Winter term 2014/15

Stochastics II Exercise Sheet 13

Deadline: January 28, 2015 at 4pm before the exercises

Exercise 1 (3+3)

Let $\{\mathcal{F}_t, t \geq 0\}$ be a filtration on a probability space (Ω, \mathcal{F}, P) . Let τ be a stopping time. We define the σ -algebra \mathcal{F}_{τ} by $\mathcal{F}_{\tau} = \{B \in \mathcal{F} : B \cap \{\tau \leq t\} \in \mathcal{F}_t \text{ for each } t \geq 0\}$. Moreover, let S and T be stopping times w.r.t. $\{\mathcal{F}_t, t \geq 0\}$. Show the following results:

a) $A \cap \{S \leq T\} \in \mathcal{F}_T$ for each $A \in \mathcal{F}_S$

b) $\mathcal{F}_{\min\{S,T\}} = \mathcal{F}_S \cap \mathcal{F}_T$

Exercise 2 (2)

Let $\{X_t, t \ge 0\}$ be a martingale. Show that $\mathbb{E}X_t = \mathbb{E}X_0$ for each $t \ge 0$.

Exercise 3 (4+4)

- a) Let $\{X_t, t \ge 0\}$ be an inhomogeneous Poisson process with intensity function $\lambda_t \ge 0$ for each $t \ge 0$. Define the process $\{Y_t, t \ge 0\}$ by $Y_t = X_t - \int_0^t \lambda(s) ds$. Show that $\{Y_t, t \ge 0\}$ is a martingale with respect to the intrinsic filtration $\{\mathcal{F}_t^X\}$. Remark: Recall that an inhomogeneous Poisson process is a Cox process where the intensity function λ_t is deterministic.
- b) Let $\{X_t, t \ge 0\}$ be a Lévy process with $\mathbb{E}|X_1| < \infty$. Define the process $\{Y_t, t \ge 0\}$ by $Y_t = X_t t\mathbb{E}X_1$. Show that $\{Y_t, t \ge 0\}$ is a martingale with respect to the intrinsic filtration $\{\mathcal{F}_t^X\}$.

Exercise 4 (4 extra points)

Let X be a random variable with $\mathbb{E}|X| < \infty$ and let $\{X_n, n \ge 1\}$ be a sequence of random variables with $\lim_{n\to\infty} \mathbb{E}|X_n - X| = 0$. Show that $\{X_n, n \ge 1\}$ is uniformly integrable.