Elementare Wahrscheinlichkeitsrechnung - Übungsblatt 7

Abgabe am 5. 12. vor Beginn der Übung

Aufgabe 1 (1,5+2+2,5 Punkte)

Es sei $X = (X_1, ..., X_n)$ ein beliebiger Zufallsvektor.

- (a) Zeige, dass jeder Teilvektor $(X_{i_1}, ..., X_{i_m})$ mit $\{i_1, ..., i_m\} \subseteq \{1, ..., n\}$ und $2 \le m \le n$ aus unabhängigen Komponenten besteht, falls dies für den Gesamtverktor X gilt.
- (b) Widerlege, dass aus der paarweisen Unabhängigkeit der Komponenten von X die vollständige Unabhängigkeit aller Komponenten von X folgt (wähle z.B. n = 3).
- (c) Betrachte den Zufallsvektor (X, Y) mit Wahrscheinlichkeitsfunktion $p(\cdot, \cdot)$. Zeige, dass X^2 und Y^2 unabhängig sind, X und Y jedoch nicht.

Aufgabe 2 (2+4 Punkte)

(a) Sei (X_1, X_2) ein Zufallsvektor mit gemeinsamer Dichte

$$f_1(x_1, x_2) = \begin{cases} 1, & \text{falls } 0 \le x_1 \le 1, 0 \le x_2 \le 1 \\ 0, & \text{sonst.} \end{cases}$$

Sind X_1 und X_2 unabhängig? Bestimme die gemeinsame Verteilungsfunktion $F_1(x_1, x_2)$ von (X_1, X_2) .

(b) Sei $\rho \in [0, 1)$ und sei (Y_1, Y_2) ein Zufallsvektor mit gemeinsamer Dichte

$$f_2(y_1, y_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2} \frac{y_1^2 - 2\rho y_1 y_2 + y_2^2}{1-\rho^2}\right) \quad \text{für alle } y_1, y_2 \in \mathbb{R}.$$

Sind Y_1 und Y_2 unabhängig?

Aufgabe 3 (2+4 Punkte)

- (a) Seien $X_1 \sim \text{Geo}(p_1)$ und $X_2 \sim \text{Geo}(p_2)$ unabhängige Zufallsvariablen, wobei $p_1, p_2 \in [0, 1]$. Zeige, dass $\min\{X_1, X_2\} \sim \text{Geo}(p_1 + p_2 p_1 p_2)$.
- (b) Seien X und Y unabhängig und identisch verteilt mit stetiger Dichte f und Verteilungsfunktion F. Bestimme die Verteilungsfunktionen F_U bzw. F_V und die Dichten f_U bzw. f_V der Zufallsvariablen $U = \max\{X, Y\}$ und $V = \min\{X, Y\}$.

Aufgabe 4 (1+4 Punkte)

- (a) Sei $X \sim N(\mu, \sigma^2)$. Zeige, dass $aX + b \sim N(a\mu + b, (a\sigma)^2)$ für alle a > 0 und $b \in \mathbb{R}$.
- (b) Die Münchner Verbrauchergemeinschaft will die ausgeschenkte Menge Bier pro Maß auf dem Oktoberfest untersuchen. Dazu werden die beiden Wirte Ullrich und Kalle befragt.
 - (i) Ullrich behauptet, dass die bei ihm abgefüllte Menge X (in Liter) pro Maß als normalverteilte Zufallsvariable $X \sim N(1.035, 0.0004)$ angenommen werden kann. Wieviel Prozent der Gäste bekämen demnach weniger als einen Liter Bier ausgeschenkt?
 - (ii) Ausgiebige Recherchen haben allerdings ergeben, dass tatsächlich 10% von Ullrichs Gästen weniger als einen Liter Bier ausgeschenkt bekommen. Wie groß wäre demnach μ wenn weiterhin $\sigma^2 = 0.0004$ angenommen wird?
 - (iii) Kalle hingegen nimmt an, dass das Fassungsvermögen Y (in Liter) seiner Maßkrüge nicht konstant ist sondern als normalverteilte Zufallsvariable $Y \sim N(1.2, 0.0025)$ angenommen werden kann. Er befüllt seine Krüge solange mit Bier bis exakt 0.15 Liter im Krug ungefüllt bleiben. Wieviel Prozent seiner Gäste bekommen tatsächlich weniger als einen Liter Bier ausgeschenkt?

Hinweise:

- Aus (a) folgt insbesondere, dass wenn $X \sim N(\mu, \sigma^2)$, dann ist $\frac{X-\mu}{\sigma} \sim N(0, 1)$.
- Für die Verteilungsfunktion der Normalverteilung gibt es keine geschlossene Formel. Mit Hilfe von Aufgabe (a) lässt sich jedoch jede normalverteilte Zufallsvariable X in eine standardnormalverteilte Zufallsvariable Z transformieren. Die Werte der Verteilungsfunktion Φ von Z sind dann in Tabllenform gegeben, diese Tabelle steht auf der Homepage der Veranstaltung zum Download bereit.

Aufgabe 5 (3+2 Punkte)

Eine Maschine produziert Stahlkugeln mit zufälligem Radius R, wobei R eine auf dem Intervall $(a_0 - a, a_0 + a)$ gleichverteilte Zufallsvariable sei $(a_0 > a > 0)$.

- (a) *V* bezeichne das (zufällige) Volumen der produzierten Stahlkugeln. Berechne die Dichte von *V*.
- (b) Sei $a_0 = 2$ und a = 1. Wie groß ist die Wahrscheinlichkeit, dass V zwischen $\frac{8\pi}{3}$ und $\frac{40\pi}{3}$ liegt?