Stochastics II
 Exercise Sheet 11

Deadline: January 14, 2015 at 4pm before the exercises

Exercise $1 \quad(5+3)$

Let $X: \Omega \rightarrow \mathbb{R}$ be a real-valued random variable with characteristic function φ_{X}. Show the following statements:
a) If X is infinitely divisible, then it holds $\varphi_{X}(t) \neq 0$ for all $t \in \mathbb{R}$.

Hint: Show that $\varphi_{X}(s)=\left(\varphi_{n}(s)\right)^{n}$ for each $s \in \mathbb{R}$ implies $\lim _{n \rightarrow \infty}\left|\varphi_{n}(s)\right|=\mathbb{I}(\varphi(s) \neq 0)$ for each $s \in \mathbb{R}$. Moreover, you may assume the following without proof: Let $0<\theta<2 \pi$ and let $\left\{c_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in \mathbb{C} with $\lim _{n \rightarrow \infty} c_{n}=\exp (i \theta)$. Then the limit $\lim _{n \rightarrow \infty} c_{n}^{n}$ does not exist.
b) There exists a real-valued random variable $Y: \Omega \rightarrow \mathbb{R}$ such that its characteristic function φ_{Y} fulfills $\varphi_{Y}(t) \neq 0$ for all $t \in \mathbb{R}$, but Y is not infinitely divisible.
Hint: Consider a random variable Y such that $\mathbb{P}(Y \in\{-1,0,1\})=1$.

Exercise 2 (4)

Let $\left\{X_{t}, t \geq 0\right\}$ be a Lévy process with characteristic triplet (a, b, ν), where ν is a finite measure on \mathbb{R}, i.e. $\nu(\mathbb{R})<\infty$. Show that there exist a Wiener process $\left\{W_{t}, t \geq 0\right\}$, a compound Poisson process $\left\{Z_{t}, t \geq 0\right\}$ independent of $\left\{W_{t}, t \geq 0\right\}$ and constants $\mu, c \in \mathbb{R}$ with $c \neq 0$ such that the following holds:

$$
\left\{X_{t}, t \geq 0\right\} \stackrel{D}{=}\left\{c W_{t}+\mu t+Z_{t}, t \geq 0\right\}
$$

Exercise $3 \quad(1+3+2)$
Let $\left\{X_{t}, t \geq 0\right\}$ be a Lévy process and $b, p>0$ such that $X_{t} \sim \Gamma(b, p t)$ for each $t>0$, i.e. the probability density function of X_{t} is given by $f_{X_{t}}(x)=b^{p t} x^{p t-1} \exp (-b x) / \Gamma(p t)$, for each $t \geq 0$. Note that $\left\{X_{t}, t \geq 0\right\}$ is said to be a gamma process with parameters b and p.
a) Show that $\int_{0}^{\infty} \min \{1, y\} p y^{-1} \exp (-b y) \mathrm{d} y<\infty$
b) Show that $\left\{X_{t}, t \geq 0\right\}$ is a subordinator with

$$
\mathbb{E} \exp \left(-u X_{t}\right)=\exp \left(-t \int_{0}^{\infty} \frac{p(1-\exp (-u y))}{y \exp (b y)} \mathrm{d} y\right)
$$

for all $u \geq 0$.
c) Let $b=10, p=100$. Write an R-code (or Matlab-code) in order to simulate an approximation of $\left\{X_{t}, t \geq 0\right\}$ on the interval $[0,1]$ by simulating the process $\left\{Y_{t}, t \in[0,1]\right\}$ defined by

$$
Y_{k / 100}=X_{k / 100}
$$

for each $k \in\{0,1, \ldots, 100\}$ and

$$
Y_{t}=X_{k / 100}+(100 t-k)\left(X_{(k+1) / 100}-X_{k / 100}\right)
$$

for each $t \in(k / 100,(k+1) / 100)$, where $k \in\{0,1, \ldots, 99\}$. Hand in your code and a plot of one realization.

