

Dr. Akim Adekpedjou Dipl.-Math. Stefan Roth WS 2014/15 24.10.2014

Life Contingencies - Exercise Sheet 2

Presentation: Friday, 7th of November.

Exercise 1

How large must a half-yearly payment be in order that the stream of payments starting immediately be equivalent (in present value terms) at 6 % interest to a lump-sum payment of \$5000, if the payment-stream is to last

- (a) 10 years,
- (b) 20 years,
- (c) forever?

Exercise 2

A survival model follows Makeham's law, so that

$$\mu_x = A + Bc^x \quad \text{for } x \ge 0.$$

(a) Show that under the Makeham's law

$$_t p_x = s^t g^{c^x(c^t - 1)},$$

where $s = e^{-A}$ and $g = \exp(-B/\log c)$.

(b) Suppose you are given the values of $_{10}p_{50}$, $_{10}p_{60}$ and $_{10}p_{70}$. Show that

$$c = \left(\frac{\log(10p_{70}) - \log(10p_{60})}{\log(10p_{60}) - \log(10p_{50})}\right)^{0.1}$$

Exercise 3

(a) Show that

$$\mathring{e}_x = \frac{1}{S_0(x)} \int_x^\infty S_0(t) dt,$$

where $S_0(t) = 1 - F_0(t)$, and hence, or otherwise, prove that

$$\frac{d}{dx}\ddot{e}_x = \mu_x \dot{e}_x - 1.$$

Hint: $\frac{d}{dx} \{ \int_a^x g(t) dt \} = g(x)$. What about $\frac{d}{dx} \{ \int_x^a g(t) dt \}$?

(b) Deduce that

 $x + \overset{\circ}{e}_x$

is an increasing function of x, and explain this result intuitively.

Exercise 4

Let $F_0(t) = 1 - e^{-\lambda t}$, where $\lambda > 0$.

- (a) Show that $S_x(t) = e^{-\lambda t}$.
- (b) Show that $\mu_x = \lambda$.
- (c) Show that $e_x = (e^{\lambda} 1)^{-1}$.
- (d) What conclusions do you draw about using this lifetime distribution to model human mortality?