

ulm university universität

Prof. Dr. Volker Schmidt Matthias Neumann

Winter term 2014/15

Stochastics II Exercise Sheet 1

Deadline: October 22, 2014 at 4pm before the exercises

Exercise 1 (3+1)

Let $\{N_t, t \geq 0\}$ be a renewal process with i.i.d. interarrival times T_1, T_2, \ldots , where $T_1 \sim \text{Exp}(\lambda)$ for some $\lambda > 0$.

- a) Show that N_t is Poisson distributed for each t > 0.
- b) Find the parameter of the Poisson distribution in part (a) for arbitrary t > 0.

Exercise 2 (2+4)

Let $\{N_t, t \ge 0\}$ be a renewal process with i.i.d. interarrival times T_1, T_2, \ldots , where $T_1 \sim U(1, 1+2\theta)$ for an unknown parameter $\theta > 0$. Consider the family of estimators $\{\hat{\theta}_t, t > 0\}$ for θ with

$$\widehat{\theta}_t = \frac{t - N_t}{N_t}.$$

- a) Show that the following holds with probability 1: $\lim_{t\to\infty} \widehat{\theta}_t = \theta$.
- b) Determine a symmetric, asymptotic 95%-confidence interval for N_t .

Exercise 3 (3+3)

Let $T_1, T_2, \ldots : \Omega \to [0, \infty)$ be a sequence of non-negative and i.i.d. random variables $\mathbb{E}T_1 = \mu \in (0, \infty)$. Let $U_1, U_2, \ldots : \Omega \to \mathbb{R}$ be a sequence of i.i.d. random variables with $\mathbb{E}|U_1| < \infty$. Define the stochastic process $\{X_t, t \ge 0\}$ by

$$X_t = \sum_{k=1}^{\infty} U_k \mathbb{I}(T_1 + \ldots + T_k \le t)$$

for all $t \ge 0$. Show that the following statements hold with probability 1:

a) The sum in the definition of X_t converges for each $t \ge 0$ and

b)

$$\lim_{t \to \infty} \frac{X_t}{t} = \frac{\mathbb{E}U_1}{\mu}.$$

Exercise 4 (1+3)

Let $X, Y : \Omega \to [0, \infty)$ be non-negative and independent random variables with distribution functions F_X and F_Y . Moreover, the distribution function of the random variable X + Y is denoted by F_{X+Y} .

- a) Show $F_{X+Y}(t) \leq F_X(t)F_Y(t)$ for each $0 < t < \infty$.
- b) Show that continuity of F_X implies continuity of F_{X+Y} .