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Biological interpretation 

The main aim of this talk is to discuss general 
biological problem related to spread of cell 
destruction (burn, cancer, etc). 

Destruction degree of surrounding cells has an 
influence on vitality probability of the cell. 

Our purpose is to estimate what are the chances 
to survive for every cell in this situation and how 
the destruction will spread. 
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Basic definitions 

Cellular finite tissue 
T = *1,… ,𝑚+× 1,… ,𝑚 ,m ∈ ℕ 
(model of tissue; (i, j) ∈ 𝑇 is called cell) 
 
Standard window of observation 
S = −𝑟,… , 𝑟 × −𝑟,… , 𝑟 , r ∈ ℕ.  
(the range of destruction influence) 
 
Weight coefficients 
𝑤: 𝑆 → 0,1 , 𝑤𝑖𝑗= 𝑤 𝑖, 𝑗 , such that 

 𝑤𝑖𝑗 = 1

(𝑖,𝑗)∈𝑆

 

(the influence degree of (i,j)-cell of 𝑆 to the central one) 
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The (𝐢, 𝐣)-cell window of observation 
S𝑖𝑗 = * 𝑖, 𝑗 + 𝑆+ ⋂  T 
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To each (𝑖, 𝑗) ∈ 𝑇 we assign 

 

vitality probability 

𝑝𝑖𝑗 ∈ 0,1 , and  

 

(𝐢, 𝐣)-cell  state: 

Bernoulli random variable 

ξ𝑖𝑗 =  
1, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖𝑗  ,

       0, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑖𝑗 .
  

1 is alive 

0 is dead  
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Evolution 

Evolution of the cells states is described by means 
of vitality probabilities 𝑝𝑖𝑗. 

 

Model 1 

Put 𝑝𝑖𝑗
0 = 𝑝𝑖𝑗, and 

𝑝𝑖𝑗
𝑛 =     𝑤𝑘𝑙  𝑝𝑘𝑙

(𝑛−1)

(𝑘,𝑙)∈S𝑖𝑗

, 

n ∈ 𝑵. 
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The main aim is to investigate 
the limiting behavior of 𝑝𝑖𝑗. 
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Theorem 1 (E. Tuzhilina) 

For any (𝑖, 𝑗) ∈ 𝑇 we have 

lim
𝑛→∞

𝑝𝑖𝑗
(𝑛) = 0 . 

 

Remark.  

Person is mortal with probability 1  

(in Model 1). 
 

7 



Visualization of the result 
m=10 

r =1 

Weight coefficients matrix (𝑤𝑖𝑗)=  

Vitality probability matrix (𝑝𝑖𝑗)  
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To visualize, represent (𝑝𝑖𝑗) as a coloured table 

dark blue is 1 

white is 0. 
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Illustration 
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Remark. 

 

This phenomenon appears due to 
“boundary effect”, when some of the 
observation windows for cells close to 
boundary are trimmed. 
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Extend T to 𝑇′ = ℤ2 

 

for each (𝑖, 𝑗) ∈ 𝑇′ we put 

𝑝𝑖𝑗 =  
𝑝𝑖𝑗 ,        𝑖𝑓  𝑖, 𝑗 ∈ T,

   0,            𝑖𝑓 𝑖, 𝑗 ∈ T′\T.
 

S𝑖𝑗 = 𝑖, 𝑗 + 𝑆 
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Illustration 
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Evolution in this case characterized by 
values 𝑝𝑖𝑗   

𝑝𝑖𝑗 
0 = 𝑝𝑖𝑗  

𝑝𝑖𝑗 
𝑛 =     𝑤𝑘𝑙 𝑝𝑘𝑙 (𝑛−1)

(𝑘,𝑙)∈S𝑖𝑗

 

Notice that 

  𝑝𝑘𝑙 (𝑛)

(𝑘,𝑙)∈𝑇′

=   𝑝𝑘𝑙 (𝑛−1)

(𝑘,𝑙)∈𝑇′
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Observe that  𝑝𝑖𝑗 
(𝑛) is a linear function 

defined by  𝑝𝑘𝑙 (𝑛−1) where (𝑘, 𝑙) ∈ S𝑖𝑗. 

 
Thus there is a linear operator 

 𝑃 𝑛 = 𝐴𝑃 𝑛−1   

where 𝑃 𝑛 =( 𝑝𝑖𝑗 
(𝑛)), 

the operator A depends only on weight 
coefficients 𝑤𝑖𝑗. 
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If some of 𝑝𝑖𝑗  is not zero then there exist a step s 

and a cell (𝑘, 𝑙) ∈ 𝑇′\T for which  𝑝𝑘𝑙 (𝑠)≠ 0. 

For 𝑥 = 𝑥1, … , 𝑥𝑛  we put 

𝑥 =  𝑥𝑖

𝑛

𝑖=1

 

Thus ||𝐴𝑠|| < 1 and the mapping will be 
contractive. We come to desired result. 
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Equivalent formulation 

Replace T’ by 
−𝑚 − 𝑟,… ,𝑚 + 𝑟 × −𝑚 − 𝑟,… ,𝑚 + 𝑟   

 

Evolution process works only with cells (𝑖, 𝑗) ∈ T. 

 

Remark.  

One has 𝑝𝑖𝑗 
𝑛 =𝑝𝑖𝑗

𝑛  for (𝑖, 𝑗) ∈ T, thus  

lim
𝑛→∞

𝑝𝑖𝑗 
(𝑛) = 0 for every cells. 
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Illustration 
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Definition 

Interior cells: 

𝑖, 𝑗 ∈ T ⊆ 𝑇′ 

 

Boundary cells: 

𝑖, 𝑗  ∈ T′\𝑇 
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Model 2 

Redefine 𝑝𝑖𝑗 : 

for each (𝑖, 𝑗) ∈ T′\T we change 𝑝𝑖𝑗 = 0 to 

arbitrary values from [0,1]. 

 

Remark. 

Now the limit of  𝑝𝑖𝑗 𝑛  can be nonzero. 
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Example: 𝑝𝑖𝑗 = 𝑖 + 𝑗(𝑚𝑜𝑑 2) for (𝑖, 𝑗) ∈ T′\T. 
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Theorem 2  (E. Tuzhilina) 

The limits of 𝑝𝑖𝑗 
𝑛 depend only on 

boundary values 𝑝𝑘𝑙    where (𝑘, 𝑙) ∈ T′\T 
and do not depend on the interior ones.  

 

Remark.  

Your chances to survive are completely 
determined by your surroundings. 
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How to calculate the limiting 𝑝𝑖𝑗 
𝑛  

Notice that 𝑝𝑖𝑗 
𝑛  is a linear function on 𝑝𝑘𝑙 𝑛−1  

and the boundary 𝑝𝑞𝑠 . Thus there is an affine 

operator 

 𝑃 𝑛 = 𝐴𝑃 𝑛−1 + 𝐵,  

where 𝑃 𝑛 =(𝑝𝑖𝑗 
𝑛 ), A depends only on weight 

coefficients 𝑤𝑖𝑗  where (𝑖, 𝑗) ∈ 𝑆, and B depends on  

𝑤𝑖𝑗  and boundary values 𝑝𝑞𝑠   where (𝑖, 𝑗) ∈ T′\T. 
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Theorem 3  (E. Tuzhilina) 

Suppose that some of 𝑝𝑖𝑗  is not zero and 
𝑤𝑖𝑗 ∈ ,0,1- for all 𝑖, 𝑗 ∈ 𝑆. Then there exists 
a step s such that ||𝐴𝑠||<1, and  

lim
𝑛→∞

𝑃(𝑛) = (𝐸 − 𝐴𝑠)−1𝑃(0) . 

 
(See illustration in Wolfram Mathematica) 
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General model 

Let X, Z be disjoined sets and 𝑌 = 𝑋 ⊔ 𝑍 

𝑤 ∶ 𝑋 × 𝑌 → 0,1 ,  𝑤𝑥 𝑦 = 𝑤(𝑥, 𝑦),  

∀𝑥 ∈ 𝑋   𝑤𝑥 𝑦

𝑦∈𝑌

= 1 

𝑝: 𝑌 → 0,1 ,   𝑝𝑦 = 𝑝(𝑦) 

∀𝑦 ∈ 𝑌  

ξ𝑦 =  
1, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑦,

         0,  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑦.
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𝑝𝑦
(0) = 𝑝𝑦 

𝑝𝑦
(𝑛) =  

 𝑝𝑦
(𝑛−1)𝑤𝑥 𝑦

𝑦∈𝑌

, 𝑓𝑜𝑟 𝑦 ∈ 𝑋,

𝑝𝑦,                             𝑓𝑜𝑟 𝑦 ∈ 𝑍.

 

 

Remark.  

Theorem 3 holds for the general model. 

In particular, the same technique can be applied to  

• arbitrary dimension 

• arbitrary placement  of  boundary and interior cells 
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Thank you for attention 
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