

Dr. Akim Adekpedjou Dipl.-Math. Stefan Roth WS 2014/15 27.12.2014

Life Contingencies - Exercise Sheet 5

Presentation: Friday, 9th and Tuesday, the 13th of January.

Exercise 1

Let

$$S_0(x) = \exp\left\{-\left(Ax + \frac{1}{2}Bx^2 + \frac{C}{\log D}D^x - \frac{C}{\log D}\right)\right\}$$

where A, B, C and D are all positive.

- (a) Show that the function S_0 is a survival function.
- (b) Derive a formula for $S_x(t)$.
- (c) Derive a formula for μ_x .

Exercise 2

Given

$$F_0(x) = 1 - \frac{1}{1+x}, \text{ for } x \ge 0,$$

find expressions for (a), (b), (c) below, simplifying as far as possible,

- (a) $S_0(x)$,
- (b) $f_0(x)$,
- (c) $S_x(t)$,

and calculate:

- (d) p_{20} , and
- (d) $_{10}|_5q_{30}$.

Exercise 3

Show that

$$\frac{d}{dx}tp_x = tp_x(\mu_x - \mu_{x+t})$$

Exercise 4

Show that for integer n,

$$e_{x:\overline{n}} = \sum_{k=1}^{n} {}_{k} p_{x}.$$

Exercise 5

- (a) Show that
- $\hat{e}_x \leq \hat{e}_{x+1} + 1$ (b) Show that $\hat{e}_x \geq e_x$ (c) Explain (in words) why $\hat{e}_x \approx e_x + \frac{1}{2}$

Exercise 6

You are given the following table of values for l_x and A_x , assuming an effective interest rate of 6% per year.

x	l_x	A_x
35	100000.00	0.151375
36	99737.15	0.158245
37	99455.91	0.165386
38	99154.72	0.172804
39	98831.91	0.180505
40	98485.68	0.188492

Calculate

(a) ${}_5E_{35}$,

(b) $A^1_{35:\overline{5}|}$

(c) $_{5}|A_{35}$.

Exercise 7

Calculate A_{70} given that

$$A_{50:\overline{20}|} = 0.42247, \quad A_{50:\overline{20}|}^1 = 0.14996, \quad A_{50} = 0.31266.$$

Exercise 8

Use Jensen's inequality to show that

$$\bar{a}_x \le \bar{a}_{\overline{\mathbb{E}[T_x]}}$$

Exercise 9

Find, and simplify where possible:

(a) $\frac{d}{dx}\ddot{\mathbf{a}}_x$ and

(b) $\frac{d}{dx}\ddot{\mathbf{a}}_{x:\overline{n}|}$.

Exercise 10

The force of mortality for a certain population is exactly half the sum of the forces of mortality in two standard mortality tables, denoted A and B. Thus

$$\mu_x = (\mu_x^A + \mu_x^B)/2$$

for all x. A student has suggested the approximation

$$a_x = (a_x^A + a_x^B)/2.$$

Will this approximation overstate or understate the true value of a_x ?