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<—Length of Curves

IETEVAP I o stic Curves in Riemannian Space
Length of Curves
Let (M, g =< -,- >) be a Riemannian manifold, / € {[a, b],S'}, v: 1 = M

smooth. ¥ = TW(%) is the push-forward of the vector field %, i.e. the tangent
vector field in 7 (7).
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Length of Curves

Let (M, g =< -,- >) be a Riemannian manifold, / € {[a, b],S'}, v: 1 = M
smooth. ¥ = TW(%) is the push-forward of the vector field %, i.e. the tangent
vector field in 7 (7).

Definition

The length of ~ is given by

£) = [1iolde = [ e ar
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Length of Curves

Let (M, g =< -,- >) be a Riemannian manifold, / € {[a, b],S'}, v: 1 = M
smooth. ¥ = Tv(%) is the push-forward of the vector field %, i.e. the tangent
vector field in 7 (7).

Definition
The length of ~ is given by

£) = [1iolde = [ e ar

Further assume that «y is an immersion, i.e. |§| # 0 on /), and +y is parametrized
s.t. |¥] = 1. Since M is Riemannian there exists a unique connection V yielding
D;, the covariant derivative along 7.
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Length of Curves

Let (M, g =< -,- >) be a Riemannian manifold, / € {[a, b],S'}, v: 1 = M
smooth. ¥ = Tv(%) is the push-forward of the vector field %, i.e. the tangent
vector field in 7 (7).

Definition
The length of ~ is given by

£) = [1iolde = [ e ar

Further assume that «y is an immersion, i.e. |§| # 0 on /), and +y is parametrized
s.t. |¥] = 1. Since M is Riemannian there exists a unique connection V yielding
D;, the covariant derivative along 7.

Definition
The curvature vector of v is defined by Dy € T (7). J
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IEYAP I o stic Curves in Riemannian Space
.
Extremize £

Let W € T () be a smooth vector field along .
The geodesic flow then yields the existence of a smooth variation v.(-) : | = M

such that q
= = W and o = 7.
€ e=0
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Extremize L

Let W € T () be a smooth vector field along .

The geodesic flow then yields the existence of a smooth variation v.(-) : | = M
such that q
w2 = W and o = 7.

€ e=0

Thus for the first variation of £ we have by compatibility

d

_E(’Ve-:)

L
=[< W, >]50 —2 (W)<D'W>ds
de ’ 0 0 7

e=0

where s € [0, £(7y)] denotes the arc length, i.e. ds = ||| dt.
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Extremize L

Let W € T () be a smooth vector field along .
The geodesic flow then yields the existence of a smooth variation v.(-) : | = M

such that
d

& Ve

Thus for the first variation of £ we have by compatibility

= W and 7y = 1v.
e=0

d

_E(’Ve-:)

L
=[< W, >]50 —2 (W)<D'W>ds
de ’ 0 0 7

e=0
where s € [0, £(7y)] denotes the arc length, i.e. ds = ||| dt. Hence we see for
fixed end points (W|,, = 0):

Proposition

The curve v is critical (i.e. £L(7:)|._,=0Y W € T(v))
<Dy =0, ie. ify is geodesic.
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Elastic Energy

Let v: 1 — M be an immersion.

Definition
The Elastic Energy (or Bending Energy) of v is defined as

L() o
E() = /0 D32 ds

For any A > 0, an Elastica (or Elastic Curve) is an immersion v : | — M which is
critical for £(+) + AL(+) =: EX(-).
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Elastic Energy

Let v: 1 — M be an immersion.

Definition
The Elastic Energy (or Bending Energy) of v is defined as

L() o
E() = /0 D32 ds

For any A > 0, an Elastica (or Elastic Curve) is an immersion v : | — M which is
critical for £(+) + AL(+) =: EX(-).

Definition
For a vector field X € T () we denote the normal component of Dy by

VX = DX — (D:X,7) 7.

With help of this abbreviation we can now formulate the first variation of £* in
the next proposition.
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The First Variation
Proposition

Let . be a smooth variation of v with variation field W. Then the following
equation holds:

d A
&g ('Ys) -

where R is the Riemannian curvature endomorphism.
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The First Variation
Proposition

Let . be a smooth variation of v with variation field W. Then the following
equation holds:

/ﬁ(’v)
e=0 B 0

d A
&8 ('Ys)

where R is the Riemannian curvature endomorphism.
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The First Variation
Proposition

Let . be a smooth variation of v with variation field W. Then the following
equation holds:

d £ o
20 = [ RO
& e=0 0

where R is the Riemannian curvature endomorphism.
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The First Variation
Proposition

Let . be a smooth variation of v with variation field W. Then the following
equation holds:

d ., £ C 12 =
gé' () :/o (2R(Dey, %)y +2(V*)" Dy
e=0

where R is the Riemannian curvature endomorphism.
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< Elastic Energy
The First Variation
Proposition

Let . be a smooth variation of v with variation field W. Then the following
equation holds:

d £61) . . . .
&5»\(%) = /0 (RR(D¢y,7)y +2 (VL)z Dy + (|Dt’Y|2 — A)Dy, W> ds

e=0

where R is the Riemannian curvature endomorphism.
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< Elastic Energy
The First Variation
Proposition

Let . be a smooth variation of v with variation field W. Then the following
equation holds:

d £61) . . . .
&SA(%) = /0 (RR(D¢y,7)y +2 (VL)z Dy + (|Dt’Y|2 — A)Dy, W> ds

e=0

+ (W, D) — (294 Dy + (1D~ 23, )]

where R is the Riemannian curvature endomorphism.
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The First Variation
Proposition

Let . be a smooth variation of v with variation field W. Then the following
equation holds:

d £ . . . .
&g)\(%) = /0 (RR(D¢y,7)y +2 (VL)z Dy + (|Dt’7|2 — A)Dy, W> ds

e=0

+ (W, D) — (294 Dy + (1D~ 23, )]

where R is the Riemannian curvature endomorphism. For closed curves
v : S — M the boundary term vanishes and thus the Euler-Lagrange Equation is
given by

. 2 . . .
2R(Dey, T)T +2 (V)" Dey + (IDe4[* = \)Dey = 0 on . 1)
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The First Variation
Proposition

Let . be a smooth variation of v with variation field W. Then the following
equation holds:

d £ . . . .
&SA(WE) = /0 (RR(D¢y,7)y +2 (VL)z Dy + (|Dt’Y|2 — A)Dy, W> ds

e=0

+ [2 (VAW, D) — <2VLD@ + (1D = N, W>] OLM

where R is the Riemannian curvature endomorphism. For closed curves
v : S — M the boundary term vanishes and thus the Euler-Lagrange Equation is
given by

. 2 . . .
2R(Dey, T)T +2 (V)" Dey + (IDe4[* = \)Dey = 0 on . 1)

For space forms, where the sectional curvature is constant to a real number Ky
the Euler-Lagrange Equation (1) simplifies to

2 . . .
2 (V)" Dey + (IDeA* = A+ 2Ko) Dey = 0 on .
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(Taken from [2])
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Willmore Surfaces

Let ¢ : ¥2 < R3 be an immersion, ¥2 a two-dimensional compact manifold.
Definition
Y is called Willmore Surface if it is critical for

W(E) = /z H? dVol,

where g = 1*gg,c is the induced metric and H = 3 tr(S) = 1(k1 + k2) is the
mean curvature of 3.
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<—Willmore Surfaces

Willmore Surfaces

Let ¢ : ¥2 < R3 be an immersion, ¥2 a two-dimensional compact manifold.
Definition

Y is called Willmore Surface if it is critical for
W(E) = / H? dVol,
b

where g = 1*gg,c is the induced metric and H = 3 tr(S) = 1(k1 + k2) is the
mean curvature of 3.

Proposition
The Euler-Lagrange equation for W is given by

AH +2H(H?* — K) on ¥ (2)

v
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Proposition (Langer, Singer '84 [3])

Let v be a closed curve in the hyperbolic half-plane. Then for the torus of
revolution T of v in R® we have W(I') = Z&u(7).
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Proposition (Langer, Singer '84 [3])

Let v be a closed curve in the hyperbolic half-plane. Then for the torus of
revolution T of v in R® we have W(I') = Z&u(7).

Proposition (Dall'Acqua, Deckelnick, Grunau '08 [4])

For a graph u : [—1,1] — R smooth consider the surface of revolution given by

cos¢p —sing 0 u(x)
r:= sing cos¢p O 0 |, 0peR xe[-1,1]
0 0 1 X
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Proposition (Langer, Singer '84 [3])

Let v be a closed curve in the hyperbolic half-plane. Then for the torus of
revolution T of v in R® we have W(I') = Z&u(7).

Proposition (Dall'Acqua, Deckelnick, Grunau '08 [4])

For a graph u : [—1,1] — R smooth consider the surface of revolution given by
cos¢p —sing 0 u(x)
r:= sing cos¢p O 0 |, 0peR xe[-1,1]

0 0 1 X

Then

wn) = Ze8 ((*)) -2r ﬁ] 1_1

where Ey denotes the elastic energy of the curve [-1,1] 5 t — (u(t),t) € H in
the hyperbolic half-plane.
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