Let $X_{1}, \ldots, X_{n}: \Omega \rightarrow \mathbb{N}_{0}$ be a collection of random variables, such that $\mathbb{P}\left(X_{1}=k_{1}, \ldots, X_{n}=\right.$ $\left.k_{n}\right)>0$ for all $k_{1}, \ldots, k_{n} \in \mathbb{N}_{0}$. Then, the joint distribution of X_{1}, \ldots, X_{n} is uniquely determined by the family of probabilities

$$
\begin{equation*}
\left\{\mathbb{P}\left(X_{1}=k_{1}, \ldots, X_{n}=k_{n}\right), k_{1}, \ldots, k_{n} \geq 1\right\} . \tag{1}
\end{equation*}
$$

This holds because for arbitrary m with $1 \leq m<n$

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}=0, \ldots, X_{m}=0, X_{m+1}=k_{m+1}, \ldots, X_{n}=k_{n}\right) \\
& \quad=\mathbb{P}\left(X_{1}=0, \ldots, X_{m}=0 \mid X_{m+1}=k_{m+1}, \ldots, X_{n}=k_{n}\right) \mathbb{P}\left(X_{m+1}=k_{m+1}, \ldots, X_{n}=k_{n}\right) \\
& \quad=\left(1-\sum_{k_{1}+\ldots+k_{m} \geq 1}\left(\mathbb{P}\left(X_{1}=k_{1}, \ldots, X_{m}=k_{m} \mid X_{m+1}=k_{m+1}, \ldots, X_{n}=k_{n}\right)\right)\right) \\
& \mathbb{P}\left(X_{m+1}=k_{m+1}, \ldots, X_{n}=k_{n}\right) \\
& \quad=\mathbb{P}\left(X_{m+1}=k_{m+1}, \ldots, X_{n}=k_{n}\right)-\sum_{k_{1}+\ldots+k_{m} \geq 1} \mathbb{P}\left(X_{1}=k_{1}, \ldots X_{n}=k_{n}\right)
\end{aligned}
$$

Then we have reduced it to the case in which $m-1$ random variables are zero. By iteration we reduce the computation of

$$
\mathbb{P}\left(X_{1}=0, \ldots, X_{m}=0, X_{m+1}=k_{m+1}, \ldots, X_{n}=k_{n}\right)
$$

to computing probabilities of the form in (1). Note that if $m=n$ we can write

$$
\mathbb{P}\left(X_{1}=0, \ldots, X_{n}=0\right)=1-\sum_{k_{1}+\ldots+k_{m} \geq 1} \mathbb{P}\left(X_{1}=k_{1}, \ldots X_{n}=k_{n}\right)
$$

