

ulm university universität

Prof. Dr. Volker Schmidt Matthias Neumann

Winter term 2014/15

Stochastics II Exercise Sheet 2

Deadline: October 29, 2014 at 4pm before the exercises

Exercise 1 (4)

Let $\{N_t, t \ge 0\}$ be a renewal process with i.i.d. interarrival times T_1, T_2, \ldots and with renewal function H(t). Let F(t) be the distribution function of T_1 . Show that it holds

$$F(t) \le H(t) \le \frac{F(t)}{1 - F(t)}$$

for each t with F(t) < 1.

Exercise 2 (3+3+3)

Let $\{N_t, t \ge 0\}$ be a renewal process. The distribution function of T_1 is denoted by F(x) and the renewal function is denoted by H(t).

- a) Show that $\mathbb{E}N_t^2 = \sum_{n=1}^{\infty} (2n-1)F^{*(n)}(t)$ for each $t \ge 0$.
- b) Compute the Laplace-Stieltjes transform of $\sum_{n=1}^{\infty} n F^{*(n)}(t)$.
- c) Show that $\mathbb{E}N_t^2 = H(t) + 2(H * H)(t)$ for each $t \ge 0$.

Hint: Let $\{F_n : n \in \mathbb{N}\}$ be a sequence of monotonous and right-continuous functions, which are constant on $(-\infty, 0)$. Let g be a non-negative Borel-measurable function. Then it holds:

$$\int_0^\infty g(t) \mathrm{d}\left(\sum_{n=1}^\infty F_n(t)\right) = \sum_{n=1}^\infty \int_0^\infty g(t) \mathrm{d}F_n(t)$$

Exercise 3 (3)

Let $\{N_t, t \ge 0\}$ be a delayed renewal process with jump times S_1, S_2, \ldots . Define the excess at time $t \ge 0$ by $T(t) = S_{N_t+1} - t$ and let $\mathbb{P}(T(t) \le x)$ not depend on t. Show that then, the distribution of increments $N_{t_1+t} - N_{t_0+t}, \ldots, N_{t_n+t} - N_{t_{n-1}+t}$ does also not depend on t, for all $0 = t_0 \le t_1 < \ldots < t_n < \infty$.

Exercise 4 (2 + 1 + 3)

Let $\{N_t, t \geq 0\}$ be a delayed renewal process with holding times T_1, T_2, \ldots , where $T_2 \sim U(0, 1)$.

- a) Determine the distribution of T_1 such that $\{N_t, t \ge 0\}$ has stationary increments.
- b) Let $U \sim U(0,1)$. Compute the distribution function of the random variable $Z = 1 \sqrt{1 U}$.
- c) Write an R-program in order to simulate $\{N_t, 0 \le t \le 100\}$, where T_1 is distributed such that $\{N_t, t \ge 0\}$ has stationary increments. Hand in your R-code and a plot of one realization.