Life Contingencies - Exercise Sheet 5

Presentation: Friday, 9th and Tuesday, the 13th of January.

Exercise 1

Let

$$
S_{0}(x)=\exp \left\{-\left(A x+\frac{1}{2} B x^{2}+\frac{C}{\log D} D^{x}-\frac{C}{\log D}\right)\right\}
$$

where A, B, C and D are all positive.
(a) Show that the function S_{0} is a survival function.
(b) Derive a formula for $S_{x}(t)$.
(c) Derive a formula for μ_{x}.

Exercise 2

Given

$$
F_{0}(x)=1-\frac{1}{1+x}, \quad \text { for } x \geq 0
$$

find expressions for (a), (b), (c) below, simplifying as far as possible,
(a) $S_{0}(x)$,
(b) $f_{0}(x)$,
(c) $S_{x}(t)$,
and calculate:
(d) p_{20}, and
(d) $\left.10\right|_{5} q_{30}$.

Exercise 3

Show that

$$
\frac{d}{d x}{ }^{t} p_{x}={ }_{t} p_{x}\left(\mu_{x}-\mu_{x+t}\right) .
$$

Exercise 4

Show that for integer n,

$$
e_{x: \bar{n} \mid}=\sum_{k=1}^{n}{ }_{k} p_{x}
$$

Exercise 5

(a) Show that

$$
\stackrel{\circ}{e}_{x} \leq \stackrel{\circ}{e}_{x+1}+1
$$

(b) Show that

$$
\stackrel{\circ}{e}_{x} \geq e_{x}
$$

(c) Explain (in words) why

$$
\stackrel{\circ}{e}_{x} \approx e_{x}+\frac{1}{2}
$$

Exercise 6

You are given the following table of values for l_{x} and A_{x}, assuming an effective interest rate of 6% per year.

x	l_{x}	A_{x}
35	100000.00	0.151375
36	99737.15	0.158245
37	99455.91	0.165386
38	99154.72	0.172804
39	98831.91	0.180505
40	98485.68	0.188492

Calculate
(a) ${ }_{5} E_{35}$,
(b) $A_{35: 5}^{1}$
(c) ${ }_{5} \mid A_{35}$.

Exercise 7

Calculate A_{70} given that

$$
A_{50: \overline{20}}=0.42247, \quad A_{50: \overline{20}}^{1}=0.14996, \quad A_{50}=0.31266
$$

Exercise 8

Use Jensen's inequality to show that

$$
\bar{a}_{x} \leq \bar{a}_{\left.\overline{\mathbb{E}\left[T_{x}\right]}\right]}
$$

Exercise 9

Find, and simplify where possible:
(a) $\frac{d}{d x} \ddot{\mathrm{a}}_{x}$ and
(b) $\frac{d}{d x} \ddot{a}_{x: \bar{n}}$.

Exercise 10

The force of mortality for a certain population is exactly half the sum of the forces of mortality in two standard mortality tables, denoted A and B. Thus

$$
\mu_{x}=\left(\mu_{x}^{A}+\mu_{x}^{B}\right) / 2
$$

for all x. A student has suggested the approximation

$$
a_{x}=\left(a_{x}^{A}+a_{x}^{B}\right) / 2
$$

Will this approximation overstate or understate the true value of a_{x} ?

