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1. Introduction

Let B = (B¢)¢>0 be a Brownian motion on a probability space (2, .7, P)
and suppose we sequentially observe the process X = (X})¢>0,

Xt = put + By, t =0,

where 1 is an unknown drift coefficient.
We consider the problem of sequentially testing the hypothesis
Hi :p>0and H_: p < 0.

The two settings will be studied: the Chernoff problem (Bayesian) and
the Kiefer-Weiss problem (minimax).
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By definition, a decision rule is a pair (7,d) consisting of
— a stopping time 7 of the filtration (%;);>0, % = 0(Xs; s < 1)
— an .Z,-measurable function d taking values +1

The moment 7 represents the moment of stopping of the observation,
and the value of d corresponds to the hypothesis accepted.

Chernoff’s problem

Assume that 1 is an 4 (19, 03) random variable with known parameters
1o, 0o and independent of B; ¢,k > 0 are given real numbers.

The problem (Chernoff, 1961) is to find an optimal rule (7%, d*):

Eler + k|uX(d" # sgu(u))] = inf Eler + k|uX(d # sgn(y0)]

In other words, an optimal rule (7%, d*) minimizes the average penalty
consisting of the observation cost and the penalty for a wrong decision.

Without loss of generality we may assume ¢ = k = 1 (Chernoff, 1961).
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Kiefer-Weiss’ problem

Assume that 1 is an unknown real parameter and lete > 0, a € (1/2,1)
be given numbers. Let A, be the class of decision rules (7, d) such that

P(d # sgn(u) | p = u) < a for any |u| > e.

The parameter ¢ specifies the indifference area: the decision “u < 0" is
correct if p < e, and “u > 0" is correct if u > —e¢.

The parameter « specifies the maximal acceptable probability of error.

The problem (Kiefer, Weiss, 1957) is to find (7*,d*) € A, such that

supE(7* |p=u)= inf supE(7|p=u),
u€R (T, d)€Aa ueR

i.e. an optimal (7*,d*) minimizes the maximal observation time over
all decision rules in A,.
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Known results and the aim of the research

1. Chernoff and Breakwell (1961-63) showed that an optimal decision
rule is of the form

™ =inf{t >0:|X{| >a*(t)}, d"=sgn(X )
where X/ is a process obtained from X; by some transformation, and
a*(t) is some function on R (independent of 1y, 0p).

They found the asymptotics of a*(t) when ¢ — 0 and t — oo, which
corresponds to og — oo and g — 0.

2. Lai (1973) showed that in the Kiefer-Weiss problem
™ =inf{t > 0: | X¢| > b*(¢)}, d* = sgn(X,~)

He studied the asymptotics of b*(t) when ¢ — oc.

3. Our aim is to find the boundaries a*(t) and b*(t).
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2. Solution of the Chernoff problem

Recall that the problem is to find (7*,d*) such that

Bler" + klp|L(d" # sen(u))] = inf Bler + k|ulX(d # sgu(u)]

Fix the parameters (uo, o) and introduce the process W = (W)o<t<1,

Wi=00(1—t)X_+ —tuo/oo.

og(1-1)

We check that W is a standard Brownian motion.

It turns out, (7, d*) can be found from the optimal stopping problem

2
V, = inf E|4——"-—+— WT_|_ ,
HOZ0 e Lod(1— 1) | Ho/oo]
where im¥V is the class of all stopping times 7 < 1 of the filtration
(FV <1, FV =o0(Ws;s < ).
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Theorem

1) Let 733, be an optimal stopping time in V), »,. Then an optimal
decision rule (7*,d*) for testing H, and H_ is given by

™= ity A = sen(Xe o+ po/ad).
2) The moment 733, = 74}, (o, 00) is of the form
Ty (to, 00) = Inf{0 <t < 1: Wi+ po/oo| = ag, (1)},

where aj (t): [0,1] — R, is a non-increasing continuous function being
the unique solution of the equation (with some concrete function H)

(A=) H(1—t, a(t)) = /t1 e [0 (M) g (et g

in the class of continuous functions a(t) satisfying the properties

3
0<a(t) < %(1—@ fort<1,  a(l)=0.
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Remark
Chernoff and Breakwell showed that the optimal stopping time 7* is
given by

(10, 00) = {t > 01 [X; — po/od] > b°(t +1/03)},
where b*(t): Ry — R is a strictly positive function for ¢ > 0, which
does not depend on g, 0g.

As it follows from the structure of the processes W and X’ the optimal
stopping boundaries a;  and b* are connected by

1
), t>1/as.

b (t) = oot - at, (1 -
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The optimal stopping boundaries

Left: the boundary ag/z(t) for the process .
Right: the boundary b*(t) for the process X'.
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Outline of the proof

It is sufficient to consider only decision rules (7,d) with ET < co. For
any such decision rule the average penalty is

R(r,d)=E[r+ E(p~ | #)l{d = +1} + E(u" | #,)I{d = —1}].
Thus the problem reduces to finding the stopping time 7% minimizing

&(r) = E[T + min{E(,u_ | Z,), E(u™ | 9})}]

Using the Normal correlation theorem, we find
E(T)=E[r+ H(r +1/08, X; + po/0d)]

with the function

L otV — (v,

H(t,x) =
(t2) = — t

S
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Applying the I1t6 formula, we find that for any 7 with ET < oo

X, 2 1
| +m0/00|] H( mo>+\m0!‘

) =T e o) oz) " 2

20 2
gy Op

Then we check that the process

M; = (m — % is a martingale.
Applying the change of time, we find that the process
W = Mt/gg(l_t) is a Brownian motion,
which reduces the Chernoff problem to the optimal stopping problem

2
4‘4‘4‘4*-—\VVr+-M0/00

Vio,o0 = }_2%1 E 08(1

It is solved using standard methods.
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3. Solution of the Kiefer—-Weiss problem

Recall the problem is to find (7%, d*) such that

supE(7* | p=u) = inf supE(r|p=u),
u€eR (Tzd)EAOL u€eR

where A, is the class of decision rules (7,d) such that P(d # sgn(u) |
p=u) <« forany |u|l > e.

The problem is reduced to the family of problems V., ¢ > 0:

VC:(ing’)[E(T|u:0)+c{P(d:—1|u:5)+P(d:1|u:—s)}}.

)

Namely, if for some ¢ > 0 the optimal decision rule §. = (7, d.) for V.
is such that

P(de=—1|p=¢)=Plde=1|u=—2) =0,

then §¢ is optimal in the Kiefer—Weiss problem.
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Using that d(Py | u = u)/d(Py | p = u) = exp(uX; —u?t/2), we obtain

Vo= inf E[r + c(eX5 21 {d = —1}

e T2 d = 1)) | = 0]
This implies that the optimal decision rule (7., d.) is such that
de = sgn X,
and 7. solves the optimal stopping problem
V. = irTle[T 4 cemelXrl=et/2 ), o 0].

The constant ¢ = ¢(«) is found from the condition

P(X;,, >0|p=—¢)=qa.
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Theorem

An optimal stopping time (7%, d*) in the Kiefer—-Weiss problem is of the
form

" =inf{t > 0:|X¢| > a"(t+t0)}, d* = sgn X «,

where a*(t) > 0 is a non-increasing function on R, being the unique
solution of the integral equation

exp(—ea(t)—e?t/2) = / [@,(a(s+t)—a(t)—Ps(—a(s+t)—a(t))]ds
0
in the class of continuous function a(t) on R, satisfying the inequality

0<alt) < 66_€2t/2/2, t eR.

The quantity tg = to(«) is found from the equation P(d*(tp) =1 | p =
—€) = a.
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Numerical results

The optimal stopping boundary a*(t).
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Left: the dependence of the probability v of a wrong decision on the

value of tg.

Right: the dependence of the maximal average observation time E07*

on tg.
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Thank you for your attention!



