Statistische Methoden der Risikotheorie

Übungsblatt 9

Abgabe: 19. Dezember 2014

Aufgabe 1 (6 Punkte)

Betrachte erneut Blatt 8 Aufgabe 3(b).

(a) Verwende Simulationen, um zu entscheiden, ob der Stichprobenumfang groß genug ist, sodass der Umfang (d.h. die Wahrscheinlichkeit des Fehlers 1. Art) ungefähr dem asymptotischen Signifikanzniveau α entspricht, falls $\alpha = 0.1$

Oftmals möchte man nicht testen, ob eine gegebene Stichprobe standardnormalverteilt ist, sondern ob sie überhaupt normalverteilt ist. Eine Idee könnte sein

$$H_0: X_1 \sim \mathcal{N}(\bar{X}, S_n^2)$$
 vs. $H_1: X_1$ ist nicht $\mathcal{N}(\bar{X}, S_n^2)$ -verteilt.

zu testen.

- (b) Verwende Simulationen um den Umfang dieses χ^2 -Testes für $\alpha = 0.1, n = 100$ und die Klassen von Blatt 8 Aufgabe 3(b) zu bestimmen.
- (c) Der Umfang dieses Testes konvergiert nicht gegen das asymptotische Signifikanzniveau α . Warum verletzt das nicht das Theorem aus der Vorlesung.

Aufgabe 2 (6 Punkte)

Seien $X_1, \ldots, X_n \in \mathbb{R}^d$ unabhängige und identisch verteilte Zufallsvektoren. Wir nehmen an, dass die Komponenten von X_1 unkorreliert sind und dass alle Komponenten die gleiche endliche bekannte Varianz σ^2 besitzen. Stelle einen asymptotischen Test zum Niveau $\alpha \in (0,1)$ für

$$H_0: \mathbb{E} X_1 = 0 \text{ vs. } H_1: \mathbb{E} X_1 \neq 0$$

basierend auf der Teststatistik

$$T(X_1, \dots, X_n) = \left\| \sum_{i=1}^n X_i \right\|$$

auf, wobei $\|\cdot\|$ die Euklidische Norm bezeichnet.

Aufgabe 3 (6 Punkte)

Es seien K_1, \ldots, K_r die Klassen beim χ^2 -Pearson-Anpassungstest. Nun unterteilen wir K_1 in zwei Unterklassen K_{11} und K_{12} . Für eine konkrete Stichprobe $x=(x_1,\ldots,x_n)$ sei z_{11} bzw. z_{12} die absolute Häufigkeit für die Klasse K_{11} bzw. K_{12} . Zeige, dass der p-Wert steigt, falls

$$\frac{z_{11}}{z_{12}} = \frac{P_0(K_{11})}{P_0(K_{12})}$$

erfüllt ist.

 ${\it Hinweis:}$ Zeige, dass die Teststatistik mit r Klassen gleich der Teststatistik mit (r+1) Klassen ist.

Aufgabe 4 (6 Punkte)

Zeige, dass beim Iterationstest unter H_0 gilt, dass

$$\mathbb{E} T_n(X) = 1 + \frac{2 n_0 n_1}{n},$$

wobei $n = n_0 + n_1$.