Statistical methods of risk theory

Exercise Sheet 2

Due to: October 31, 2014

Note: Solutions may be submitted in groups of up to three students!

Problem 1 (6 points)

Consider an exponential dispersion family $EDF(\Theta, C, b, a)$ with known dispersion parameter $\phi > 0$ and unknown natural parameter $\theta \in (\theta_{\min}, \theta_{\max})$ with $-\infty \leq \theta_{\min} < \theta_{\max} \leq \infty$ and assume that C does not consist of a single point. Assume that one realisation x_1, \ldots, x_n of i.i.d. random variables X_1, \ldots, X_n is observed and that

$$b'(\theta) = \bar{x}_n \tag{1}$$

has a solution. Show that the solution of (1) is uniquely determined and show that the maximum-likelihood-estimator $\hat{\theta}$ of θ exists and is a solution of (1). *Hint:* Consider $b''(\theta)$ in order to show the uniqueness.

Problem 2 (6 points)

Let X_1, \ldots, X_n be i.i.d. random variables where $X_i \sim \Gamma(\alpha, \beta)$, $\alpha > 0$ is known and $\beta > 0$ is unknown. The realisation (x_1, \ldots, x_n) of (X_1, \ldots, X_n) is considered. Use conjugate priors in order to determine the a-priori distribution as well as the a-posteriori distribution of $\tilde{\beta}$ and the Bayes estimator of $\mathbb{E}X_1$.

Problem 3 (6 points)

Let X_1, \ldots, X_m be i.i.d. random variables where $X_i \sim Bin(n, p)$ and $p \in (0, 1)$ is unknown. The realisation (x_1, \ldots, x_m) of (X_1, \ldots, X_m) is considered. Use conjugate priors in order to determine the a-priori distribution as well as the a-posteriori distribution of \tilde{p} and the Bayes estimator of $\mathbb{E}X_1$.

Hint: You have to use a distinct exponential dispersion family for each integer n, i.e. you have to allow $a(x, \phi)$ and $b(\theta)$ to depend on n.