Strongly taut immersions into Riemannian manifolds

Vladimir Shmarov

postgraduate student, Moscow State University

2013

Introduction

Constructing the Morse function on a compact manifold M:

- Consider some immersion $f: M \longrightarrow \mathbb{R}^N$
- \circ Consider the functions $L_q(x) = |x-q|^2$ on \mathbb{R}^N
- For generic $q \in \mathbb{R}^N L_q \circ f$ is a Morse function on M

Weak Morse inequalities: $\mu_i \ge b_i = \dim_{\mathbb{Z}_2} H_i(M, \mathbb{Z}_2)$

If all equalities hold then the Morse function is called *perfect*.

Tautness in \mathbb{R}^N

When would $L_q \circ f$ be a perfect Morse function on M? The immersion $f: M \longrightarrow \mathbb{R}^N$ is called *taut* if one of these equivalent conditions is satisfied:

Def.1. $L_q \circ f$ is a perfect Morse function on M for generic $q \in \mathbb{R}^N$; **Def.2.** For every closed Euclidean ball $B \subset \mathbb{R}^N$ the homomorphism $i^* : H_*(f^{-1}(f(M) \cap B), \mathbb{Z}_2) \longrightarrow H_*(M, \mathbb{Z}_2)$ induced by inclusion map $i : f^{-1}(f(M) \cap B) \longrightarrow M$ is injective.

Actually, any taut immersion is an embedding.

Examples in \mathbb{R}^2

Fig. 1

Fig. 2

Interesting facts

1. Sphere S^k can be tautly embedded into \mathbb{R}^N only as a Euclidean sphere in the linear subspace.

2. Any tautly embedded submanifold is Dupin.

3. Only these 3-manifolds can be tautly embedded to some Euclidean space:

 $S^3, \mathbb{R}P^3, S^3/Q_8, S^1 \times S^2, S^1 \times \mathbb{R}P^2, (S^1 \times S^2)/\mathbb{Z}_2, T^3$

Terng-Thorbergsson's generalization

C.-L. Terng, G. Thorbergsson

"Taut Immersions into Complete Riemannian Manifolds".

Let $f: M \longrightarrow N$ be an immersion into complete Riemannian manifold.

Let $P(p, f(M)) = \{\gamma : [0, 1] \longrightarrow N | \gamma(0) = p, \gamma(1) \in f(M) \}$ Define $E_p : \gamma \mapsto \int_0^1 |\gamma'(t)|^2 dt$

Def.3. The immersion f is called *taut*, if E_p is a perfect Morse functional on the space P(p, f(M)) for a generic point p.

Strong tautness

Def.4. We shall call an immersion $f : M \longrightarrow N$ into a complete Riemannian manifold *strongly taut,* if the homomorphism $i^* : H_*(f^{-1}(f(M) \cap B), \mathbb{Z}_2) \longrightarrow H_*(M, \mathbb{Z}_2)$ induced by the inclusion map, is injective for any closed metric ball $B \subset N$.

If the homomorphism is injective in k-dimensional homologies then the immersion is called *strongly k-taut*.

As in \mathbb{R}^N , any 0-taut immersion is an embedding.

An embedding f is 0-taut if and only if $f(M) \cap B$ is always connected.

Some results

Th.1. Let $M^{n-1} \hookrightarrow N^n$ be a strongly 0-taut embedding into the compact Riemannian manifold. If the group $\pi_1(N^n, M^{n-1})$ is non-trivial then

 $N^n \setminus M^{n-1}$ is connected.

Sketch of proof.

 $\gamma : [0,1] \longrightarrow N$ is the shortest path, which satisfies the condition that $\gamma \neq 1$ in $\pi_1(N^n, M^{n-1})$. Consider $B(m, \frac{l(\gamma)}{2})$. Then $M \cap B = \{\gamma(0), \gamma(1)\}$. So $\gamma(0) = \gamma(1)$. Now consider $\delta(t) = \gamma(1-t)$. If $N \setminus M$ is not connected then $\delta(0) = \gamma(0)$ and $\delta'(0) = \gamma'(0)$ so $\gamma(t) = \delta(t)$, which is impossible. **End of proof.**

Illustrations for Th.1

Some results

Th.2. If $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ is a torus with the standard metric $g_{ij} = \delta_{ij}$ then $S^1 \hookrightarrow T^2$ is a strongly taut embedding if and only if S^1 is the line x = Const or y = Const.

Thanks for watching!

