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Part 1: Introduction

» Stochastic prediction
» Applications
» Stationary random fields

» Kriging
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Spatial data

1Z01,X2)=Z(x)

{X(t;)}7_, - spatial data in ob-
servation window W C RY.
They are interpreted as a re-
alisation of a real—valued ran-
dom field

X ={X(t): teRY}

which is a spatially indexed
family of random variables
defined on a joint probability
space (22, F, P).
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Stochastic prediction

Let the observations X(t),..., X(t,) of a random field
X = {X(t), t € R} be given for t;,...t, € W, W c RY
being a compact set.

Find a predictor )A((z‘) for X(t), t € {ty,...,tn} thatis
optimal in some sense and has a number of nice
properties such as exactness, continuity, etc.
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Examples of stochastic prediction methods

» Kriging

» Geoadditive regression models
» Whittaker smoothing

» Randomly coloured mosaics

>
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Prediction of wide sense stationary random functions

» Mathematical foundations: extrapolation of stationary time
series A.N. Kolmogorov (1941), N.Wiener (1949).

» Origins of geostatistics: D. Krige (1951), B. Mathérn
(1960), L. Gandin (1963), G. Matheron (1962-63).
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Stationary random fields
Random field X = {X(t) : t € R9} is (strictly) stationary if
its probability law is translation invariant, i.e.,
all finite dimensional distributions are invariant
with respect to any shifts in RY:
foralheR? neN,t,...,t, € R? holds

(X(t + h), ..., X(ta + h) £ (X(t), ..., X(tn)).

Random field X = {X(t) : t € RY} is stationary of
2nd order if E X2(t) < oo for all t € RY and

» E(X(t)) = pforall t.

> y(h)=3E [(X(t + h) — X(t))z] depends only on
vector h, but not on t.
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Stationary random fields

» Strict stationarity +— -4 stationarity of second order
» A second order stationary random field is called
isotropic if C(h) = C(|h|), h € RY.
Correlation structure:

Let the random field X = {X(t)} be stationary of second order.

> Variogram: y(h) = 1E | (X(t + h) — X(1))®

» Covariance function: C(h) = E [X(t) - X(t + h)] — u?
> y(h) = C(0) — C(h)
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Example: Gaussian random fields

» Arandom field {X(t)} is called Gaussian if
the distribution of (X(t), ..., X(t,))" is multivariate
Gaussian foreach 1 < n<ooand ty, ..., t, € RY.

The distribution of X is completely defined by the mean

value function u(t) = E X(t) and covariance function

C(s,t) = Cov(X(s),X(t)), s,t € RY. Hence: strict stationarity
<~ stationarity of second order.
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Ordinary Kriging (D. Krige (1951), G. Matheron (1962-63))

» Assumptions: X is stationary of second order.
» Notation

i : locations of the sample points

X(t) :observed values of X

n : number of sample points

A . weights

Estimator: )A((t) =>"T  NX(t), where 37 A = 1.

The weights \; are chosen such that the estimation
variance o2 = Var(X(t) — X(t)) is minimized.

v

v
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Ordinary Kriging

~ —~ n
» X(t)is unbiased: E X(t) = p since > \j =1
i=1

> a% — min = O'%K: solve the Lagrange equations
n .
Z)‘jr}/(t t)+V:7(t_tl)7 I:17-"an7
=1
]n
YA =1
j=1

» The minimal estimation variance:

n
ook =v+ Y An(ti—t)
i=1
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Ordinary Kriging

Variogram fitting
To find the weights A; from the system of linear equations,
the variogram ~(h) has to be known or estimated
from the data X(t), ..., X(tn).

» Matheron’s estimator: )
Ah) = anmy X (X(B) = X(4))"

if:ti—ti=h
N(h) is the number of pairs (&, ) : t; — tj = h.
Computations are made for h on a grid in R,
» 4(h) not conditionally negative definite = a valid
variogram model has to be fitted to 4(h) e.g. by least
squares
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Variogram fitting

Variogram point cloud and a fitted exponential variogram
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Properties of ordinary kriging

» The kriging predictor exists and is unique.
» BLUE: best linear unbiased estimator by definition.
» Exactness: )A((t,-) =X(t)as.,i=1,...,n
» If X is a stationary Gaussian random field,
X(t) ~ N(u,0?), then X is Gaussian as well,
and X(t) ~ N(u, o3(t)) with

n
og(t) =0 +v=> At — 1)

i=1
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Part 2: Stable laws and integration

Motivation

v

Stable distributions

v

Covariation

v

Random measures

v

v

Stochastic integration
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Random fields without a finite second moment

» Before: Extrapolation of 2nd order stationary
random fields

» Now: need more flexible models and corresponding
extrapolation methods for random fields with infinite
variance. Why do we take care?
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Motivation

Natural disasters and their mapping (geosciences)

U ’—‘,.u

\ ks IJL" =3 b=

Hundred year flood, 2002
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Motivation: storm insurance in Austria

Centers of 2047 postal code regions in Austria
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Motivation: storm insurance in Austria
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Histogram of the deviations Q-Q plot of the deviations

» Goal: Spatial modelling of the deviations
Y(t) = X(t) — p(t) from the mean claim pay-
ments p(t) = E X(t) with random fields.

» However, the distribution of the deviations is not
Gaussian (rather skewed and heavy-tailed).
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Stable distributions

Stable distributions (Kchinchine, Levy, 1930s):

» A random variable X is said to have a stable distri-
bution if there is a sequence of i.i.d. random variables

Y1, Yo, ... and sequences of positive numbers {d,}
and real numbers {a,}, such that

Yi+...+Y, d
%_Fan_))(

d . . . .
where — denotes convergence in distribution.
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Stable distributions

» A random variable X is stable if and only if for
AB>03C>0,DeR:

AXi +BXo 2 CX+D
where X7 and X, are independent copies of X.

» There exists a number « € (0,2] (index of stability)

such that C* = A* + B
» Also referred to as (o )stable distribution

» For o = 2: normal distribution
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Stable distributions

» Characteristic function of an a-stable random
variable X ~ S, (o, 5,1), 0 < a < 2:

E (%) = {e—a|o||i|1+(:gzlisgn0 e e
e’ =sgné In |6])+iud ifo =1
» Parameters o, 8, u are unique for a € (0, 2):

» € R: shift

» [ €[-1,1]: skewness (form) , 5 = 0: symmetry

» o > 0: scale
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Multivariate stable distributions

» A random vector X = (Xi, ..., X4) " is called stable if for
A B>03C>0,DecR:

AXD 1+ BX® L cx+D

» Symmetric random vector
A random vector X in R9 is symmetric if
P(X € A) = P(—X < A) for any Borel set A € RY.
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Multivariate stable distributions

» Characteristic function of an «-stable random
vector X = (Xy,..,Xy)T,0 < a < 2:

— [ 167s|*(1—isgn@T stan = )T (ds)+i0

S .
— [ 107s|(1+i2sgn@"sIn |67 s| ) (ds)+i0"
e % if o =1

where I is a finite (spectral) measure
on the unit sphere Sy of R? and i € RY.
» Parameters I and p are unique for a € (0, 2):
> € R: shift
» [: skewness (form) and scale together.
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Stable distributions

» Symmetric stable random vector
A symmetric a-stable random vector X (Sa.S) in RY
has a characteristic function

SOX(G) — e_ fsd |(975>|Oér(ds)7 9 c Rd

where the spectral measure I is symmetric on S,.

» If I is not concentrated on a great sub-sphere of Sy,
then X is called full-dimensional.
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Stable distributions

Properties and characteristics
» Moments: if p < a then E | X|P < co. For p > a, it holds
E|X|P = 0.
» Covariation: for an a-stable random vector (X, X2) T,
1 < o < 2 with spectral measure I' define

(X1, X, =/ $155% 717 I'(dsy, dsp)
S

where a<P~ := |a|Psgn(a) forac R and p > 0.
» Gaussian case a = 2: if (X, X2) " is a centered Gaussian
random vector then

1
[X1 s X2]2 = ECOV(X1 s Xg)
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Covariation and moments

Lemma (Karcher, Shmileva, S. (2013))

Let1 < a < 2 and suppose that (X, Y)" is an a-stable
random vector with spectral measure I' such that

X ~ Su(ox,Bx,0)and Y ~ S,(oy,By,0). For1 <p < a, it
holds

E(XY<P71*) [X,Y]a(1 —c-By)+c-(X,Y)a
ElYP o '

where (X, Y)a := [g 81|82/ '[(ds) and ¢ := ca p(By) is a
constant. If Y is symmetric, i. e. 5y = 0, then c = 0.
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Random measures

Let (E, £, m) be a measurable space with a o—finite
measure m, & = {A € £: m(A) < oo},

Lo(2) = {random variables on (2, F, P)}.

An independently scattered stable random measure M with
control measure m and skewness intensity 5 : E — Ris a
random measure with independent a—stable increments, i.e.,
an a.s. o—additive function M : & — Lo(Q2) with

M(A) ~ S, ((m(A))“a, | 800 () m(a) 0>

forany A € &.
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Stochastic integration
For f € L*(E), construct I(f) = [ f(x) M(dx), where M is an
independently scattered a-stable random measure on (E, £)
with control measure m and skewness intensity 5.

> Simple functions: for f(x) = -1 gl(x € A)), x € E,
with Aj € &: AiNA;j # 0, i # j, we set

I(f) =" cM(4).
j=1

» General functions: for any f € L*(E), there exists a
sequence of simple functions f, 1 f a.e. on E. Set

I(f) = p— lim I(7y).
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Stochastic integral

This limit exists and does not depend on the choice of the
sequence {f,} tending to f.

» Distribution: I(f) ~ S,(o¥, Bf, pur), Where

o= ([irear m(dx))”a e

5, Je 1007300 m(a)

Je lf(x)1*B(x) m(ax) °
|0, a#1,
o _{ —2 [ f(x)B(x)log |f(x)| m(dx), a=1.
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Example: Spatial modelling of storm data (Austria)

Parameter estimation for the one-dimensional case:

The field X of deviations from the mean claim sizes has the
univariate distribution X(t) ~ S, (o, 3, ) with

«@ B o 1]
1.3562 | 0.2796 | 234.286 | 6.7787
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Part 3: Stable random fields

» Definition
» Spectral representation

» Examples

» Subgaussian random fields
» Stable motion

» Their properties
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Stable random fields

» A random field {X(t), t € R%} is called o-stable if
the distribution of (X(t), ..., X(t,))" is multivariate
a—stable forany 1 < n< ocoand ty, ..., t, € RY.

» A random field {X(t), t € R%} is called separable if
3 a countable subset Ty c R s.t. for all t € R?
X(t) =p— liMg_ oo X(tk) with {tk, k € N} c Tp.

» Consider a stable random field

X(t) = / F(X)M(dx), t € RY,
E
where f; € L*(E), t € RY, and M is an a-stable

independently scattered random measure
with control measure m and skewness (.
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Stable random fields

Spectral representation: for separable in probability
a-stable fields with 0 < a < 2, a # 1 it holds

1
(X(t), te RN £ {/ (X )M(dx) + u(t), teRd}
0

where

» fr € L%(0,1) for all t € RY,

» M is an a-stable independently scattered random
measure on (0, 1) with Lebesgue control measure and
skewness intensity 5(x) =1, x € (0, 1),

» 1 RY — R is some function.

Case o = 1: open.
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Examples: a—stable random fields
Sub-Gaussian random fields:

> Let A~ S, »((cos(ma/4))?/%,1,0) and let
G = {G(t),t € RY} be a stationary zero mean Gaussian
random field with covariance function C. Assume that A is
independent of G. The SaS random field
X = {X(t), t € R} with X(t) = A"/2G(t), t € R% is called
sub-Gaussian.

» Characteristic function of Xy, 4, = (X(t1),..., X(t2)) "
foranyneN, t;,...,t, € R it holds

/2

.....
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Examples: Simulation

Subgaussian random field

X = {AV2G(t), t € [0,1]7}

with o = 1.5, A~ S, »((cos(mwa/4))?/%,1,0) and G being a
stationary isotropic Gaussian random field with covariance

function
C(h) = 7exp{—(h/0.1)?}, h>0.
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Examples: Simulation

Realization of the sub-Gaussian random field
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Examples: a—stable random fields

SaS Lévy motion
X0 = [0 <t < tohM(0K)
[0,1]¢

where t = (1,..., ;)" €[0,1]9, and M is a SaS random
measure with Lebesgue control measure.

Simulation: Two-dimensional SaS Lévy motion

X(1) :/ T{x; < 4, X < LYIM(dx), te[0,1]
[0,1]2

where o = 1.5.

)
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Examples: Simulation

Realization of the Lévy stable motion
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Stable random fields: Properties and characteristics

Let
/ ft , L e Rd

» Symmetry: if 5(x) = 0 Vx then the field X is symmetric.
» Scale parameter of X(t): ox(y) = |If]l .« Where

as above.

EIX(D)P) P = Cas(P) - oxt)

for0 < p < a,0 < a < 2 and some constant ¢, s(p).
» Covariation function: fort;,b e R9and 1 < a < 2

Kty ) = [X(t), X / f (), ()<~ m(d).
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Stable random fields: Properties and characteristics

» Stationarity: if E = RY, fi(x) = f(t — x), x,t € RY,
B(x) = const and
m(dx) = dx then X is stationary (moving average) and
k(s 1) = k(s —t,0)=k(h),h=s—1t,s1tcR

» Linear dependence: For a d-dimensional a-stable
random vector X = (Xi, ..., Xy)T with integral
representation

< / f (X)M(dx), . / 4(x) M(dx))T,

let I be its spectral measure. X is not full-dimensional
(i.e., T is concentrated on a great sub—sphere of Sy) iff
9, ¢iX; = 0 as. for some (cy,...,cy)T € R\ {0}
This is equivalent to ¢, ¢ifi(x) = 0 m-a. e.
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Part 4: Prediction of stable random functions

v

(Non)linear predictors and their properties

» Least scale predictor
» Covariation orthogonal predictor

» Maximization of covariation

Numerical results

v

v

Open problems

Literature

v
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Prediction of stable random functions
Random functions without finite second moments:

|

discrete stable processes: minimization of dispersion
(Cambanis, Soltani (1984); Brockwell, Cline (1985);
Kokoszka (1996); Brockwell, Mitchell (1998); Gallardo et
al. (2000); Hill (2000))

fractional stable motion: conditional simulation
(Painter(1998))

subgaussian random functions: maximum likelihood (ML)
(Painter(1998)), linear regression (Miller (1978)),
conditional simulation

stable moving average processes: minimization of
L'-distance (Mohammadia, Mohammadpour (2009))
a-stable random fields with integral spectral repr.: three
methods (Karcher, Shmileva, S. (2013))
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Prediction

» Let X be a centered (E X(t) = 0, t € RY) a-stable random
field, 1 < o < 2, with skewness intensity ( satisfying the
spectral representation

/f, M(dx), teRY.

» Let X(#),...,X(fn) be the observations of X for
ty,...te W, W c RY being a compact set.

» Non-linear predictors for X(t), t € {t1, ..., tn}: for some
particular random functions (e.g. subgaussian ones) one
can use

» Maximum likelihood (ML) predictors
» Conditional simulators
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Linear predictors

» Linear predictor for X(t), t & {t1,...,ta}:
. n
X(t) =" xX(h),
i=1

where \; = \i(t, ty,..., tp) fori=1,....n.

Properties

» X is unbiased since EX(t) = 0, t € RY
» X is exact if )A((ti) =X(t)as.,i=1,...,n

» X is continuous if Ai = X\i(+ b, ..., tp) are continuous as
functionsof t,i=1,...,n
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Linear predictors

X(t) should be optimal in a sense that it

» minimizes the scale parameter T -X(t)

— Least Scale Linear (LSL) Predictor
» mimics the covariation structure between X(t) and X(1),
f=1,...,n
— Covariation Orthogonal Linear (COL) Predictor
» maximizes the covariation between X(t) and )A((t)
— Maximization of Covariation Linear (MCL) Predictor
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Least Scale Linear Predictor

Generalization of Kriging techniques:

[0

m(dx) — min

f(x) = Aify(x)
=1

« —
IX0-x ~ /E

with respectto Aq, ..., \p.

Non-linear optimization problem = numerical methods for its
solution.
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Least Scale Linear Predictor

Lemma
Let o € (1,2). A solution of the above minimization problem
resolves the system of equations

[X(z}-),X(t)—Zn:A,-X(t,-)] 0, j=1,...n
i=1 o

which can be written as

<a—1>

/Eftj(x) (ft(x)—zn:)\,-ft,(x)> m(dx) =0, j=1,...n.
i=1

This is a system of non-linear equations in A\1,..., An.
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Least Scale Linear Predictor

Theorem

» Existence: The LSL estimator exists.

» Uniqueness: Assume that the random vector
(X(t1), ..., X(t)))" is full-dimensional. Then the LSL
estimator is unique.

» Exactness: If there is a unique LSL estimator, then it is
obviously exact.

» Continuity: If the random field X is stochastically
continuous and (X(t),..., X(ty))" is full-dimensional then
the LSL estimator is continuous.
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Least Scale Linear Predictor

Example SaS Lévy motion
X(t) =[5~ U(x < t)M(dx), where M is a SaS random measure

with Lebesgue control measure. Let t =3/4 and ty = 1. Then
the optimization problem for the LSL predictor is

3/4 1
o - 1— M I
X -X(t) /o | 1] dX+/3/4| 1|%dx

3 o 1 .
= I =M%+ 4IM] — min.
We obtain the LSL predictor

— 1

X =y X )
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Covariation Orthogonal Linear Predictor

Let X be a random field as above. The linear predictor with
weights A1, ..., A\ being a solution of the following system of
equations

[X(8), X(t)]a = X(O, X()]as j=1,....n

is the COL predictor. Itis a linear system of equations

[X( ZA, X(t)]. =0, j=1,...,n

The COL predictor is obviously exact.



Seite 52 Prediction of Stable Stochastic Processes | Evgeny Spodarev |

Covariation Orthogonal Linear Predictor

The regression of X(t) on (X(t),...,X(t,))" is called linear if
there exists some (A1, ..., \y) € R” such that it holds a.s.

E(X()|X(t), ..., X(ta)) = > AiX(1).
i=1

The regression of X(t) on (X(t), ..., X(t,))" is linear if X is
e.g. a (sub)Gaussian random function.

Lemma

If the regression of X(t) on the random vector
(X(t),...,X(t))" is linear then the vector (\1,...,\n)" is a
solution of the COL system of equations.
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Covariation Orthogonal Linear Predictor

Theorem
Let X be an a-stable moving average.

» If the kernel function f : RY — R is positive semi-definite,
then the covariation function « is positive semi-definite. If
f:RY — R, is positive definite and positive on a set with
positive Lebesgue measure, then x is positive definite.

» If the covariation function is positive definite then the COL
predictor exists and is unique.

» If the covariation function is positive definite and
continuous, then the COL predictor is continuous.
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Covariation Orthogonal Linear Predictor

Proof.
The weights of the COL predictor satisfy the system of
equations

x(0) o k(th— 1) M k(t—t)

Wt - w(0) ) \an) \n(t—t)
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Covariation Orthogonal Linear Predictor

Example: SaS Ornstein-Uhlenbeck process.

X(t) = / e NNt~ x > 0)M(dx), tER,
R

for some A > 0, where M is a SaS random measure with
Lebesgue control measure. If ; < b < ... < t, < t, then the
regression of X(t) on (X(t),...,X(t,))" is linear, and

X(1) = e =t X(t).
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Covariation Orthogonal Linear Predictor

Let X be a centered (sub)Gaussian «a-stable random field with
covariance function C of the Gaussian part.

Then
[X(6), X(4)]a = 27/2C(t; — ) C(0)(*~2)/2,

The COL predictor is the solution of the system

c0) - C(th—t)\ (M C(t—t)

C(tn:— t) - § C(:0) )\:n C(t:— t)

and thus coincides with simple kriging.
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Covariation Orthogonal Linear Predictor

Theorem
Let X be a centered (sub)Gaussian «-stable random field with
positive definite covariance function C of the Gaussian part.

» The COL predictor exists and is unique.

» If the covariance function is continuous, then the COL
predictor is continuous.

Theorem

For (sub)Gaussian random fields, the COL and LSL predictors
for X(t) coincide (with the maximum-likelihood (ML) estimator
of X(t)).
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Maximization of Covariation Linear Predictor

Let X be an «-stable random field with spectral integral
representation and o > 1. To construct the MCL predictor, solve

{[Y(?),X(t)}a = S0 M IX(0). X()], — max .

)\1:-~~7)\n

0—)?(\1‘) = 0X(t)>

;. o d
where the condition Tx = OX(r) means X(t) = X(t) for SaS
random fields.
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Maximization of Covariation Linear Predictor

Theorem
Assume that the random vector (X(t;),..., X(t)))" is
full-dimensional.
» Existence: The MCL predictor exists.
» Uniqueness: If[X(t;), X(t)]o # 0 forsomei e {1,...,n}
then the MCL predictor is unique.
» Exactness: If the MCL predictor is unique then it is exact.
» Continuity: If X is a moving average, the covariation
function r is continuous and k(t; — t) # 0 for some
i€{1,...,n} then the MCL predictor is continuous.
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Numerical results
Two-dimensional Sa'S Lévy motion
X(t) = / T{x1 < ty,x < L}M(dx), te]0, 1]2,
[0,1]2

where M is a SaS random measure with m = Lebesgue control
measure and « = 1.5.

Method  5%-Quantile  1st Quartile Median  3rd Quartile  95%-Quantile

LSL -0.5170 -0.1246 0.0000 0.1226 0.5045
COL -0.5263 -0.1289 0.0002 0.1266 0.5137
MCL -0.6093 -0.1455 -0.0007 0.1407 0.5895

—

Summary statistics for the deviations X(t) — X(t).
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Numerical results

Realization of the Lévy stable motion (top left) and the extrapolations (out of 9
observation points) based on the LSL method (top right), the COL method (bottom left)
and the MCL method (bottom right).
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Numerical results

Subgaussian random field

X = {A2G(t),t € [0,1]%}
with a = 1.5, A~ S, »((cos(ra/4))?/,1,0) and G being a
stationary isotropic Gaussian random field with covariance

function
C(h) = 7exp{—(h/0.1)?}, h>0.
Method 5%-Quantile  1st Quartile  Median  3rd Quartile  95%-Quantile
LSL (COL, ML) -1.5451 -0.4446 0.0018 0.4503 1.5363
MCL -1.8204 -0.4899 0.0046 0.5016 1.7580
CS -2.7523 -0.5837 0.0058 0.5985 2.7262

Summary statistics for the deviations X(t) — X(t).
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Numerical results

Realization of the sub-Gaussian random field (top left) and the extrapolations (out of 9
observation points) based on the LSL (COL, ML) method (top right), the MCL method
(bottom left) and the CS method (bottom right).
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Open problems

» Extrapolation methods and their properties for stable
random fields with a € (0, 1]

» Control of skewness of known predictors for
non—-symmetric stable random fields (5 # 0)

» Characterization of the covariation function
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