d) = − p(d) exp(Xτd− 1
2τd

2)
∫
R p(z) exp(xz − 1

2τz
2) dz

.

Thus, d∗(τ) is a mode of the conditional density p(τ,Xτ , ·) (i.e.,

any point of local maximum p(τ,Xτ , ·)).

If the support of p is R and the function p is differentiable,

then d∗(τ) solves the equation

p′(d)
p(d)

− τd = −Xτ .
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In normal case µ ∼ N (m,σ2) the mode coincides

with the conditional mean (see Example 1):

d∗(τ) =





√
cXτ +m

√
c/σ2, if

√
c < σ2 (τ = c−1/2 − σ−2),

m, if
√
c ≥ σ2 (τ = 0).

In this case

G(τ,Xτ) = −p(τ,Xτ ; d∗(τ)) = − 1√
2πv(τ)

.
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Taking into account that E(cτ +G(τ,Xτ)) = E(cτ − 1/
√

2πv(τ)),

we obtain the equality that τ∗ = t∗, where

c− 1

2

√
v(t∗)
2π

= 0.

Consequently,

t∗ =




1/(8πc2) − 1/σ2, if 8πc2 < σ2,

0, if 8πc2 ≥ σ2.

The corresponding function d∗ is given by

d∗ = v(τ∗)Xτ∗ +m
v(τ∗)
σ2

= 8πc2Xτ∗ +m
8πc2

σ2
.

Of great interest are problems, where µ lies in a finite interval

[µ1, µ2] with, e.g., uniform distribution. In this case optimal

time τ∗ is NOT deterministic.
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§ 2. Bayesian sequential estimation of the drift of

fractional Brownian motion

We assume the observed process X = (Xt)t≥0 has the representation

Xt = θt+BHt ,

where BH = (BHt )t≥0 is a fractional Brownian motion with

BH0 = 0, EBHt = 0, E|BHt −BHs |2 = |t− s|2H , 0 < H < 1.

In case H 6= 1/2 the process BH is not a semimartingale; in case

H = 1/2 the process B1/2 is a Brownian motion.
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We consider the problem:

To find a sequential optimal rule δ∗ = (τ∗, d∗)

inf
δ∈D

E[cτ + w(θ, d(τ))] = E[cτ∗ + w(θ, d∗)],

where D is a class of rules with stopping time τ ≤ T < ∞ w.r.t.

the flow FX
t = σ(Xs; s ≤ t); d(τ) is FX

τ -measurable; w(τ, d) is

a “penalty” function.

In this talk we consider the penalty functions

w(θ, d) = |θ − d|2 and w(θ, d) = −δ(θ, d),
where δ(θ, d) if the Dirac delta function which can be understood
as the distributional limit as ε→ 0:

δ(θ, d; ε) =




−1/(2ε) if d ∈ (θ − ε, θ+ ε),

0 if d 6∈ (θ − ε, θ+ ε).
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If E|w(θ, d)|< ∞, then E(cτ+w(θ, d(τ))) = E[cτ+E(w(θ, d(τ)) | FX
τ )].

By the generalized Bayes formula, the conditional density

p(y;X, t) =
dP(θ ≤ y | FX

t )

dy

has the following representation:

p(y;X, t) =
p(y)Lt(y,X)

∫
E p(y)Lt(y,X) dy

,

where p(y), y ∈ E, is a density of the distribution of θ and

Lt(y,X) is a Radon–Nikodým derivative of the measure generated

by Xu = yu+ BHu (on (Ω,F , (FX
t )t≥0,P)) w.r.t. the measure of

Xu = BHu , u ≤ t.
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LEMMA 1 (Norros, Valkeila, Virtano [Bernoulli 5 (1999), 571–587]).

We have

Lt(y,B
H) = exp

{
yMt(B

H) − y2

2
〈M(BH)〉t

}
,

where M = (Mt(B
H))t≥0 is a fundamental Gaussian martingale

with independent increments such that

〈M〉t = D(Mt(B
H)) = C2

2t
2−2H ,

C2
2 =

Γ(3/2 −H)

4H(1 −H)Γ(1/4 +H)Γ(2 − 2H)
,

Mt(B
H) = c

∫ ∞

0
K(t, s) dBHs , K(t, s) = C1(st− s2)1/2−H , s ∈ (0, t),

C1 = 2HB(3/2 −H,1/2 +H)−1,

where B(x, y) is a beta function (Euler integral of the first kind).
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So,

p(y;X, t) =
p(y) exp{yMt(X) − y2

2 〈M〉t}
∫
p(y) exp{yMt(X) − y2

2 〈M〉t} dy
,

and hence the optimal d∗ should be found from the following

relation:

inf
d

E[w(θ, d) | FX
τ ] ≡ E[w(θ, d∗) | FX

τ ] =

∫
w(y, d∗)p(y;X, τ) dy.
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The case of QUADRATIC PENALTY FUNCTION

Here we consider the case w(θ, d) = |θ−d|2. It is well known that

inf E(|µ − d(τ)|2 | FX
τ ) is achieved for τ < ∞ with the decision

function

d∗(τ) = E(µ | FX
τ ) =

∫
yp(y;X, τ) dy.

LEMMA 2. Let θ ∼ N(m,1). Then for any t ≥ 0

E(θ | FX
t ) =

m+Mt(X)

1 + 〈M〉t
and D(θ | Ft) =

1

1 + 〈M〉t
.

Direct calculations show that

inf
δ∈D

E

[
cτ + |θ − d(τ)|2

]
= inf

τ
E

[
cτ +

1

1 + 〈M〉τ

]
= inf

t∈[0,T ]
FH(t),

where FH(t) = ct+
1

1 + C2
2t

2−2H
.
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THEOREM 1. Let θ ∼ N(m,1), w(θ, d) = |θ − d|2. In this case the

optimal stopping time τ∗ is deterministic and has the form:

1) if H > 1/2, then

τ∗ = arg inf
t∈[0,T ]

FH(t) =




t∗1, if t∗1 < T ,

T, if t∗1 ≥ T ,

where t∗1 is a solution of the equation

cF ′
H(t) − 2(1 −H)C2

2t
1−2H

1 + C2
2t

2−2H
= 0;

2) if H = 1/2, then

τ∗ = arg inf
t∈[0,T ]

F1/2(t) =





0, if c ≥ 1,

c−1/2 − 1, if c < 1 and T > c−1/2 − 1,

T, if c < 1 and T ≤ c−1/2 − 1;

here F1/2(t) = ct+ 1/(1 + t);
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3) if H ∈ (0,1/2), then one can easily find that the function FH(t)

has a maximum at the point t1 and minimum at the point t2 > t1;

then the optimal time τ∗ is defined by the relation

τ∗ =





0, if T < t1 or t1 < T < t2 and F(T) ≥ 1,

t2, if T ≥ t2 and F(t2) < 1,

T, if t1 < T < t2 and F(T) ≤ 1.

The optimal decision function is

d∗ =
m+Mτ∗(X)

1 + C2
2(τ∗)2−2H

.
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The case of the Dirac-type penalty function w(θ, d) = −δ(θ, d).

In this case

E[w(θ, d) | FX
t ] =

∫

E
w(y, d)p(y;X, t) dy = −p(d;X, t).

So, inf E(w(θ, d) | FX
t ) is achieved when d is a MODE of the a

posteriori density.

Assume further that p(y) is a differentiable function. Then the

optimal decision d∗ should be a root of the equation

d

dy
p(d;X, t) = p′(y)eyMt(X)−y2

2 〈M〉t

+ p(y)[Mt(X) − y〈M〉t]eyMt(X)−y2

2 〈M〉t = 0,

or, equivalently,
p′(y)
p(y)

+Mt(X) − y〈M〉t = 0 .
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Assume θ ∼ N(m,1). Then p′(y)/p(y) = −(y−m); hence the optimal

decision d∗ at any stopping time τ satisfies −(d∗ − m) + Mτ(X) −
d∗〈M〉τ = 0, thus d∗ = m+Mτ(X)

1+〈M〉τ . Note that the optimal decision d∗

is the same as for quadratic penalty function, but the value of the

penalty function is different: direct calculations show that

E[w(θ, d∗) | FX
τ ] = −p(d∗, X, τ) = − p(d∗)ed∗Mτ(X)−(d∗)2〈M〉τ

∫∞
−∞ p(y)eyMt(X)−y2

2 〈M〉t dy

= −
√

1 + 〈M〉τ√
2π

.

Thus

inf
δ∈D

E[cτ + w(θ, d)] = inf
τ≤T

E

(
cτ −

√
1 + 〈M〉τ√

2π

)
= inf

t≤T
GH(t),

where GH(t) = ct−
√

1 + C2
2t

2−2H

√
2π

.
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If H > 1/2, then the unique minimum of the function GH(t)

on (0,∞) is achieved at the point s∗, which is a positive root of

the equation

G′
H(t) = c− C2

2(2 − 2H)t1−2H

√
8π
√

1 + C2
2t

2−2H
= 0.

Hence the optimal time τ∗ is defined by the relations

τ∗ =




s∗1, if s∗1 < T,

T, if s∗1 ≥ T .

If H = 1/2, then G1/2(t) = ct−
√

1 + t)/
√

2π, hence the optimal τ∗

is defined by the relations

τ∗ =





0, if c ≥ 1√
8π
,

1
8πc2

− 1, if c <
1√
8π

and T >
1

8πc2
− 1,

T, if c <
1√
8π

and T ≤ 1

8πc2
− 1. 29



If H ∈ (0,1/2), then one can easily find that the function GH(t)

has a maximum at the point s∗1 and then a minimum at the

point s∗2 > s∗1. Hence the optimal observation time τ∗ is defined

by the relations

τ∗ =





0, if T < s∗1 or s∗1 < T < s∗2 and GH(T) ≥ 1,

s∗2, if T ≥ s∗1 and GH(s∗2) < 1,

T, if s∗1 < T < s∗2 and GH(T) ≤ 1.

Considerations presented above provides the proof of the following

theorem.
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THEOREM 2. Let θ ∼ N(m,1) and w(θ, d) = −δ(θ, d). Then

the optimal stopping time τ∗ is deterministic and has the form

given above. The optimal decision function is

d∗ =
m+Mτ∗(X)

1 + C2
2(τ∗)2−2H

.
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CONCLUDING REMARK.

Suppose Xt = θ
∫ t

0
f(X, s) ds+Wt and w(θ, d) = (θ− d)2. Here

Lt(y,X) = exp

{
y
∫ t

0
f(X, s) dXs −

y2

2

∫ t

0
f2(X, s) ds

}

(if, for example, E exp

{
y2

2

∫ T

0
f2(W, s) ds

}
< ∞). Thus we obtain

that for any stopping time τ <∞

d∗τ =
m+

∫ τ
0 f(X, s) dXs

1 +
∫ τ
0 f

2(X, s) ds
.
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It is easy to find that here

inf
δ

E

(
c
∫ τ

0
f2(X, s) ds+ (θ − d)2

)

= inf
τ

E

(
c
∫ τ

0
f2(X, s) ds+

1

1 +
∫ τ
0 f

2(X, s) ds

)
.

Assume
∫∞
0 f2(X, s) ds <∞. Then the optimal stopping time is

τ∗ = inf

{
t ≥ 0:

∫ t

0
f2(X, s) ds = t∗(c)

}
,

where t∗(c) =




0, if c ≥ 1,

c−1/2 − 1, if c < 1.
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INTERESTING PROBLEM:

Let dXt = θ dt+ dBt , where (Bt)t≥0 is a Brownian motion. Here

Xt

t
= θ+

Wt

t
and

Wt

t
→ 0 (P-a.s.), t→ ∞.

So, it is interesting to find E0 inf{t: |Ws/s|≤ ε, s ≥ t} =: E0σε(ω).

Since for each θ, −∞ < θ < ∞, we have

Pθ

(
σε(ω) ≤ x

ε2

)
= P

(
sup

0≤t≤1
|Wt|<

√
x
)
,

it follows that E0σε(ω) =
c

ε2
for some constant c .

PROBLEM: To find E0σε(ω) for the model

dXt = θ dt+ dBHt ,

where (BHt )t≥0 is a fractional Brownian motion.
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§ 3. Chernoff’s problem

We observe a random process

Xt = µt+Bt,

where µ ∼ N (µ0, σ
2
0) does not depend on B.

Bayesian risk:

R(τ, d) = E[cτ + k|µ| I{d 6= sgn (µ)}]

where d is a FX
τ -measurable function taking values ±1:

if d = +1, then we accept the hypothesis H+:µ > 0

if d = −1, then we accept the hypothesis H−:µ ≤ 0.

Quantities c, k > 0 are given constants.
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In a remarkable way, the Chernoff problem reduces to a problem

on optimal stopping of the absolute value of Wiener process.

For fixed µ0 and σ2
0, introduce a process W = (Wt)t≤1,

Wt = σ0(1 − t)Xt/σ2
0(1−t)

− tµ0/σ0

where W1 is defined as the limit of Wt as t→ 1.

One can prove that W is a Wiener process,

EWt = 0, EW2
t = t and W0 = 0.
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The theorem below shows that to find an optimal decision rule

in the initial problem

inf
(τ,d)

R(τ, d) = inf
τ,d

E[cτ + k|µ| I{d 6= sgn (µ)}] (A)

it suffices to find

Vµ0,σ0 = inf
τ≤1

E

[
2

σ3
0(1 − τ)

− |Wτ + µ0/σ0|
]
. (B)

(This “Vµ0,σ0-problem” was widely propagandized by L. Shepp

and A. N. Shiryaev as an interesting nonlinear optimal stopping

problem for Brownian motion, independently of Chernoff’s problems.)

In the sequel we assume without loss of generality that c = k = 1.
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THEOREM

1) Let τ∗B be an optimal time in problem (B).

Then optimal decision rule (τ∗A, d
∗
A) in problem (A) has the form

τ∗A =
τ∗B

σ2
0(1 − τ∗B)

, d∗A = sgn (Xτ∗B
+ µ0/σ

2
0).

2) Optimal time τ∗B in problem (B) has the form

τ∗B = inf{0 ≤ t ≤ 1 : |Wt + µ0/σ0|≥ aσ0(t)},
where aσ0(t) is a nonincreasing function on [0,1] such that aσ0(t) >

0 for t < 1 and aσ0(1) = 0.
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THEOREM (continued)

3) Function aσ0(t) is a unique continuous solution of the integral

equation

G(1 − t, a(t))

1 − t
=

∫ 1

t

2

σ3
0(1 − s)2

×

×
[
Φ

(
a(s) − a(t)√

s− t

)
− Φ

(
−a(s) − a(t)√

s− t

) ]
ds

in the class of functions a(t) such that a(t) ≥ 0 for t < 1 and

a(1) = 0.

Here function G(t, x) is defined in the following way:

G(t, x) =
1√
t
ϕ

(
x√
t

)
− |x|

t
Φ

(−|x|√
t

)
, t > 0, x ∈ R,

where ϕ(x), Φ(x)is are standard normal density and distribution

function.
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REMARK

Chernoff has considered the process X ′
t = Xt−1/σ2

0
+ µ0/σ

2
0,

which satisfies the equation

dX ′
t =

X ′
t

t
dt+ dB′

t, t ≥ 1/σ2
0,

with some Brownian motion B′.

Then the optimal decision rule in problem (A) is obtained by
finding the optimal time τ∗C in the problem

V ′(t, x) = inf
τ≥t

Et,x[τ −G(τ,X ′
τ)] (C)

for t = 1/σ2
0, x = µ0/σ

2
0.

Optimal times τ∗A and τ∗C are connected by τ∗A = τ∗C − 1/σ2
0.

Optimal d∗A equals sgn (X ′
τ∗C

).
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REMARK (continued)

Optimal time τ∗C = τ∗C(x, t) in problem (C) is

τ∗C = inf{s ≥ t : |X ′
s|≥ γ(s)},

where γ(s) is a certain strictly positive function for t > 0 (which

does not depend on parameters µ0, σ0.)

From the construction of processes W and X ′ we find that

γ(t) = σ0t · aσ0(1 − 1/(σ2
0t)), t ≥ 1/σ2

0.
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NUMERICAL SOLUTION
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Boundary γ(t)
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PROOF of the THEOREM

Step 1 (reduction to problem for Wiener process).

It suffices to consider decision rules (τ, d) with Eτ < ∞. For any

such rule we have

R(τ, d) = E[τ + E(µ− | Fτ)I{d = +1} + E(µ+ | Fτ)I{d = −1}].

Thus, we need to find time τ∗ which minimizes the value

E (τ) = E[τ + min{E(µ− | Fτ), E(µ+ | Fτ)}],
and to put

d∗ =




+1, E(µ− | Fτ∗) ≤ E(µ+ | Fτ∗),

−1, E(µ− | Fτ∗) > E(µ+ | Fτ∗).
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By the normal correlation theorem,

E (τ) = E[τ +G(τ + 1/σ2
0, Xτ + µ0/σ

2
0)]

where G(t, x) is the function

G(t, x) =
1√
t
ϕ(x/

√
t) − |x|

t
Φ(−|x|/

√
t),

already introduced above.

The innovation representation for X implies

dXt = E(µ | Ft) dt+ dB̄t ⇒ dXt =
Xt + µ0/σ

2
0

t+ 1/σ2
0

dt+ dB̄t.

with Brownian motion B̄t = Xt −
∫ t
0 E(µ | Fs) ds.

In particular, X is a Markov process.
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Direct calculations yield

Lt,x[G(t, x) + |x|/2t] = 0

where

Lt,x =
∂

∂t
+
x+ µ0/σ

2
0

t+ 1/σ2
0

· ∂
∂x

+
1

2

∂2

∂x2
.

Then for any stopping time τ , Eτ < ∞, by applying the Itô

formula to the expression

E (τ) = E[τ +G(τ + 1/σ2
0, Xτ +m0/σ

2
0)],

we find

E (τ) = E

[
τ − |Xτ +m0/σ

2
0|

2(τ + 1/σ2
0)

]
+G

(
1

σ2
0

,
m0

σ2
0

)
+

|m0|
2

.
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Also by direct calculation we get that

the process Mt =
Xt +m0/σ

2
0

σ0(t+ 1/σ2
0)

− m0

σ0
is a martingale.

Using a change of time, we find that

the process Wt = Mt/σ2
0(1−t)

is a Brownian motion.

Then for any stopping time τ such that Eτ <∞ we have

E (τ) =
σ0
2

E

[
2

σ3
0(1 − τB)

− |WτB + µ0/σ0|
]

+ . . . . . .

where . . . . . . is the deterministic part which does not depend on τ ,
τB is a stopping time associated with τ by the formula

τB =
σ2
0τ

1 + σ2
0τ
.
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Thus, to find optimal decision rule (τ∗A, d
∗
A) in the initial problem

of distinguishing between H+ and H− it suffices to find optimal

time τ∗B in problem

Vµ0,σ0 = inf
τ≤1

E

[
2

σ3
0(1 − τ)

− |Wτ + µ0/σ0|
]

(B)

and to put

τ∗A =
τ∗B

σ2
0(1 − τ∗B)

, d∗A = sgn (Xτ∗B
+ µ0/σ

2
0).
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Step 2 (analysis of the structure of the optimal time in problem

(B)).

For the solution of problem (B) consider the value function

V (t, x) = inf
τ≤1−t

E

[
2/σ2

0

1 − (τ + t)
− |Wτ + x|

]
− 2/σ2

0

1 − t
,

letting V (1, x) = 0 for all x.

One can prove that V (t,x) is continuous, and optimal stopping

time has the form

τ∗(t, x) = inf{s ≥ 0 : (s+ t,Ws + x) 6∈ C},
where C is the set of continuation of observation:

C = {(t, x) : V (t, x) < −|x|}
(−|x| is a gain from instantaneous stopping).
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Analyzing the structure of V (t, x), we establish that

C = {(t, x) : t ∈ [0,1), |x|< a(t)} ,

where a(t) is some nonincreasing function on [0,1] such that

a(t) > 0 for t < 1 and a(1) = 0.

Moreover, one can prove that a(t) is continuous on [0,1].
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Step 3 (integral equation).

Using the general theory of optimal stopping, one can prove that

V (t, x) solves the following problem for the operator Lt,x:





Lt,xV (t, x) = − 2/σ3
0

(1 − s)2
, |x|< a(t),

∂V

∂x
(t, x) = −sgn (x), x = ±a(t),

V (t, x) = −|x|, |x|≥ a(t).

Applying the Itô formula gives

EV (1,W1−t + x) = V (t, x)

+

∫ 1

t
Lt,xV (s,W1−s + x) · I(|W1−s + x|6= a(s)) du.
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Using equalities V (1, x) = −|x| for all x ∈ R,

Lt,xV (t, x) = 0 for |x|> a(t), we get

V (t, x) = −E|W1−t + x|+
∫ 1

t

2/σ2
0

(1 − s)2
P(|W1−s + x|< a(s)) ds.

Using equality V (t, a(t)) = −a(t), we find

E|W1−t + a(t)|−a(t) =

∫ 1

t

2/σ2
0

(1 − s)2
P(|W1−s + a(t)|< a(s)) ds,

which, after calculation of E|. . . | and P(. . .), turns into the required

equation.
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Step 4 (uniqueness of solution of the integral equation).

Proof follows the method of:

P.V.Gapeev, G.Peskir. The Wiener disorder problem with finite

horizon (Stochastic Process. Appl. 116:2 (2006))

G.Peskir, A.N.Shiryaev. Optimal stopping and free-boundary problems

(Birkhäuser, 2006)
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§ 4. Distinguishing between three hypotheses

We observe a random process

Xt = µt+Bt,

where µ is a random variable, which does not depend on B and

takes values m0, m1, m2 with probabilities π0, π1, π2.

Bayesian risk:

R(τ, d) = E[cτ +W (µ, d)]

where c > 0 is a constant, W (µ, d) is a penalty function:

W (mi,mi) = 0, i = 0,1,2,

W (mi,mj) = aij, i, j = 0,1,2, i 6= j,

with aij > 0.

53



For simplicity, let m1 = −1, m0 = 0, m2 = 1, aij = 1, πi = 1/3.

Introduce the process of a posteriori probabilities πi = (πit)t≥0:

πit = P(µ = mi | FX
t ), i = 0,1,2.

Then for any decision rule (τ, d), R(τ, d) takes the form

R(τ, d) = Eπ

[
cτ + 1 −

∑

i

πiτI{d = µi}
]

Consequently, we must find a time τ∗ which minimizes

Eπ[cτ + 1 − max{π0
τ , π

1
τ , π

2
τ }]

and define d∗ by the formula

d∗ = mi, where i = argmaxi π
i
τ
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Our problem reduces to the problem of optimal stopping of

the observed process X.

From the innovation representation for X we obtain

dXt = E(µ | FX
t ) dt+ dB̄t,

where B̄t = Xt −
∫ t
0 E(µ | FX

s ) ds is a Brownian motion.

The properties of conditional expectation yield

E(µ | FX
t ) = µ0π

0
t + µ1π

1
t + µ2π

2
t = π2

t − π1
t .

Calculating πit by means of the Bayes formula gives

dXt =
e−t/2(eXt − e−Xt)

1 + e−t/2(eXt + e−Xt)
dt+ dB̄t.
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Thus, the problem

infτ E[cτ +G(π0
τ , π

1
τ , π

2
τ )]

with

G(π0
τ , π

1
τ , π

2
τ ) = min{π1

τ + π2
τ , π

0
τ + π2

τ , π
0
τ + π1

τ }
is replaced by the problem

infτ E[cτ +G(τ,Xτ)]

with

G(t, x) =
min(ex + e−x,1 + ex,1 + e−x)

1 + e−t/2(ex + e−x)
.
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Following the general theory, introduce the value function in

problem

V (t, x) = inf
τ

Et,x[cτ +G(τ + t, Xt+τ)]

Optimal stopping time is

τ∗(t, x) = inf
τ
{s ≥ 0 : V (t+ s,Xt+s) = G(t+ s,Xt+s)}.

Now we characterize the set of continuation of observation

C = {(t, x) : V (t, x) < G(t, x)}
for “large” t.
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THEOREM 1 (qualitative behavior of stopping boundaries)

There exist T0 > 0 and functions f(t), g(t) such that the set

C≥T0
= {(t, x) ∈ C : t ≥ T0}

admits the representation

C≥T0
=
{
(t, x) : t ≥ T0 and |x|∈ (g(t), f(t))

}
.

Functions f(t) and g(t) are such that

f(t) = t/2 + b+O(e−t), g(t) = t/2 − b+O(e−t),

where the constant b is a unique solution of the equation

eb − e−b + 2b = 1/(2c).
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OPTIMAL STOPPING BOUNDARIES

x

t

g(t)

−g(t)

f(t)

−f(t)

T0

0

H2

H1

H0

x =
t/2

x = −t/2

The set of continuation of observation has the property

C≥T0
= {(t, x) : t ≥ T0 and |x|∈ (g(t), f(t))}.
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THEOREM 2 (integral equations)

For all t ≥ T0 stopping boundaries f(t), g(t) satisfy the system

of integral equations




c
∫ ∞

t
K1(f(t), t, s, f(s), g(s))ds =

∫ ∞

t
K2(f(t), t, s)ds

c
∫ ∞

t
K1(g(t), t, s, f(s), g(s))ds =

∫ ∞

t
K2(g(t), t, s)ds

where function K1 and K2 are defined by

K1(x, t, s, f, g) =

∑
i[Φs−t(f−x−µi(s−t))−Φs−t(g−x−µi(s−t))]ϕt(x−µit)∑

j ϕt(x−µjt)

K2(x, t, s) =

∑
iϕs−t(µi(s−t)−s/2+x)ϕt(x−µit)

2(2+e−s)
∑
j ϕt(x−µjt)

,

where ϕr(y) = 1√
2πr

e−y2/(2r) and Φr(z) =
∫ z
−∞ϕr(y)dy.
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§ 5. Disorder problem on finite intervals

We observe a process X = (Xt)t≥0,

Xt = µ(t− θ)+ +Bt
,

where θ is a random variable which does not depend on B and

is UNIFORMLY distributed on [0,1].

We consider the following problems:

V1 = inf
τ≤1

[
P(τ < θ) + cE(τ − θ)+

]
,

V2 = inf
τ≤1

E|τ − θ|.
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The key point to solution of problems V1 and V2 is reduction to

Markovian problems of optimal stopping.

Introduce the Shiryaev–Roberts statistic ψ = (ψt)t≥0:

ψt = eµXt−µ
2t/2

∫ t

0
e−µXs+µ2s/2 ds,

or, in differentials,

dψt = dt+ µψt dXt, ψ0 = 0.

Process ψt is related to process of a posteriori probabilities

πt = P(θ ≤ t | FX
t ) by the following formula:

ψt =
πt

1 − πt
(1 − t).
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Lemma

The following representations hold:

V1 = inf
τ≤1

E
∞
[∫ τ

0
(cψs − 1) ds

]
+ 1,

V2 = inf
τ≤1

E
∞
[∫ τ

0
(ψs − (1 − s)) ds

]
,

where E∞[ · ] stands for the expectation in absence of disorder

(i. e., when X is a Brownian motion).

Proof is based on the following equalities:

E(τ − θ)+ = E
∞ [

∫ τ
0ψs ds] ,

P(τ < θ) = 1 − E
∞τ,

E(τ − θ)− = E
∞(1 − τ)2/2.
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Proof of the lemma

1) Rewrite the average time of delay E(τ − θ)+:

E(τ − θ)+ =

∫ 1

0
E[(τ − u)+ | θ = u] du

=
∫ 1

0

∫ 1

u
E[I(s ≤ τ)|θ = u] ds

=

∫ 1

0

∫ 1

u
E
∞[I(s ≤ τ)eµ(Xs−Xu)−µ

2(s−u)/2] ds

= E
∞
∫ τ

0

∫ s

0
eµ(Xs−Xu)−µ

2(s−u)/2 ds

=

∫ τ

0
ψs ds.
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2) Rewrite the probability of a false alarm P(τ < θ):

P(τ < θ) =
∫ 1

0
P(τ < u | θ = u) du

=

∫ 1

0
P
∞(τ < u) du

= E
∞τ

3) Rewrite the average time after a false alarm E(τ − θ)−:

E(τ − θ)− =

∫ 1

0
E[(τ − u)− | θ = u] du

=

∫ 1

0
E
∞(τ − u)− du

= E
∞(1 − τ)2/2

�
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Thus, for the initial problems

V1 = inf
τ≤1

[
P(τ < θ) + cE(τ − θ)+

]
, V2 = inf

τ≤1
E|τ − θ|

we got the representations

V1 = inf
τ≤1

E
∞
[∫ τ

0
(cψs − 1) ds

]
+ 1,

V2 = inf
τ≤1

E
∞
[∫ τ

0
(ψs − (1 − s)) ds

]
,

where ψ has the differential

dψt = dt+ µψt dXt, ψ0 = 0,

and Xt is a Brownian motion w.r.t. P∞.
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Introduce functions f1(t) = 1/c and f2(t) = 1 − t.

Theorem

Optimal stopping times for V1 and V2 are

τ∗i = inf{t ≥ 0 : ψt ≥ a∗i (t)} ∧ 1, i = 1,2

where a∗i (t) is a unique continuous solution of the equation

∫ 1

t
E
∞[(ψs − fi(s))I{ψs ≤ a∗i (s)}

∣∣∣ψt = a∗i (t)
]
ds = 0,

satisfying the conditions

a∗i (t) ≥ fi(t) for t < 1, a∗i (1) = fi(1).
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Theorem (continued)

Values V1 and V2 are given by

V1 =

∫ 1

0
E
∞(cψs − 1)I{ψs < a∗1(s)} ds+ 1,

V2 =

∫ 1

0
E
∞[ψs − (1 − s)]I{ψs < a∗2(s)} ds.
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Proof of the theorem

For the solution of the problem, consider the value function

Vi(t, x) = inf
τ≤1−t

E
∞
x

[∫ τ

0
(ψs − fi(t+ s)) ds

]
, i = 1,2.

where E∞x [ · ] stands for expectation under assumption ψ0 = x.

One can prove that Vi(t, x) are continuous, and optimal stopping

times have the form

τ∗i (t, x) = inf{s ≥ 0 : (t+ s, ψs) 6∈ Ci},
where Ci is the set of continuation of observations:

C = {(t, x) : Vi(t, x) < 0}
(here 0 is a gain from instantaneous stopping).
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Analyzing the structure of functions Vi(t, x), we establish that

Ci = {(t, x) : t ∈ [0,1), x < a∗i (t)},
where a∗i (t) are unknown nonincreasing functions on [0,1],

at that ai(t) ≥ fi(t) for t < 1 and ai(1) = fi(1).

One can prove that ai(t) are continuous on [0,1].
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One can prove also that Vi(t, x) solves a free-boundary problem




V ′
t (t, x) + LψV (t, x) = fi(t) − x, x < ai(t),

V (t, x) = 0, x ≥ ai(t),

V (t, x−) = 0, x = ai(t),

V ′
x−(t, x) = 0, x = ai(t),

where

Lψ =
µ2x2

2

∂2

∂x2
+

∂

∂x
.
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Applying the Itô formula to Vi(s, ψs), we get

E
∞
x V (1,ψ1−t) = V (t, x)

+ E
∞
x

∫ 1−t

0
[V ′
t + LψV ](t+ s, ψs) · I(ψs < a(t+ s)) ds

Since Vi(1, ·) ≡ 0, and Vi(t, x) = 0 for x = a∗i (t), we find

V (t, x) = −E
∞
x

∫ 1−t

0
[V ′
t + LψV ](t+ s, ψs) · I(ψs < a(t+ s)) ds,

which gives, after substitution of [V ′
t +LψV ](t, x) = fi(t)−x, the

required equation.

Proof of uniqueness of solution of the integral equations is

given in (Zhitlukhin, Shiryaev, TPA, 2012).
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Numerical results

Integral equation
∫ 1

t
E
∞[(ψs − fi(s))I{ψs ≤ a∗i (s)}

∣∣∣ψt = a∗i (t)
]
ds = 0 (∗)

can be solved numerically by “backward induction” :

1. Fix the partition 0 = t0 < t1 < . . . < tn = 1;

2. Take a∗i (tn) = fi(1) (by the theorem);

3. If a∗i (tk), . . . , a
∗
i (tn) are calculated, then we find a∗i (tk−1) by

• calculating integral
∫ 1
tk−1

in (∗) with stepwise function equal to

a∗i (·) in points tk, . . . , tn and

• solving the resulting algebraic equation w.r.t. a∗i (tk−1).
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Example

For µ = 4 consider the problem

V2 = inf
t≤1

E|τ − θ|.
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process Xt; θ = 0.5. process ψt and boundary a∗2(t).
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§ 6. Disorder and Finance. I: Bubbles

We observe Brownian motion with disorder (Xt)t≥0:

dXt = [µ1I(t < θ) + µ2I(t ≥ θ)] dt+ σ dBt

where θ ∼ U [0,1], µ1 > 0 > µ2 (in case of long position), µ1 <
0 < µ2 (in case of short position), σ > 0 (drift changes from µ1

to µ2). We restrict our analysis to the case of long position only.

Below we consider problems of optimal stopping:

HI = sup
τ≤1

EXτ , HII = sup
τ≤1

E exp(Xτ − σ2τ/2).

Earlier problems of such type were considered in (Beibel, Lerche,

1997), (Shiryaev, Novikov, 2008), (Ekström, Lindberg, 2012).
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Application in mathematical finance

Let the price of an asset be modeled by geometrical Brownian
motion with disorder St = exp(Xt − σ2t/2):

dSt = [µ1I(t < θ) + µ2I(t ≥ θ)]St dt+ σSt dBt, S0 = 1,

i. e., the price in average grows up “till” time θ, and falls down
“after” θ.

Problem HI consists in maximization of logarithmic utility of
selling asset:

HI = sup
τ≤1

E(logSτ), [для µ′i = µi − σ2/2].

Problem HII consists in maximization of linear utility of selling
asset:

HII = sup
τ≤1

ESτ .
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Solution of the problem Hl

Since Xt = µ1t+(µ2−µ1)(t−θ)++σBt, we have for any stopping

time τ ≤ 1

EXτ = E[µ1τ − (µ1 − µ2)(τ − θ)+].

Denoting µ = (µ1 − µ2)/σ and X̃ = (Xt − µ1t)/σ, we find

ψt = e−µX̃t−µ
2t/2

∫ t

0
eµX̃s+µ2s/2 ds.

Analogously to the result above,

HI = sup
τ≤1

E
∞
[∫ τ

0
(µ1 − (µ1 − µ2)ψs) ds

]
,

where E∞[ · ] stands for expectation under assumption that X̃ is

a standard Brownian motion.
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Theorem

Optimal stopping time in problem HI is

τ∗l = inf{t ≥ 0 : ψt ≥ a∗l (t)} ∧ 1

where a∗l (t) is a unique continuous solution of the equation

∫ 1

t
E
∞[(µ1 − (µ1 − µ2)ψs)I(ψs ≤ a∗l (s))

∣∣∣ψt = a∗l (t)
]
ds = 0,

satisfying the conditions

a∗l (t) ≥ µ1

µ1 − µ2
for t < 1, a∗l (1) =

µ1

µ1 − µ2
.

The value HI = EXτ∗l
can be found by the formula

HI =

∫ 1

0
E
∞[µ1 − (µ1 − µ2)ψs]I(ψs < a∗l (s)) ds.
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Solution of problem Hg

We introduce a new measure P̃ such that

(X̃t − σt) is a P̃-Brownian motion,

where X̃ = (Xt − µ1t)/σ.

We establish that for any stopping time τ ≤ 1

E
PSτ = E

P̃

[
Sτ ×

dPτ

dP̃τ

]
= E

P̃
[
eµ1τ(ψτ + 1 − τ)

]
,

at that process ψ has differential

dψt = [1 − (µ1 − µ2)ψt] dt+ µψt d(X̃t − σt), ψ0 = 0.

Applying the Itô formula, we get

E
PSτ = E

P̃

[∫ τ

0
eµ1s(µ2ψs + µ1(1 − s)) ds

]
+ 1.
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Theorem

Optimal stopping time in problem HII is

τ∗g = inf{t ≥ 0 : ψt ≥ a∗g(t)}

where a∗g(t) is a unique continuous solution of the equation

∫ 1

t
E

P̃
[
(µ2ψs + µ1(1 − s))I(ψs ≤ a∗g(s))

∣∣∣ψt = a∗g(t)
]
ds = 0,

satisfying the conditions

a∗g(t) ≥ µ1

|µ2|
(1 − t) for t < 1, a∗g(1) = 0.

The value HII = ESτ∗g van be found by the formula

HII =

∫ 1

0
E

P̃[µ2ψs + µ1(1 − s)]I(ψs < a∗g(s)) ds+ 1.
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Example

Consider problems HI and HII for µ1 = −µ2 = 2, σ = 1.
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process St; θ = 0.5. ψt and boundaries a∗l (t), a
∗
h(t).

81



III. When to sell Apple?

Let us apply our results to problems of mathematical finance

based on real asset prices.

Consider two “bubbles” on financial markets:

• Increase of prices of Apple assets from 2009 to 2012.

• Increase of prices of Internet companies assets at the end of

1990’s.

Problem consists in choosing optimal time of exit from “bubble”

with maximum gain.
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REMARK. The basic idea of bubbles is that there is a FAST

rate of growth in prices, then PEAK, and then a fast DECLINE.

There are several papers of Robert Jarrow and Philip Protter

(see, e.g., SIAM J. Financial Math., 2 (2011), 839–865), where they

developed the “martingale theory of bubbles”. Their analysis is

based on idea that prices of bubbles behave similarly to the

path behavior of the “strict nonnegative continuous local

martingale” . A typical path of such processes is to shoot up to

high value and then quickly decrease to small values and remain

at them. Jarrow and Protter proposed some “stochastic volatility

models”, saying that appearing of bubbles in prices relates with

increasing of the volatility.

Our analysis of bubbles is based on idea of work with drift terms

(increasing/decreasing).
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Example 1. Increase of Apple asset prices

In 2009–2012 prices on Apple assets grew up in almost 9 times.

Minimum equals $82.33 (6/03/09), maximum equals $705.07

(21/09/12).

However, already on 15/11/12 the price fell down to $522.62.
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The fall down at the end of

2012 was expected already

at the beginning of the year.
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Setting of the problem of optimal exit from “bubble”

Agents on the market might not be aware of existence of a

probability-statistical model of price evolution.

From their point of view, the question considered sounds as

follows:

1. One observe a sequence of prices

P0, P1, . . . , PN ,

where P0 is price on 6/03/09 and PN is price on 31/12/12.

2. One expect prices to fall down at the end of 2012

3. For a given date n0 < N of buying asset, one wants to find a

time of selling it which would maximize the gain.
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Representation of observed prices by process with disorder

1. We project dates n0, . . . , N onto the interval [0,1], since one

market day has length ∆t = 1/(N − n0).

Assume that prices are modeled by process

dSt = [µ1I(t < θ) + µ2I(θ ≥ t)]St dt+ σSt dBt,

where Sk∆t = Pk/P0 and θ ∼ U [0,1].

2. Parameters µ1 and σ are estimated from data P0, . . . , Pn0.

The choice of µ2 is subjective but µ2 = −µ1 is proved empirically

to be good (one can see it from other cases).

3. Then one applies results on solution of the problem of maximization

of ESτ .
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Results of choice of time for selling Apple

Buy Sell

3-Jan-11 ($ 329.57) 9-Oct-12 ($ 635.85)

1-Jul-11 ($ 343.26) 8-Oct-12 ($ 638.17)

3-Jan-12 ($ 411.23) 8-Oct-12 ($ 638.17)

1-May-12 ($ 582.13) 9-Oct-12 ($ 635.85)

3-Jul-12 ($ 599.41) 9-Oct-12 ($ 635.85)

1-Aug-12 ($ 606.81) 11-Oct-12 ($ 628.10)
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Results of the work of our method in case when assets were

bought on 3 January 2012.

On the left are prices (red point = time of selling).

On the right are statistic ψ and optimal stopping boundary.
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Example 2. Rise of NASDAQ index

• From the beginning of 1994 till March

2000, NASDAQ-100 grew up in more

than 12 times, from 395.53 to 4816.35.

Then it fell down in 6 times, to 795.25,

by October 2002

• For example, the Soros Foundation

has lost $ 5 bln. of $ 12 bln.
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Results of choice of time for selling NASDAQ-100

Buy Sell

2-Jul-98 ($ 1332.53) 12-Apr-00 ($ 3633.63)

4-Jan-99 ($ 1854.39) 13-Apr-00 ($ 3553.81)

1-Jul-99 ($ 2322.32) 13-Apr-00 ($ 3553.81)

1-Oct-99 ($ 2404.45) 14-Apr-00 ($ 3207.96)

3-Jun-00 ($ 3790.55) 14-Apr-00 ($ 3553.81)

Results are obtained under assumption that prices begin to fall

down before the end of 2001 (this was really expected by most

traders).

90



PROBLEM I. Let U = U(x) be a utility function (e.g., U(x) =

log x or U(x) = x). In the paper

A.Shiryaev, Z.Xu, X.Y.Zhou. Thou Shalt Buy and Hold

the following problem was considered:

To find an optimal stopping time τ∗ such that

EU
(Pτ∗
MT

)
= sup

τ≤T
EU

( Pτ
MT

)
,

where Pt = St/Bt is discounted price,

dBt = rBt dt, B0 = 1, dSt = St(µ dt+ σ dWt), S0 = 1.

Prices Pt solve the equation

dPt = Pt((µ− r) dt+ σ dWt), P0 = 1,

and Pt = exp(νt+ σWt), where ν = µ− r − σ2/2.
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THEOREM I. For the linear function U(x) = x the optimal

stopping time is degenerate:

τ∗ =




T, if ν > 0,

0, if ν ≤ 0.
(∗)

(The case 0 < ν and ν ≤ −σ2/2 was considered in the paper by

A.Shiryaev, Z.Xu, X.Y.Zhou; the case −σ2/2 < ν ≤ 0 was studied

by J. du Toit, G.Peskir.)

The case of the logarithmic function U(x) = log x is simple:

sup
τ≤T

E log
Pτ

MT
= sup

τ≤T
E[ντ + σWτ −MT ] = sup

τ≤T
E[ντ + σWτ ] − EMT

= sup
τ≤T

Eντ − EMT =




νT − EMT , if ν > 0,

−EMT , if ν ≤ 0.

So, in the logarithmic case the optimal stopping time is given by (∗).
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PROBLEM II. Now we consider the model

dSt = St
[
(µ1I(t < θ) + µ2I(t ≥ θ)) dt+ σ dWt

]

with µ1 > µ2, ν1 ≡ µ1 − r − σ2/2 > 0, ν2 ≡ µ2 − r − σ2/2 < 0 so that

µ2 − 1
2σ

2 < r < µ1 − 1
2σ

2.

If the value µ1 remains unchanged on the whole interval [0, T ] and

ν1 > 0, then by the previous result (Problem I) we should

hold the stock until time t = T and sell it at this time.

But in fact the model admits that at a certain random time θ the

regime switches from µ1 to µ2 and if ν2 ≡ µ2 − r − σ2/2 < 0, then

again by the previous problem we should

sell this stock at this time θ.

However, this time is unobservable and so the time of selling must

depend on the “correct” estimation of the time θ. 93



Our second problem (Problem II) is the following:

To find “one-time rebalancing” stopping time τ∗T such that

VT = sup
τ≤T

EU
( Pτ
MT

)
, Pτ =

Sτ

Bτ
.

We shall consider the case U(x) = logx, i.e.,

VT = sup
τ≤T

E log
Pτ

MT
= sup

τ≤T
E logPτ − E logMT .

Assume that “hidden” parameter θ has an exponential distribution

P(θ = 0) = π, P(θ > t | θ > 0) = e−λt,
where λ > 0 is known and π ∈ [0,1). Brownian motion W and θ
in

dSt = St
[
(µ1I(t < θ) + µ2I(t ≥ θ)) dt+ σ dWt

]

are independent.
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We see that Pt = St/Bt = expXt, where

Xt =
∫ t

0
ν(s, θ) ds+ σWt,

ν(s, θ) = µ(s, θ) − r − 1

2
σ2, µ(s, θ) = µ1I(s < θ) + µ2I(s ≥ θ).

LEMMA 1. For any stopping time τ ≤ T (<∞)

E logPτ ≡ EXτ = E

∫ τ

0
[ν1 − (ν1 − ν2)πs] ds (∗∗)

where πs = P(θ ≤ s | Fs), Fs = σ(Su, u ≤ s).
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Proof. For Xt =
∫ t
0 ν(s, θ) ds+ σWt we have an innovation

representation

Xt =
∫ t

0
E[ν(s, θ) | Fs] ds+ σW t,

where W = (W t,Ft) is an innovation (Wiener) process.

Since E[ν(s, θ) | Fs] = ν1(1− πs)+ ν2πs = ν1 − (ν1 − ν2)πs, we get

the representation (∗∗).
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LEMMA 2. For (πt)t≥0 we have

dπt = λ(1 − πt) dt+
ν2 − ν1

σ
πt(1 − πt) dW t

where

W t =
1

σ

[
Xt −

∫ t

0
(ν1(1 − πs) + ν2πs) ds

]
.

Proof is well known and can be done in the following way.
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Define ϕt =
πt

1 − πt
, Lt =

dP0
t

dP∞
t

, where Pit = Law(Xs, s ≤ t | θ = i).

Then

Lt = exp
{ν2 − ν1

σ2
Xt−

1

2

ν22 − ν21
σ2

t
}
, dLt = Lt

ν2 − ν1
σ2

(dXt−ν1 dt).

By the Bayes formula,

ϕt = ϕ0e
λt dP

0
t

dP∞
t

+ λeλt
∫ t

0
e−λs

dPst
dP∞

t

ds = ϕ0e
λtLt + λeλt

∫ t

0
e−λs

Lt

Ls
ds,

where we used the property
dPst
dP∞

t

=
Lt

Ls
.
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By the Itô formula,

dϕt =
[
λ(1 + ϕt) − ϕtν1

ν2 − ν1
σ2

]
dt+ ϕt

ν2 − ν1
σ2

dXt

with ϕ0 = π/(1 − π). From πt = ϕt/(1 + ϕt) it follows

dπt = (1 − πt)
[
λ− ν1

ν2 − ν1
σ2

πt −
(ν2 − ν1)

2

σ2
π2
t

]
dt

+
ν2 − ν1
σ2

πt(1 − πt) dXt,

where Xt =
∫ t

0
[ν1 − (ν1 − ν2)πs] ds+ σW t.

So, dπt = λ(1 − πt) dt+
ν2 − ν1
σ2

πt(1 − πt) dW t. Since

E logPτ = EXτ = E

{∫ τ

0
[ν1 − 1 − (ν1 − 1 − ν2)πs] ds+ σW τ

}

and EW τ = 0 (τ ≤ T), we get the representation

E logPτ = E

∫ τ

0
[ν1 − (ν1 − ν2)πt] dt.
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REMARK. For Pt = eXt we obtain

EPt = E exp
{∫ τ

0
[(µ1 − r) − (µ1 − µ2)π̂s] ds

}
,

where (π̂t)t≤T has the stochastic differential

dπ̂t = (1 − π̂t)[λ+ π̂t(ν2 − ν1)] dt+
ν2 − ν1
σ2

π̂t(1 − π̂t) dW t.

Return to the problem of finding

VT = sup
τ≤T

E logPτ = sup
τ≤T

∫ τ

0
[ν1 − (ν1 − ν2)πt] dt.
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LEMMA 3. For VT = VT (λ;π) we have the representation

VT (λ; π) =
ν1
λ

(1 − π) − ν1
λ
RT (c;π)

where c = λ|ν2|/ν1 and

RT (c;π) = inf
τ≤T

{P(τ ≤ θ) + cE(τ − θ)+}.

Proof. From dπt = λ(1 − πt) dt+
ν2 − ν1

σ
πt(1 − πt) dW t we find

λt = (πt − π) + λ
∫ t

0
πs ds−

ν2 − ν1
σ

∫ t

0
πs(1 − πs) dW s.
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So, ν1t =
ν1
λ

(πt − π) + ν1

∫ t

0
πs ds −

ν1(ν2 − ν1)

λσ

∫ t

0
πs(1 − πs) dW s

and

E

∫ τ

0
[ν1 − (ν1 − ν2)πt] dt

=
ν1
λ

E

{
(πτ − π) +

ν2
ν1
λ
∫ τ

0
πt dt

}

= −ν1
λ
π − ν1

λ
E

{
πτ +

|ν2|
ν1

λ
∫ τ

0
πt dt

}

=
ν1
λ

(1 − π) − ν1
λ

E

{
(1 − πτ) +

|ν2|
ν1

λ
∫ τ

0
πt dt

}
.
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Note that P(τ < θ) = EI(τ < θ) = EE(I(τ < θ) | FX
t ) = E(1 − πτ)

and

E(τ − θ)+ = E

∫ T

0
I(θ ≤ s ≤ τ) ds = E

∫ T

0
E[I(θ ≤ s)I(s ≤ τ) | FX

s ] ds

= E

∫ T

0
I(s ≤ τ)E[I(θ ≤ s) | FX

s ] ds = E

∫ τ

0
πs ds.

So, E

{
(1 − πτ) +

|ν2|
ν1

λ
∫ τ

0
πt dt

}
= P(θ ≤ τ) +

|ν2|
ν1

λE(τ − θ)+

and

E

∫ τ

0
[ν1−(ν1−ν2)πt] dt =

ν1
λ

(1−π)−ν1
λ

{
P(θ ≤ τ)+

|ν2|
ν1

λE(τ−θ)+
}
.

Taking infimum over τ ≤ T , we find the required formula

VT (λ; π) =
ν1
λ

(1 − π) − ν1
λ
RT (c;π).
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The solution of the problem

RT (c;π) = inf
τ≤T

{
P(τ ≤ θ) +

|ν2|
ν1

λ E(τ − θ)+
}
.

for the case T = ∞ was obtained by the author: the optimal

stopping time is given by

τ∗∞ = inf{t ≥ 0:πt ≥ g∗∞}, (•)
with g∗∞ a unique root of the equation Ψ(g) = 1, where

Ψ(x) =
c

ρ

∫ x

0
exp

{
−λ
ρ
[H(x) −H(y)]

} dy

y(1 − y)2

with c =
|ν2|
ν1

λ, ρ =
(µ1 − µ2)

2

2σ2
, H(x) = log

x

1 − x
− 1

x
.
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For the case T <∞, the optimal stopping time is given by

τ∗T = inf{0 ≤ t ≤ T : πt ≥ g∗T(t)},
where g∗ = g∗T(t), 0 ≤ t ≤ T , is a unique solution of the nonlinear

integral equation (Gapeev & Peskir)

Et,g(t)πT = g(t) + c
∫ T−t

0
Et,g(t)[πt+uI(πt+u < g(t+ u))] du

+ λ
∫ T−t

0
Et,g(t)[(1 − πt+u)I(πt+u < g(t+ u))] du.
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1

π
t π t→

→t g(t)

0
Tτ∗

λ
λ+c

g∗

∞
is defined on page 104

g̃∞ = λ
λ+c

= ν1
ν1−ν2

= ν1
ν1+|ν2|

g̃∞
① ①

g∗

∞
①

↑

gT(0)
(T→∞)

①

t 7→ gT(t)
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