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1. Introduction

Let B = (Bt)t>0 be a Brownian motion on a probability space (Ω,F ,P)
and suppose we sequentially observe the process X = (Xt)t>0,

Xt = µt+Bt, t > 0,

where µ is an unknown drift coefficient.

We consider the problem of sequentially testing the hypothesis

H+ : µ > 0 and H− : µ < 0.

The two settings will be studied: the Chernoff problem (Bayesian) and
the Kiefer–Weiss problem (minimax).
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By definition, a decision rule is a pair (τ, d) consisting of

– a stopping time τ of the filtration (Ft)t>0, Ft = σ(Xs; s 6 t)

– an Fτ -measurable function d taking values ±1

The moment τ represents the moment of stopping of the observation,
and the value of d corresponds to the hypothesis accepted.

Chernoff’s problem

Assume that µ is an N (µ0, σ
2
0) random variable with known parameters

µ0, σ0 and independent of B; c, k > 0 are given real numbers.

The problem (Chernoff, 1961) is to find an optimal rule (τ∗, d∗):

E[cτ∗ + k|µ|I(d∗ 6= sgn(µ))] = inf
(τ,d)

E[cτ + k|µ|I(d 6= sgn(µ))]

In other words, an optimal rule (τ∗, d∗) minimizes the average penalty
consisting of the observation cost and the penalty for a wrong decision.

Without loss of generality we may assume c = k = 1 (Chernoff, 1961).
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Kiefer-Weiss’ problem

Assume that µ is an unknown real parameter and let ε > 0, α ∈ (1/2, 1)
be given numbers. Let ∆α be the class of decision rules (τ, d) such that

P(d 6= sgn(u) | µ = u) 6 α for any |u| > ε.

The parameter ε specifies the indifference area: the decision “µ < 0” is
correct if µ 6 ε, and “µ > 0” is correct if µ > −ε.

The parameter α specifies the maximal acceptable probability of error.

The problem (Kiefer, Weiss, 1957) is to find (τ∗, d∗) ∈ ∆α such that

sup
u∈R

E(τ∗ | µ = u) = inf
(τ,d)∈∆α

sup
u∈R

E(τ | µ = u),

i. e. an optimal (τ∗, d∗) minimizes the maximal observation time over
all decision rules in ∆α.
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Known results and the aim of the research

1. Chernoff and Breakwell (1961-63) showed that an optimal decision
rule is of the form

τ∗ = inf{t > 0 : |X ′t| > a∗(t)}, d∗ = sgn(X ′τ∗)

where X ′t is a process obtained from Xt by some transformation, and
a∗(t) is some function on R+ (independent of µ0, σ0).

They found the asymptotics of a∗(t) when t → 0 and t → ∞, which
corresponds to σ0 →∞ and σ0 → 0.

2. Lai (1973) showed that in the Kiefer-Weiss problem

τ∗ = inf{t > 0 : |Xt| > b∗(t)}, d∗ = sgn(Xτ∗)

He studied the asymptotics of b∗(t) when t→∞.

3. Our aim is to find the boundaries a∗(t) and b∗(t).
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2. Solution of the Chernoff problem

Recall that the problem is to find (τ∗, d∗) such that

E[cτ∗ + k|µ|I(d∗ 6= sgn(µ))] = inf
(τ,d)

E[cτ + k|µ|I(d 6= sgn(µ))]

Fix the parameters (µ0, σ0) and introduce the process W = (Wt)06t61,

Wt = σ0(1− t)X t

σ20(1−t)
− tµ0/σ0.

We check that W is a standard Brownian motion.

It turns out, (τ∗, d∗) can be found from the optimal stopping problem

Vµ0,σ0 = inf
τ∈MW

1

E

[
2

σ3
0(1− τ)

−
∣∣Wτ + µ0/σ0

∣∣] ,
where MW

1 is the class of all stopping times τ 6 1 of the filtration
(FW

t )t61, FW
t = σ(Ws; s 6 t).
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Theorem

1) Let τ∗W be an optimal stopping time in Vµ0,σ0 . Then an optimal
decision rule (τ∗, d∗) for testing H+ and H− is given by

τ∗ =
τ∗W

σ2
0(1−τ∗W )

, d∗ = sgn(Xτ∗ + µ0/σ
2
0).

2) The moment τ∗W = τ∗W (µ0, σ0) is of the form

τ∗W (µ0, σ0) = inf{0 6 t 6 1 : |Wt + µ0/σ0| > a∗σ0(t)},

where a∗σ0(t) : [0, 1]→ R+ is a non-increasing continuous function being
the unique solution of the equation (with some concrete function H)

(1−t)H(1−t, a(t)) =

∫ 1

t

1
σ3
0(1−s)2

[
Φ
(
a(s)−a(t)√

s−t

)
− Φ

(
−a(s)−a(t)√

s−t

)]
ds

in the class of continuous functions a(t) satisfying the properties

0 < a(t) 6
σ3

0

4
(1− t) for t < 1, a(1) = 0.
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Remark

Chernoff and Breakwell showed that the optimal stopping time τ∗ is
given by

τ∗(µ0, σ0) = {t > 0 : |Xt − µ0/σ
2
0| > b∗(t+ 1/σ2

0)},

where b∗(t) : R+ → R+ is a strictly positive function for t > 0, which
does not depend on µ0, σ0.

As it follows from the structure of the processes W and X ′ the optimal
stopping boundaries a∗σ0 and b∗ are connected by

b∗(t) = σ0t · a∗σ0

(
1− 1

σ2
0t

)
, t > 1/σ2

0.
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The optimal stopping boundaries

Left: the boundary a∗3/2(t) for the process W .

Right: the boundary b∗(t) for the process X ′.
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Outline of the proof

It is sufficient to consider only decision rules (τ, d) with Eτ < ∞. For
any such decision rule the average penalty is

R(τ, d) = E
[
τ + E(µ− | Fτ )I{d = +1}+ E(µ+ | Fτ )I{d = −1}

]
.

Thus the problem reduces to finding the stopping time τ∗ minimizing

E (τ) = E
[
τ + min

{
E(µ− | Fτ ), E(µ+ | Fτ )

}]
Using the Normal correlation theorem, we find

E (τ) = E[τ +H(τ + 1/σ2
0, Xτ + µ0/σ

2
0)]

with the function

H(t, x) =
1√
t
ϕ(x/

√
t)− |x|

t
Φ(−|x|/

√
t)).
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Applying the Itô formula, we find that for any τ with Eτ <∞

E (τ) = E

[
τ − |Xτ +m0/σ

2
0|

2(τ + 1/σ2
0)

]
+H

(
1

σ2
0

,
m0

σ2
0

)
+
|m0|

2
.

Then we check that the process

Mt =
Xt +m0/σ

2
0

σ0(t+ 1/σ2
0)
− m0

σ0
is a martingale.

Applying the change of time, we find that the process

Wt = Mt/σ2
0(1−t) is a Brownian motion,

which reduces the Chernoff problem to the optimal stopping problem

Vµ0,σ0 = inf
τ61

E

[
2

σ3
0(1− τ)

−
∣∣Wτ + µ0/σ0

∣∣]
It is solved using standard methods.
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3. Solution of the Kiefer–Weiss problem

Recall the problem is to find (τ∗, d∗) such that

sup
u∈R

E(τ∗ | µ = u) = inf
(τ,d)∈∆α

sup
u∈R

E(τ | µ = u),

where ∆α is the class of decision rules (τ, d) such that P(d 6= sgn(u) |
µ = u) 6 α for any |u| > ε.

The problem is reduced to the family of problems Vc, c > 0:

Vc = inf
(τ,d)

[
E(τ | µ = 0) + c{P(d = −1 | µ = ε) + P(d = 1 | µ = −ε)}

]
.

Namely, if for some c > 0 the optimal decision rule δc = (τc, dc) for Vc
is such that

P(dc = −1 | µ = ε) = P(dc = 1 | µ = −ε) = α,

then δc is optimal in the Kiefer–Weiss problem.
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Using that d(Pt | µ = u)/d(Pt | µ = u) = exp(uXt−u2t/2), we obtain

Vc = inf
(τ,d)

E
[
τ + c

(
eεXτ−ε

2τ/2I{d = −1}

+ e−εXτ−ε
2τ/2I{d = 1}

)
| µ = 0

]
.

This implies that the optimal decision rule (τc, dc) is such that

dc = sgnXτc

and τc solves the optimal stopping problem

Vc = inf
τ

E
[
τ + ce−ε|Xτ |−ε

2τ/2 | µ = 0
]
.

The constant c = c(α) is found from the condition

P(Xτc > 0 | µ = −ε) = α.
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Theorem

An optimal stopping time (τ∗, d∗) in the Kiefer–Weiss problem is of the
form

τ∗ = inf{t > 0 : |Xt| > a∗(t+ t0)}, d∗ = sgnXτ∗ ,

where a∗(t) > 0 is a non-increasing function on R, being the unique
solution of the integral equation

exp(−εa(t)−ε2t/2) =

∫ ∞
0

[
Φs(a(s+t)−a(t))−Φs(−a(s+t)−a(t))

]
ds

in the class of continuous function a(t) on R, satisfying the inequality

0 < a(t) 6 εe−ε
2t/2/2, t ∈ R.

The quantity t0 = t0(α) is found from the equation P(d∗(t0) = 1 | µ =
−ε) = α.
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Numerical results

The optimal stopping boundary a∗(t).
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Left: the dependence of the probability α of a wrong decision on the
value of t0.

Right: the dependence of the maximal average observation time E0τ∗

on t0.
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Thank you for your attention!


