

ulm university universität

Prof. Dr. Volker Schmidt Matthias Neumann

Winter term 2014/15

## Stochastics II Exercise Sheet 10

Deadline: January 7, 2015 at 4pm before the exercises

**Exercise 1** (1+2+2+3+3)

Let  $H \in (0, 1)$  be some constant. A stochastic process  $\{B_t^{(H)}, t \ge 0\}$  is said to be a fractional Brownian motion (fBm) of Hurst index H if it is a Gaussian process with  $\mathbb{E}B_t^{(H)} = 0$  for each  $t \ge 0$  and if its covariance function fulfills  $\operatorname{Cov}(B_t^{(H)}, B_s^{(H)}) = 1/2(t^{2H} + s^{2H} - |t - s|^{2H})$ for all  $s, t \ge 0$ .

- a) Show that  $B_0^{(H)} = 0$  a.s. for each  $H \in (0, 1)$ .
- b) Let  $s, t \ge 0$ . Show that  $B_{t+s}^{(H)} B_s^{(H)} \stackrel{D}{=} B_t^{(H)}$  for each  $H \in (0, 1)$ .
- c) Show that the fBm is self-similar for each Hurst-index  $H \in (0, 1)$ , i.e., show that for each a > 0 there exists a constant  $b \in \mathbb{R}$  such that

$$\{B_{at}^{(H)}, t \ge 0\} \stackrel{D}{=} \{bB_t^{(H)}, t \ge 0\}.$$

- d) A stationary stochastic process  $\{Y_n, n \in \mathbb{N}\}$  in discrete time is said to be long-range dependent if  $\lim_{n\to\infty} c^{-1}n^{\alpha} \operatorname{Cov}(Y_0, Y_n) = 1$  for some  $c \in \mathbb{R}$  and  $\alpha \in (0, 1)$ . Define  $\{Y_n, n \in \mathbb{N}\}$  by  $Y_n = B_{n+1}^{(H)} - B_n^{(H)}$  for each  $n \in \mathbb{N}$ . Show that  $\{Y_n, n \in \mathbb{N}\}$  is long-range dependent for each  $H \in (1/2, 1)$ .
- e) Write an R-code (or Matlab-code) in order to simulate an approximation of  $\{B_t^{(H)}, t \in [0,1]\}$  for  $H \in \{1/10, 1/2, 9/10\}$  by simulating the process  $\{Y_t, t \in [0,1]\}$  defined by

$$Y_{k/500} = B_{k/500}^{(H)}$$

for each  $k \in \{0, 1, ..., 500\}$  and

$$Y_t = B_{k/500}^{(H)} + (500t - k)(B_{(k+1)/500}^{(H)} - B_{k/500}^{(H)})$$

for each  $t \in (k/500, (k+1)/500)$ , where  $k \in \{0, 1, ..., 499\}$ . Hand in your code and one realization for each for  $H \in \{1/10, 1/2, 9/10\}$ .

Hint: Use the command mornorm in package MASS for programming in R and use the command mornor for programming in Matlab.

Remark: In Exercise Sheet 8 we defined the non-degenerate multivariate normal distribution by its density function. Here we need the general case of a multivariate normal distribution, where the covariance matrix is not necessarily positive-definite, but positive semi-definite, i.e.: Let  $\mu = (\mu_1, \ldots, \mu_n)^\top \in \mathbb{R}^n$  and  $K = (k_{i,j})_{i,j=1,\ldots,n}$  be a symmetric and positive semidefinite  $n \times n$ -matrix. The random vector  $Z = (Z_1, \ldots, Z_n)^\top$  is said to be multivariate normal distributed with mean vector  $\mu$  and covariance matrix K if its characteristic function is given by  $\varphi(t) = \exp\left(it^\top \mu - \frac{1}{2}t^\top Kt\right)$  for all  $t \in \mathbb{R}^n$ . Recall, that a stochastic process  $\{V_t, t \ge 0\}$  is said to be a Gaussian process if the random vector  $(V_{t_1}, \ldots, V_{t_n})$  is multivariate normal for each  $n \in \mathbb{N}$  and for all  $0 \le t_1, \ldots, t_n < \infty$ .

## **Exercise 2** (2)

Let c > 0 be arbitrary and let  $\nu$  be an arbitrary Lévy measure. Let N be a random variable with  $N \sim \operatorname{Poi}(\nu([-c,c]^c))$  and let  $U_1, U_2, \ldots$  be a sequence of i.i.d. random variables such that  $\mathbb{P}(U_1 \in B) = \nu(B \cap [-c,c]^c)/\nu([-c,c]^c)$  for each Borel set  $B \subset \mathbb{R}$ . Define the random variable  $Y = \sum_{k=1}^{N} U_k$ . Show that the characteristic function of Y is given by

$$\varphi(s) = \exp\left(\int_{[-c,c]^c} (\exp(isy) - 1)\nu(\mathrm{d}y)\right).$$

Note that Y is said to have a compound Poisson distribution.

## **Exercise 3** (2)

Let  $X_1, \ldots, X_n$  be independent and infinitely divisible random variables and let  $a_1, \ldots, a_n \in \mathbb{R}$  be arbitrary numbers. Show that  $\sum_{k=1}^n a_k X_k$  is an infinitely divisible random variable.

## **Exercise 4** (3+3)

Show that the following random variables X, Y are infinitely divisible.

a) Let  $r \in \mathbb{N}$  and  $p \in (0, 1)$ . Define the random variable  $X : \Omega \to \mathbb{N}_0$  by

$$\mathbb{P}(X=k) = \binom{k+r-1}{k} p^k (1-p)^r,$$

for each  $k \in \mathbb{N}_0$ .

Hint: Consider the sum of i.i.d. geometric distributed random variables.

b) Let  $N \in \mathbb{N}$ . Define the random variable Y by its characteristic function

$$\varphi_Y(s) = \exp\left(i\sum_{k=1}^N \sin(sk) + \sum_{k=1}^N (\cos(sk) - 1)\right).$$