Stochastics II
 Exercise Sheet 10

Deadline: January 7, 2015 at 4pm before the exercises

Exercise $1 \quad(1+2+2+3+3)$
Let $H \in(0,1)$ be some constant. A stochastic process $\left\{B_{t}^{(H)}, t \geq 0\right\}$ is said to be a fractional Brownian motion (fBm) of Hurst index H if it is a Gaussian process with $\mathbb{E} B_{t}^{(H)}=0$ for each $t \geq 0$ and if its covariance function fulfills $\operatorname{Cov}\left(B_{t}^{(H)}, B_{s}^{(H)}\right)=1 / 2\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)$ for all $s, t \geq 0$.
a) Show that $B_{0}^{(H)}=0$ a.s. for each $H \in(0,1)$.
b) Let $s, t \geq 0$. Show that $B_{t+s}^{(H)}-B_{s}^{(H)} \stackrel{D}{=} B_{t}^{(H)}$ for each $H \in(0,1)$.
c) Show that the fBm is self-similar for each Hurst-index $H \in(0,1)$, i.e., show that for each $a>0$ there exists a constant $b \in \mathbb{R}$ such that

$$
\left\{B_{a t}^{(H)}, t \geq 0\right\} \stackrel{D}{=}\left\{b B_{t}^{(H)}, t \geq 0\right\} .
$$

d) A stationary stochastic process $\left\{Y_{n}, n \in \mathbb{N}\right\}$ in discrete time is said to be long-range dependent if $\lim _{n \rightarrow \infty} c^{-1} n^{\alpha} \operatorname{Cov}\left(Y_{0}, Y_{n}\right)=1$ for some $c \in \mathbb{R}$ and $\alpha \in(0,1)$. Define $\left\{Y_{n}, n \in \mathbb{N}\right\}$ by $Y_{n}=B_{n+1}^{(H)}-B_{n}^{(H)}$ for each $n \in \mathbb{N}$. Show that $\left\{Y_{n}, n \in \mathbb{N}\right\}$ is long-range dependent for each $H \in(1 / 2,1)$.
e) Write an R-code (or Matlab-code) in order to simulate an approximation of $\left\{B_{t}^{(H)}, t \in\right.$ $[0,1]\}$ for $H \in\{1 / 10,1 / 2,9 / 10\}$ by simulating the process $\left\{Y_{t}, t \in[0,1]\right\}$ defined by

$$
Y_{k / 500}=B_{k / 500}^{(H)}
$$

for each $k \in\{0,1, \ldots, 500\}$ and

$$
Y_{t}=B_{k / 500}^{(H)}+(500 t-k)\left(B_{(k+1) / 500}^{(H)}-B_{k / 500}^{(H)}\right)
$$

for each $t \in(k / 500,(k+1) / 500)$, where $k \in\{0,1, \ldots, 499\}$. Hand in your code and one realization for each for $H \in\{1 / 10,1 / 2,9 / 10\}$.
Hint: Use the command mvrnorm in package MASS for programming in R and use the command mvnrnd for programming in Matlab.

Remark: In Exercise Sheet 8 we defined the non-degenerate multivariate normal distribution by its density function. Here we need the general case of a multivariate normal distribution, where the covariance matrix is not necessarily positive-definite, but positive semi-definite,
i.e.: Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)^{\top} \in \mathbb{R}^{n}$ and $K=\left(k_{i, j}\right)_{i, j=1, \ldots, n}$ be a symmetric and positive semidefinite $n \times n$-matrix. The random vector $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{\top}$ is said to be multivariate normal distributed with mean vector μ and covariance matrix K if its characteristic function is given by $\varphi(t)=\exp \left(i t^{\top} \mu-\frac{1}{2} t^{\top} K t\right)$ for all $t \in \mathbb{R}^{n}$. Recall, that a stochastic process $\left\{V_{t}, t \geq 0\right\}$ is said to be a Gaussian process if the random vector $\left(V_{t_{1}}, \ldots, V_{t_{n}}\right)$ is multivariate normal for each $n \in \mathbb{N}$ and for all $0 \leq t_{1}, \ldots, t_{n}<\infty$.

Exercise 2 (2)

Let $c>0$ be arbitrary and let ν be an arbitrary Lévy measure. Let N be a random variable with $N \sim \operatorname{Poi}\left(\nu\left([-c, c]^{c}\right)\right)$ and let U_{1}, U_{2}, \ldots be a sequence of i.i.d. random variables such that $\mathbb{P}\left(U_{1} \in B\right)=\nu\left(B \cap[-c, c]^{c}\right) / \nu\left([-c, c]^{c}\right)$ for each Borel set $B \subset \mathbb{R}$. Define the random variable $Y=\sum_{k=1}^{N} U_{k}$. Show that the characteristic function of Y is given by

$$
\varphi(s)=\exp \left(\int_{[-c, c]^{c}}(\exp (i s y)-1) \nu(\mathrm{d} y)\right) .
$$

Note that Y is said to have a compound Poisson distribution.

Exercise 3 (2)

Let X_{1}, \ldots, X_{n} be independent and infinitely divisible random variables and let $a_{1}, \ldots, a_{n} \in$ \mathbb{R} be arbitrary numbers. Show that $\sum_{k=1}^{n} a_{k} X_{k}$ is an infinitely divisible random variable.

Exercise $4 \quad(3+3)$

Show that the following random variables X, Y are infinitely divisible.
a) Let $r \in \mathbb{N}$ and $p \in(0,1)$. Define the random variable $X: \Omega \rightarrow \mathbb{N}_{0}$ by

$$
\mathbb{P}(X=k)=\binom{k+r-1}{k} p^{k}(1-p)^{r}
$$

for each $k \in \mathbb{N}_{0}$.
Hint: Consider the sum of i.i.d. geometric distributed random variables.
b) Let $N \in \mathbb{N}$. Define the random variable Y by its characteristic function

$$
\varphi_{Y}(s)=\exp \left(i \sum_{k=1}^{N} \sin (s k)+\sum_{k=1}^{N}(\cos (s k)-1)\right) .
$$

