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Folie 3/12 Elastic Curves in Riemannian Space ←Length of Curves

Length of Curves

Let (M, g =< ·, · >) be a Riemannian manifold, I ∈ {[a, b],S1}, γ : I → M
smooth. γ̇ = Tγ( d

dt ) is the push-forward of the vector field d
dt , i.e. the tangent

vector field in T (γ).

Definition
The length of γ is given by

L(γ) :=

∫
I

|γ̇(t)|dt =

∫
I

gγ(t)(γ̇(t), γ̇(t))
1
2 dt.

Further assume that γ is an immersion, i.e. |γ̇| 6= 0 on I ), and γ is parametrized
s.t. |γ̇| = 1. Since M is Riemannian there exists a unique connection ∇ yielding
Dt , the covariant derivative along γ.

Definition

The curvature vector of γ is defined by Dt γ̇ ∈ T (γ).
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Extremize L

Let W ∈ T (γ) be a smooth vector field along γ.
The geodesic flow then yields the existence of a smooth variation γε(·) : I → M
such that

d

dε
γε

∣∣∣∣
ε=0

= W and γ0 = γ.

Thus for the first variation of L we have by compatibility

d

dε
L(γε)

∣∣∣∣
ε=0

= [< W , γ̇ >]L(γ)
0 − 2

∫ L(γ)

0

< Dt γ̇,W > ds

where s ∈ [0,L(γ)] denotes the arc length, i.e. ds = ‖γ̇‖ dt. Hence we see for
fixed end points ( W |∂I ≡ 0):

Proposition

The curve γ is critical (i.e. d
dεL(γε)

∣∣
ε=0

= 0 ∀W ∈ T (γ))
⇔Dt γ̇ = 0, i.e. if γ is geodesic.
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Elastic Energy

Let γ : I → M be an immersion.

Definition

The Elastic Energy (or Bending Energy) of γ is defined as

E(γ) :=

∫ L(γ)

0

|Dt γ̇|2 ds

For any λ > 0, an Elastica (or Elastic Curve) is an immersion γ : I → M which is
critical for E(·) + λL(·) =: Eλ(·).

Definition

For a vector field X ∈ T (γ) we denote the normal component of Dt γ̇ by

∇⊥X := DtX − 〈DtX , γ̇〉 γ̇.

With help of this abbreviation we can now formulate the first variation of Eλ in
the next proposition.
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The First Variation

Proposition

Let γε be a smooth variation of γ with variation field W . Then the following
equation holds:

d

dε
Eλ(γε)

∣∣∣∣
ε=0

=

∫ L(γ)

0

〈2R(Dt γ̇, γ̇)γ̇ + 2
(
∇⊥
)2

Dt γ̇ + (|Dt γ̇|2 − λ)Dt γ̇,W
〉
ds

+
[
2
〈
∇⊥W ,Dt γ̇

〉
−
〈

2∇⊥Dt γ̇ + (|Dt γ̇|2 − λ)γ̇,W
〉]L(γ)

0
.

where R is the Riemannian curvature endomorphism.

For closed curves
γ : S1 → M the boundary term vanishes and thus the Euler-Lagrange Equation is
given by

2R(Dt γ̇,T )T + 2
(
∇⊥
)2

Dt γ̇ + (|Dt γ̇|2 − λ)Dt γ̇ = 0 on γ. (1)

For space forms, where the sectional curvature is constant to a real number K0

the Euler-Lagrange Equation (1) simplifies to

2
(
∇⊥
)2

Dt γ̇ + (|Dt γ̇|2 − λ+ 2K0)Dt γ̇ = 0 on γ.
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(Taken from [2])
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Willmore Surfaces

Let ι : Σ2 ↪→ R3 be an immersion, Σ2 a two-dimensional compact manifold.

Definition
Σ is called Willmore Surface if it is critical for

W(Σ) =

∫
Σ

H2 dVolg

where g = ι∗gEucl is the induced metric and H = 1
2 tr(S) = 1

2 (κ1 + κ2) is the
mean curvature of Σ.

Proposition

The Euler-Lagrange equation for W is given by

∆H + 2H(H2 − K ) on Σ (2)
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Proposition (Langer, Singer ’84 [3])

Let γ be a closed curve in the hyperbolic half-plane. Then for the torus of
revolution Γ of γ in R3 we have W(Γ) = π

2 EH(γ).

Proposition (Dall’Acqua, Deckelnick, Grunau ’08 [4])

For a graph u : [−1, 1]→ R+ smooth consider the surface of revolution given by

Γ :=


cosφ − sinφ 0

sinφ cosφ 0
0 0 1

u(x)
0
x

 , φ ∈ R, x ∈ [−1, 1]


Then

W(Γ) =
π

2
E0
H

((
u(·)
·

))
− 2π

[
u̇(t)√

1 + u̇2(t)

]1

−1

where EH denotes the elastic energy of the curve [−1, 1] 3 t 7→ (u(t), t) ∈ H in
the hyperbolic half-plane.
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