Exercise2

We show that the process {N;,t > 0} has stationary and independent increments. Let
0=t <t; <...<t, <ty =00 and my,...m, be arbitrary. Then we get by conditioning
on X:
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Then, the three event in the last integral are independent from each other because the
Poisson processes N and N® are independent from each other and Poisson processes have
independent increments. Moreover, it holds that N+ Nt(j-)1—2 — Nt(il) = N:ng—ti + Nt(j-)l—m

Poi(A(tir1 —t;)), where A was the intensity of N(V) and N®). This leads to
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Now we know that the process N; has independent increments. Let h > 0 be arbitrary. Then
we get
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Now we are in the same case as above and obtain:
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This shows us that N, has stationary increments.



