Elementare Wahrscheinlichkeitsrechnung - Übungsblatt 4

Abgabe am 14. 11. vor Beginn der Übung

!! Am 14.11. findet die Übung ausnahmsweise im H2 statt !!

Aufgabe 1 (1,5+1+2+2,5 Punkte)

Seien A_1, \ldots, A_n , $n \in \mathbb{N}$, unabhängige Ereignisse. Zeige, dass dann auch die folgenden Ereignisse unabhängig sind:

- (a) A_1 und A_2^c ,
- (b) $A_1 \cap A_2$ und A_3 ,
- (c) $A_1 \cup A_2$ und A_3 ,
- (d) $A_1^c, ..., A_n^c$.

Hinweis: Für den Beweis von Teilaufgabe (d) darf folgende Verallgemeinerung von Aussage (c) ohne Beweis verwendet werden: Die Ereignisse A_n und $\bigcup_{k=1}^{n-1} A_k$ sind unabhängig.

Aufgabe 2 (4+4 Punkte)

- (a) Es werden nacheinander zwei Münzen geworfen. Die Ereignisse *A*, *B*, *C* und *D* seien gegeben durch
 - A = 'die zuerst geworfene Münze zeigt Kopf'
 - B = 'es erscheint mindestens einmal Kopf'
 - C = 'es erscheint mindestens einmal Zahl'
 - D = 'die zweite Münze zeigt Kopf'

Überprüfe, ob folgende Ereignisse unabhängig sind (mit Begründung):

- (i) *A* und *C*; (ii) *A* und *D*; (iii) *B* und *C*; (iv) *B* und *D*
- (b) Ein fairer Würfel werde zweimal geworfen. Definiere die folgenden Ereignisse:
 - E = 'die erste Augenzahl ist ungerade'
 - F = 'die zweite Augenzahl ist ungerade'
 - G = 'die Summer der Augenzahlen ist ungerade'

Zeige, dass die Ereignisse E, F und G nicht unabhängig sind. Überprüfe, ob die Ereignisse paarweise unabhängig sind.

Aufgabe 3 (4 Punkte)

Zwei Zufallsvariablen $X, Y: \Omega \longrightarrow \mathbb{R}$ heißen stochastisch äquivalent, falls

$$P(\{\omega \in \Omega : X(\omega) = Y(\omega)\}) = 1.$$

Zeige: Zwei stochastisch äquivalente Zufallsvariablen besitzen die gleiche Verteilung und die Umkehrung ist im Allgemeinen falsch.

Aufgabe 4 (4 Punkte)

Eine Zufallsvariable X heißt (diskret) gleichverteilt auf $\{1, \ldots, n\}$, $n \in \mathbb{N}$, falls für ihre Wahrscheinlichkeitsfunktion (auch Zähldichte genannt) $\{p_j\}$ gilt, dass $p_j = P(X = j) = \frac{1}{n}$ für alle $j = 1, \ldots, n$. Die Zufallsvariablen X und Y seien unabhängig und gleichverteilt auf $\{1, \ldots, n\}$. Bestimme die Zähldichte von Z = X + Y, d.h. die Einzelwahrscheinlichkeiten P(Z = j) für alle j aus dem Bild von Z.

Hinweise:

- Betrachte die Fälle $j \le n$ und j > n separat.
- Zwei diskrete Zufallsvariablen heißen unabhängig, falls die Ereignisse $\{X = k\}$ und $\{Y = j\}$ unabhängige Ereignisse sind, d.h. wenn gilt, dass

$$P(X = k, Y = j) = P(\{X = k\} \cap \{Y = j\}) = P(X = k)P(Y = j).$$

Aufgabe 5 (2+1,5+1,5 Punkte)

Sei X eine diskrete Zufallsvariable und sei $p_i = c \cdot q^i$ für $i \in \mathbb{N}$, $c \ge 0$ und 0 < q < 1.

- (a) Überprüfe, wie c gewählt werden muss, damit $\{p_i\}$ eine Zähldichte darstellt.
- (b) X habe nun die Zähldichte $\{p_i\}$ mit der in (a) bestimmten Konstante c. Bestimme P(X ist gerade).
- (c) Bestimme die Zähldichte der Zufallsvariablen $Y = \min\{X, 8\}$.

Hinweis: Sei C eine abzählbare Menge. Eine Funktion $p:C\to\mathbb{R}$ (oder kurz $\{p_i,i\in C\}$) heißt Zähldichte, falls

- $p_i \in [0, 1]$ für alle $i \in C$
- $\sum_{i \in C} p_i = 1$