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Pierre-Louis Moreau de Maupertuis 

(1698-1759)

“If there occurs some change in nature, the amount of action

necessary for this change must be as small as possible”



The principle of least time (1662): The path taken between two points 

by a ray of light is the path that can be traversed in the least time. 

As a consequence, one can deduce the reflection and refraction laws.

Pierre de Fermat (1601–1665)



Reflection Law

θi = θr.

The angle of incidence equals 

the angle of reflection



The ratio of the sines of the angles of incidence and of refraction is a 

constant that depends on the media.

Willebrord Snel 

van Royen (1580-1626)



Leonhard Euler

(1707-1783)

Trajectories of point-mass motion in potential field of forces must minimize 

the integral of the difference between kinetic and potential energies







Various types of critical points



Soap films as extremals of the area functional

(minimal surfaces).

A soap film minimizes the surface tension which is proportional to the 

area of the film, thus, they minimize the area. Standard soap films 

correspond to local minima of the area functional because they are stable. 

Costa minimal surface. Jorge-Meeks k-noid.



Richmond surface



Catenoids are the only minimal surfaces of revolution.

Stable catenoid Unstable catenoid

The “saddle” critical points of the functional correspond to unstable soap 

films which rarely to observe and hard to obtain. 



What are the methods to investigate such 

systems?

We’ll show a few of them on the example of 

the famous Steiner Problem.



Jacob Steiner

(1796-1863)

Indeed, this 

problem was 

stated by 

Jarnik and Kössler

in 1934

Steiner Problem

Construct a shortest network joining a given 

finite subset of the plane called the boundary.

Shortest networks are called 

Steiner minimal trees or shortest trees



Transportation Problem and Steiner Problem



Steiner Problem on Manhattan plane

(Rectilinear Steiner Problem) and chip design

All monotonic curves joining O and P 

have the same Manhattan distance



Steiner Problem in the space of words 

(phylogenetic tree)



This is Torricelli solutionThis is Viviani solution 

rediscovered by Simpson
General solution

Fermat Problem

Given three points A, B, and C in the plane, find a point S

such that the total distance from S to A, B, and С is minimal.

All the angles of ABC are less than 120°

The angle B of ABC

is at least 120°



Local Structure of Shortest trees

Theorem (on the local structure of shortest trees in the plane). 
(1) Each shortest tree consists of straight segments meeting by the 
angles of at least 120°. In particular, the degree of any vertex of such a 
tree does not exceed 3. 

(2) All degree one vertices belong to the boundary.

(3) If a vertex of degree two does not belong to the boundary, then 
the angle between two edges incident to it equals 180°.



Remarks. 
Vertices which do not belong to the boundary are called Steiner points 
or movable vertices. 

Movable vertices of degree 2 can be as removed from, so as added to 
a shortest tree, without violating the minimality property of the tree, 
and one usually assumes that a shortest tree does not contain them.

If a planar graph (not necessary a tree) possesses all the properties 
from the theorem on local structure of Steiner minimal trees, then it is 
called a local minimal netwrok. 

Each shortest tree is local minimal. The converse is not true.

This is shortest                                                                         This is not
shortest 



Shortest trees joining the vertices of 

regular n-gons for n = 3, 4, 5.

n = 3 n = 4 n = 5



Shortest trees joining the vertices of 

regular n-gons for n ≥ 6

Theorem (V.Jarnik, O.Kössler, D.Z.Du, F.K.Hwang, J.F.Weng).
Given n ≥ 6, each shortest tree joining vertices of a regular n-gon
consists of all sides of the n-gon, except any one.



How to consruct all shortest trees joining a given 

points set M?

Choose from the set of all local minimal trees joining M the shortest 

ones.

Possible structures of local minimal trees : Steiner trees, namely,

vertices degrees ≤ 3;

all vertices with degree 1 and 2 belong to M.



Cut the tree at boundary vertices of degree more than 1

we decompose it into binary components

Each binary component:

does not have degree 2 vertices

its boundary is just all the vertices of degree 1

5 binary 

components



It constructs (if possible) the local minimal binary tree 

of a given structure?

How to construct this tree?

moustaches moustaches

Corresponding local minimal tree for 

remained three points

The forward trace of Melzak algorothmThe reverse trace of Melzak algorithmThe network has been reconstructed.

Melzak algorithm (1960)



Three main obstacles to construct a local minimal tree



Steiner problem is NP-hard

For a subset M of the plane consisting of n points

the number of all different (non-equivalent) plane binary trees 

joining M equals . 

Thus, the complete list of the combinatorial structures pretending 

to be the ones for shortest trees on M grows very fast as n 

increases.

M.R.Garey, R.L.Graham, and D.S.Johnson proved that the 

Steiner problem (in the plane) is NP-hard, i.e., most likely there 

does not exist a polynomial algorithm for solving this problem. 
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P. Winter, M.Zachariasen “Large Euclidean Steiner minimal tree in an 

hour”, 1996. They created software Geosteiner96. The last version is

GeoSteiner 3.1 (it runs under UNIX).

The first versions of the software spent 8 minutes to construct a shortest 

tree on 100 random points.

D.M.Warme, P.Winter, M.Zachariasen “Exact algorithms for plane 

Steiner tree problems: a computational study”, 1998. They made an 

essential progress:

They stated that their software can construct a shortest tree on 2000

points for reasonable time.

ftp://ftp.diku.dk/pub/diku/users/martinz/geosteiner-3.1.tar.gz




On the cite http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner/ 

one can read the following:

Would you like to see a large Steiner tree? Here is the optimal solution

for the 10000 point Euclidean instance in the OR-Library! 

Unfortunately, the reference is broken.

http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner/
ftp://www.s3i.com/pub/warme/e10k.ps
http://mscmga.ms.ic.ac.uk/info.html


There are some heuristics. For example, 

http://cse.taylor.edu/~bbell/

Steiner problem solution (senior project) 

represents an approximate solution of Steiner problem (1999 year, 1600

points). 

http://cse.taylor.edu/~bbell/
http://cse.taylor.edu/~bbell/steiner


Methods of Investigation.



(1) Introducing adequate characteristics of 

the objects in consideration and revealing 

their relations.



Geometry and topology of plane linear trees.



Problem. Find relations between the 

structure of a linear graph and the 

geometry of its boundary. 

Are there some restrictions on the possible structures 

of plane graphs setting by geometrical properties 

of  their boundary sets? 

In what terms one can describe the structure of 

linear graph and the geometry of boundary set to 

reveal a good relation?



Characteristic of graph structure



The twisting number of plane linear trees



The twisting number of local minimal binary trees



The twisting number of plane binary trees



Characteristic of boundary set geometry



Convexity levels

This set has four convexity levels



Number of convexity levels and twisting number

Theorem (A.Ivanov, A.Tuzhilin). Let Г be a linear plane tree 

and n the number of convexity levels of its boundary. Then

tw(Г)  12(n  1) + 6.

Corollary. Let Г be a local minimal plane binary tree and n the 

number of convexity levels of its boundary. Then

tw(Г)  12(n  1) + 5.

The boundary set consisting of just one convexity level we 

call convex.



It is impossible to deform this local minimal tree by changing its edges 

lengths to obtain the one with a convex boundary 

and without self-intersections.



There does not exist a local minimal binary tree with a convex boundary, 

such that it is planar equivalent to the tree depicted below.



(2) Passing from one mathematical language 

to another one.



1) Dual language of tilings

Local minimal trees joining the vertices 

of convex polygons.



Which binary trees are dual graphs of tilings?

This binary tree can not be realized 

as the dual graph of a tiling.



Tiling realization

Theorem (A.Ivanov, A.Tuzhilin). If the twisting number of a 

plane binary tree does not exceed 5, then it can always be 

realized as the dual graph of a tiling. 



2) Growths and skeletonOuter cellsInner cellsOuter and inner cellsGrowthsUnpaired growthsPaired growthsFor each inner cell remove just one growth (if any) adjacent to it.
Skeleton is a tiling without growths 

(so, we constructed a decomposition into skeleton and growths)



Classification of skeletons

Branching pointsLinear partsBranching points and linear partsCode of a skeleton



Topological classification of skeletons: codes

Theorem (A.Ivanov, A.Tuzhilin). Consider all skeletons whose dual 

graphs twisting numbers are at most 5 and for each of  these 

skeletons construct its code. Then, up to planar equivalence, we 

obtain all plane graphs with at most 6 vertices of degree 1 and 

without vertices of degree 2. In particular, every such skeleton 

contains at most 4 branching points and at most 9 linear parts.

All possible codes 

of skeletons



Theorem (A.Ivanov, A.Tuzhilin). If the twisting number of a plane 

binary tree G does not exceed 5, then there exists a local minimal 

binary tree planar equivalent to G whose boundary is the set of 

vertices of a convex polygon.

Criterion of convex minimal realization

Corollary. A plane binary tree is planar equivalent to a local minimal 

tree with a boundary consisting of vertices of a convex polygon if 

and only if the twisting number of the tree is at most 5.

Remark. A.Ivanov and A.Tuzhilin have obtained a complete 

description of  all tilings whose twisting numbers are at most 5 (not 

only the topology of their skeletons, but the geometry of the 

skeletons and possible growths attachment). This gave complete 

classification of local minimal binary trees with convex boundary. 



(3) Classification.



Complete classification of local minimal binary trees of 

skeleton type joining the vertices of regular n-gons

The tree of the snake type

exists for any n.



The tree of the type T-joint exists just for n = 6k+3.



The tree of the type 6-fold exists just for four values of n: 

24, 30, 36, 42.

n = 24n = 30n = 36n = 42



The general classification is not completed.

A few examples.



(4) Reduction from a complicated object to a 

simpler one. 



Singularities of stable minimal surfaces 

(soap films)



Plateau principles

J.Plateau (1801-1883) formulated four principles, which describe

possible singularities on soap films (stable minimal surfaces). 



How can one prove that?

The limiting network minimizes the length locally (each its sufficiently 

small part is shortest). Such networks are called local minimal.



Ten possible local minimal networks on standard 

sphere and corresponding soap films (A. Heppes, 1964)







(5) Encoding objects. 



Torus T2



We glue tori T2 from parallelograms

Since parallelogram lies in the plane, we call such tori flat.



This animation gives an opportunity to imaging such gluing.



By similarity reasons, we consider only parallelograms 

spanned on the vectors e = (1,0) and f = (f1,f2), f2 > 0.

The corresponding torus will be denoted by T2(f).

Now, define natural mapping from the plane to the torus



The lift of a network from torus to the plane

1 and 2 are net geodesics forming a net basis
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Observation (A.Ivanov, I.Ptitsyna, A.Tuzhilin).

Let d = det M = pq - rs > 0, then m = u d and n = v d for some 

positive integers u and v.

Thus, we can characterize our network by the triple (M, m, n).

This triple depends on the choice of the net basis (1 , 2 ).
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The next step of encoding.

Thus, we encode networks by integer matrices g with positive 

determinant. We call such matrices g the types of our 

networks. We denote the space of such types by H.



What happens with the type g if we change the net basis?

Answer: g1 and g2 describes the same network, if and only 

if they differ by Jk, where                     

.

Evidently, J6 = E, so each network is represented by six 

matrices g, gJ, gJ2, gJ3, gJ4, gJ5 (they are all different).

We denote the set of these matrices by [g], and such [g] will 

encode our networks.
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For which types g =         there exists a closed locally 

minimal network on a given flat torus T2(f)?

Let e = (1,0), O = (0, 0), A = P e + Q f, B = R e + S f

The triangle Δ = OAB is called characteristic

Theorem (A.Ivanov, I.Ptitsyna, A.Tuzhilin). A closed local 

minimal network of the type g exists on the torus T2(f) iff all 

angles of the characteristic triangle are less than 120º.
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Corollary (realization of types on a tori). For any [g] 

there exists a flat torus T2(f) and a closed LMN on it of 

the type g.

Corollary (infinitely many of LMN on tori). For any flat 

torus T2(f) there exists infinitely many closed LMN of 

different structure.

Corollary (stability). For any closed LMN Γ on a flat 

torus T2(f) there exists a neighborhood U of f such that 

for any f '  U there exists a network Γ ' on T2(f ') of the 

same type as Γ has.



(6) Reducing a new problem to a solved one.



Klein bottle K2



We glue Klein bottles K2 from parallelograms.

However, this can be done from rectangles.



Klein bottle K2



Covering  : T2 → K2

Γ  K2 → -1(Γ)  T2

Definition.

type(Γ ) = type(-1(Γ) )

Flat Klein bottle K2 () and its covering by 

the torus T2(f), f = (0, ).



Theorem (Ivanov, Ptitsina, Tuzhilin). Let Γ be a closed 

LMN on K2(), then there exists a net basis such that either 

or

Moreover, for any such a and b there exists a closed LMN Γ

on K2() having the corresponding type. 

Corollaries are similar to the case of tori.
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Consider closed networks Γ on the surface of convex 

polyhedron P with the vertices set Vert(P). 

Thus, Γ ∩ Vert(P) = Ø.

This implies that  the local structure of LMN is the same as in 

the plane.

Local minimal networks on polyhedral 

surfaces



Examples.



Complete description of closed LMN on 

tetrahedron

The main idea is to use branched covering  : T2 → P

Theorems and Corollaries are similar to the case of tori.



Cube (the idea of D.Ablyaev, I. Ptitsina)

Construct invariant partition of R2 into cube’s developments and 

holes; the union of the developments can be naturally mapped on a 

torus with holes; the torus with holes branching covers the cube.



Development, holes, and LMN



(7) Heuristic solutions and estimation of their 

accuracy.



(X, ) is a metric space, M  X is finite, G = (V, E) is a graph

If V = M, then we say that G spans M

If M  V  X, then we say that G joins M

mst(M) = inf {(G) | G is a tree spanning M} is called 

the minimal length of spanning trees for M.

smt(M) = inf {(G) | G is a tree joining M} is called 

the minimal length of joining trees for M.

G is a tree spanning M, and (G) = mst(M), then G is called 

a Minimal Spanning Tree (MST) for M.

G is a tree joining M, and (G) = smt(M), then G is called 

a Shortest Tree or Steiner Minimal Tree (SMT) for M.

Minimal Spanning Trees and Shortest Trees.



sr(M) = smt(M) / mst(M) is called the Steiner Ratio for M 

(it measures the precision of MST-approximation)

sr(X, ) = sr(X) = inf {sr(M) | M  X, M is finite} is the 

Steiner Ratio for (X, ) (it measures the worst precision 

over all MST-approximations of finite SMTs)

Steiner Ratio.



Example. Let M be a regular triangle in R2, whose sides 

are of the length 1, then 



In 1990 D.Z.Du and F.K.Hwang (Bell Labs., USA)

announced a proof of Gilbert-Pollak Conjecture. However, 

it turns out that their proof has serious gaps.



Steiner Ratio of Euclidean Rn .

If Gilbert-Pollak conjecture is true, then the Steiner 

Ratio of R2 is attained on vertices of regular triangle.

However, for any n ≥ 3, if M  Rn is the vertices set of 

a regular simplex, then sr(M) > sr(Rn).

Also, the best known estimation of the Steiner Ratio for 

R3 is attained at infinite set, namely,



Conjecture (W.D.Smith & J.M.Smith). The Steiner ratio for 

R3 is attained at the “sausage” infinite points boundary:

If so, the Steiner ratio of R3 equals

283

700

3 21

700

9 11 21 2

140
0.78419 ...



D.Z.Du and W.D.Smith (1996) “proved” that if the 

Steiner ratio is attained on a finite subset M  Rn, then 

the number of points in M can not be less than the value 

of a rapidly increasing function f(n). 

(Not long ago Z.Ovsyannikov and B.Bednov found a gap 

in their proof).

Anyway, if it’s true, then, for example, 

f(50) = 53, f(200) = 3 481 911, etc.

This also motivates the interest to generalize SMT theory to 

infinite boundary sets.

One more motivation.



(8) Extending the space of feasible systems by 

abstract objects to “symmetrize” the space 

and, as consequence, obtain simpler 

formulation of the laws.



Definition. A set M of a metric space X is called fine if it can 

be spanned by a finite length tree.

Remark. Any fine set is at most countable.

Fine sets in R.

Definition. Outer Jordan measure  (M) of a set M  R is

Observation. Let M  R be bounded and countable. Then

(M is fine)   ( (M) = 0).

Moreover, for a fine set M  R we have  mst(M) = diam(M).

Fine sets.
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Let (X, ) be a metric space, M  X,  ≥ 0. 

Let U(, M) be the open -neighborhood of the set M, 

i.e., U(, M) is the union of all open balls of radius 

centered at points from M. 

Let {U(, M)} be the family of connected components of 

U(, M), and M  = M  U(, M). 

So P (M) = {M} is a partition of  M.

Fine sets criterion.



Observation. We have 

P0(M) = {{m} | m M}, P(M) = {M}.

If 0  a  b, then Pa(M) is a subpartition of Pb(M).



For any subset M of X and any  ≥ 0 we put 

Diam(M) =  diam(c) over all c  P (M).

Example. Let M = {1, 1/2, 1/3, 1/4, …} and 1/12 <   1/6.

Then P (M) = {{1}, {1/2}, M \ {1, 1/2}},  thus

Diam(M) = 1/2.



Main Theorem (A.Ivanov, I.Nikonov, A.Tuzhilin).

Let M be a bounded countable subset of a metric space, and 

we put (M) = # P(M). Then M is fine iff

(1) , and

(2) Diam(M)  0 as   0. 

Moreover, for a fine set M we can calculate the length 

mst(M) of Minimal Spanning Tree on M as follows:
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(9) Generalizations.



M. Gromov Minimal Fillings Problem.

n-dimensional manifold X with a metric d is called a filling of  

(n-1)-dimensional manifold M with a metric , 

if M = ∂ X, and  (p,q) ≤ d(p,q) for all p, q  M.

Problem (M.Gromov). Given M = (M, ), find the least 

possible volume mf(M) of fillings X = (X, d) for M, and 

describe the fillings X for which mf(M) =  volume(X ).



We discuss one-dimensional stratified variant of the problem:
M = (M, ) is a finite pseudometric space,

X = (X, d) is generated by a weighted graph.

Formalization: 

G = (V, E) is a connected graph joining M, i.e., M  V

: E  R + is called a weight function on G

G = (G, ) = (V, E, ) is called a weighted graph

for each subgraph H  G its weight is (H ) =eE(H ) (e)

the distance on V generated by  is

d (x,y) = min {() |  is a path in G joining x, y V}.



M = (M, ), where  is a distance on M 

G = (V, E , ) is a connected weighted graph joining M

G is called a filling of M, iff

 (x,y)  d (x,y) for all x, y  M

each x M  V is called a boundary vertex
each x V \ M is called an interior vertex

M is called the boundary of the filing G

The number inf (G) over all fillings G of M is called the 

minimal weight of fillings and is denoted by mf(M)

A filling G of M such that (G) = mf(M) is called minimal

V



Remark.  

Our formalization is slightly differ from the one in the Gromov
Problem: in fact, we join 0-dimensional manifold M with 

0-dimensional manifold  (V, d ), instead of to do that with some 

1-dimensional manifold. 

To make our the formalization more close, we can consider G as a 

1-dimensional stratified manifold which is glued from segments of 

lengths given by the weight function . Now, may be, it’s more 
clear why we call M by the boundary of G.



A weighted graph is called nondegenerate if its weight 

function is strictly positive. 

Proposition. Let M be a finite pseudometric space. Then

1) there exists a minimal filling for M;

2) among all minimal fillings of M there exists a binary tree 

for which M consists of all its vertices of degree 1; 

3) if M is a metric space, then there exists a nondegenerate

minimal filling G for M, such that M contains all vertices 

of G having degree 1 and 2. Here the graph G is, obviously, 

a tree.

Existence.



(1) In what follows, G is always a tree. 

(2) For binary trees, the phrases “G joins M ” means, in 

addition, that M coincides with the set of all vertices of G

having degree 1.

(3) For arbitrary trees, the phrases “G joins M ” means, in 

addition, that M contains all vertices of G having degree 1

and 2.

Important agreements.



A finite metric space (M, ) is called additive, if it has a 
filling (G, ) such that  = d |M. Such weighted tree (G, )

is called a generator of (M, ). 

Remark. The criterion of additivity called four points 

condition is well-known.  Also, it’s known that 

nondegenerate generator is unique and there exists an 

effective algorithm for its construction.

Additive metric spaces, minimal fillings, 

and uniqueness.



Proposition. The generator of an additive metric space is its 

minimal filling. Vise versa, each minimal filling of an 

additive metric space is its generator. 

Thus, for additive spaces their nondegenerate minimal 

fillings are unique, and one can construct the 

corresponding  minimal fillings by means of well-known 

effective algorithm.



Remark. For general metric spaces one can construct all 

minimal fillings by means of linear programming applied to

each possible binary topology of the filling (notice that the 

number of such topologies grows exponentially on the 

cardinality of the metric space).

More precise, consider a binary tree G = (G, ) such that its 

weights i ≥ 0 are unknown and it joins M. Then the 

equations guarantees that G is a filling of M are linear 

inequalities. 

On the other hand, (G ) = i  i , and, to find a minimal 

filling, we need first to minimize (G ) over all admissible 

 (it is the standard linear programming problem), and than 

minimize the obtained values over all binary trees G.



Conjecture. One-dimensional minimal filing construction 

problem is NP-hard.

Remark. There exist metric spaces for which there is no 

uniqueness (for example, for vertices of a regular n-gon in 

the Euclidean plane, n > 3).

However, in some important case uniqueness occurs. 

Metric space is called rigid, if its nondegenerate minimal 

filling is unique.

Corollary. Each additive space is rigid.



All metric spaces consisting of n points can be naturally 

identified with a convex cone in Rn(n−1)/2. We say, that 

some property holds for a generic metric space, if for any 

n this property is valid for an everywhere dense set of 

n-point metric spaces.

Is it true that a generic metric space is rigid? 

The answer is false (Z. Ovsyannikov).

The following result is due to A. Eremin.

Proposition. Each generic finite metric space has a 

minimal filling which is a nondegenerate binary tree.

“Generic” results 



Proposition. 

(M, ) is a finite pseudometric space 

(G, ) is a minimal filling for (M, )
then (G, ) is a minimal filling for (M, d |M)

Corollary. The set of all possible minimal fillings (recall 

that we consider only trees) of all finite pseudometric

spaces coincides with the set of all weighted minimal trees. 

Description of all minimal fillings.



Minimal Fillings as Shortest Trees.

Let Rn
 denote Rn with the norm

||(v1,…,vn)|| = max{|v1|,…,|vn|}. 

By  we denote the corresponding metric.

For a metric space M = (M, ) such that M = {p1,…, pn}

we put  ij= (pi,pj) and construct M : M  Rn
 as follows:

M :  pi   (i1,…, in).

Proposition. The map M is an isometric embedding.



G = (V, E, ) is a filling of M = (M, )

Define

E’ = E  {pipj}i  j , 

’: E’  R +

’|E\E’ = , ’(pipj) = ij

Then G ’ = (V, E’, ’) is a filling of M

Define G  : V  Rn


G : v  (d’(v, p1),…, d’(v, pn)).



Proposition. 
Let G = (G, ) be a minimal filling for M = (M, ). Then 

1)   G |M = M

2) for any xyE we have (G (x), G (y)) = (xy) 

3) G is a shortest tree with the boundary M(M)

4) each shortest tree joining M(M) is a minimal filling for 

(M(M), )  (M, ).



G = (V, E, ) is a filling of M = (M, )

A path  in G joining  p, q  M is called a boundary one. 

A boundary path is called irreducible if it does not contain 

another boundary path. 

A boundary path is called exact if  () = (p, q). 

Exact paths.



Proposition. 

(1) A metric space is additive, iff all boundary paths in any 

its minimal filling are exact.

(2) In any minimal filling each boundary path contained in 

an exact path is exact itself. 

(3) In any minimal filling each boundary path consisting 

of at most 2 edges is exact.



Corollary. If a minimal filling G of a metric space M is star-

like, i.e., G has a unique non-boundary vertex and this 

vertex is joined with all boundary ones, then M is additive, 

and, thus, G is its generator.

Given a filling (V, E, ), a set F  E is called exact if it 

belongs to an exact path.

Proposition. For any minimal filling, every path consisting 

of at most 2 edges is exact.



M = (M, ) is a finite metric space. 

Enumerate the points of M in an arbitrary way: 

M = {p1,…, pn} and put pi+n = pi  for any integer i. 

We call the obtained cyclic order by a tour of M.

The perimeter of M  w.r.t. the tour π is the value

Pπ = i=1,…,n  (pi, pi+1).

Also, we put p π = P π / 2 and call it the half-perimeter  of

M  w.r.t. the tour π.

Tours and Perimeters.



The half-perimeter p(M) of M  is the smallest value p π over 

all tours π. 

Proposition (O.Rubleva).  For any metric space M  we have 

p(M) ≤ mf(M).

Moreover, the equality holds iff M is additive.

Remark. The previous proposition is a new additivity

criterion. 



Multitours.

An Euler tour in a (connected) graph is a cycle containing  

all edges of the graph and passing each of them just one 

time.

M = (M, ) is a pseudometric space, G is a tree joining M

G2k  is graph obtained from G by taken each edge 2k times

G2k possesses an Euler cycle consisting of irreducible in G 

boundary paths



This Euler cycle generates a bijection ,

which is called multitour. 

We put p(M, G, π) =

The set of all multitours for M and G is denoted by Oμ(M,G)
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Formula for the weight of minimal filling.

Theorem (A. Eremin) Let M = (M, ) be a finite 

pseudometric space. Then 
mf(M) = min G max π{ pπ (M, G, π ) | 

over all π  Oμ(M,G) and binary trees G joining M}.

Remark. The idea of such kind formula belongs to 

A.Ivanov and A.Tuzhilin, who stated the conjecture that the 

previous formula holds for tours (k = 1). 

A.Eremin and Z.Ovsyannikov constructed a counter-

example. 

Than A.Eremin proved, that if one changes the tours to 

multitours, the formula will become true.



Generalized minimal fillings.

Expand the class of weighted trees by permitting any 

weights of the edges (not only nonnegative). 

The corresponding objects are called by 

generalized weighted graphs, 

generalized fillings, and 

minimal generalized fillings. 

The weight of minimal generalized filling G of a 

pseudometric space M is denoted by mf –(M).



Theorem (A.Ivanov, Z.Ovsyannikov, N.Strelkova, 

A.Tuzhilin) Among minimal generalized fillings of an 

arbitrary finite pseudometric space, there exists a filling with 

nonnegative weight function, i.e., there exists a minimal 

filling. Therefore, mf – = mf .

Remark. This theorem is one of key-points in the proof of 

Eremin’s formula on the weight of minimal filling.



Generalized additive spaces.

A.Ivanov and A.Tuzhilin raised the following question: 

Is it true that if all the tours w.r.t. a given tree joining a 

pseudometric space have the same weight,  then the space is 

additive? 

The answer turns to be negative (Z.Ovsyannikov).

A finite pseudometric space M = (M, ) is called pseudo-

additive, if ρ = dω for a generalized weighted tree (G, ω) 
joining M.



Theorem (Z. Ovsyannikov) 

Let M = (M, ) be a finite metric space. 

Then the following statements are equivalent.

• There exist a tree G such that M coincides with the set of 
degree 1 vertices of G, and all the half-perimeters p(M, G, π) 

of M corresponding to the tours around G are equal to each 

other.

• The space M is pseudo-additive with the generating tree 

(G, 0) for 0 minimizing (G) over all generalized fillings 

of the form (G, ).



Ratios.
For any subset M of a metric space X = (X, ) we have 3 

numbers: mst(M) ≥ smt(M) ≥ mf(M) .

We have already defined

the Steiner ratio sr(M) = smt(M)/mst(M); 

Now we define two more ratios: 
the Steiner-Gromov ratio sgr(M) = mf(M)/mst(M);

the Steiner subratio ssr(M) = mf(M)/smt(M).

The greatest lower bounds of these ratios 

over all finite M  X
are called the ones of X and 

are denoted by sr(X), sgr(X), ssr(X), resp.



If we consider the infinums over all M  X consisting of at 
most n points, then we obtain n-points ratios of X and

denote them by srn(X), sgrn (X), ssrn (X) resp.

Remark. The Steiner ratio is classical. The other two ratios 

where introduced recently by A.Ivanov and A.Tuzhilin.

Remark. The Steiner ratio is very difficult to calculate, and 

its values are known for a few metric spaces only. The other 

ratios seem simpler, and, perhaps, they may be useful  to 

get the results concerning the Steiner ratio. 



Theorem (A.Pakhomova). 
For any metric space X the estimate sgrn(X) ≥ n/(2n − 2) holds. 

This estimate is exact, i.e., for any n ≥ 3 there exists a metric 
space Xn such that sgrn(X) = n/(2n − 2).

For any metric space X the estimate 1/2 ≤ sgr(X) ≤ 1 holds. 

For any s ∈ [1/2, 1] there exists a metric space X such that 

sgr(X) = s.

Proposition. If X contains a regular simplex, then 

sgrn(X) = n/(2n − 2).

Steiner–Gromov ratio 
sgr(M) = mf(M)/mst(M).



Proposition. 
We have sgr(X) ≤ sg(X). 

Thus, if sg(X) = 1/2, then sg(X) = 1/2.

Corollary.  

Let Ln be n-dimensional Lobachevski space, n ≥ 2. 

Then sg(Ln) = 1/2.

Let Rn
p denote Rn with the norm                                  .

Proposition (A.Pakhomova). 

Let X be either the space Rn
p for 1 ≤ p ≤ ∞, or 

the space of words over an alphabet A = {a1, . . . , ak}, k ≥ 2, 

endowed with the Levenstein metric.

Then for all n ≥ 2 the following relations hold:
sgrn (X ) = n/(2n − 2),    sgr(X ) = 1/2.
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Proposition (Z.Ovsyannikov). The Steiner–Gromov ratio of

the metric space of all compact subsets of Euclidean plane 

endowed with Hausdorff metric equals 1/2.

Proposition (V.Mishchenko). The Steiner–Gromov ratio of 

an arbitrary n-dimensional Riemannian manifold is less than 

or equal to the Steiner–Gromov ratio of the Euclidean

space Rn.



Steiner subratio ssr(M) = mf(M)/smt(M).

Theorem (A.Pakhomova). 
For any metric space X the estimate ssrn(X) ≥ n/(2n − 2) holds. 

This estimate is exact, i.e., for any n ≥ 3 there exists a metric 
space Xn such that ssrn(X) = n/(2n − 2).

For any metric space X the estimate 1/2 ≤ ssr(X) ≤ 1 holds.

For any s ∈ [1/2, 1] there exists a metric space X such that 

ssr(X) = s.



Proposition (some partial results). 
1) ssr2(X) = 1

2) ssr3(R
n ) =           (A.Ivanov, A.Tuzhilin)

3) ssr4(R
2 ) =           (E.Stepanova)

4) ssr5(R
2 ) < 0.8562 <            (Z.Ovsyannikov)

5) ssr4(R
3 ) =                     < 0.82 <          (Z.Ovsyannikov)

Definition (B.Bednov, P.Borodin)

ssr(d) = inf{ssr(V) | V is a Banach space of dimension d}.

Proposition (B.Bednov, P.Borodin)

3/4 ≤ ssr(2) ≤ 5/6, 
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Proposition (A.Pakhomova). 
Let X be the space of words over an alphabet 

A = {a1, . . . , ak}, k ≥ n - 1, endowed with the Levenstein

metric.

Then for all n ≥ 2 the following relations hold:
ssrn (X ) = n/(2n − 2).

Proposition (Z.Ovsyannikov). Let C be the metric space of 

all compact subsets of Euclidean plane endowed with the 

Hausdorff metric. Then
ssr3(C )= 3/4, ssr4(C )= 2/3, ssr(C )= 1/2.




