Exercise2

We show that the process $\left\{N_{t}, t \geq 0\right\}$ has stationary and independent increments. Let $0=t_{0} \leq t_{1} \leq \ldots \leq t_{n}<t_{n+1}=\infty$ and $m_{1}, \ldots m_{n}$ be arbitrary. Then we get by conditioning on X :

$$
\begin{aligned}
\mathbb{P}\left(N_{t_{1}}-N_{t_{0}}\right. & \left.=m_{1}, \ldots, N_{t_{n}}-N_{t_{n-1}}=m_{n}\right) \\
& =\sum_{i=0}^{n+1} \int_{t_{i}}^{t_{i+1}} \mathbb{P}\left(N_{t_{1}}-N_{t_{0}}=m_{1}, \ldots, N_{t_{n}}-N_{t_{n-1}}=m_{n} \mid X=x\right) \mathrm{d} F_{X}(x) \\
& =\sum_{i=0}^{n+1} \int_{t_{i}}^{t_{i+1}} \mathbb{P}\left(\left\{N_{t_{j}}^{(1)}-N_{t_{j-1}}^{(1)}=m_{j}, \forall 1 \leq j \leq i\right\}\right. \\
& \cap\left\{N_{x}^{(1)}+N_{t_{+1}-x}^{(2)}-N_{t_{i}}^{(1)}=m_{i+1}\right\} \\
& \left.\cap\left\{N_{x}^{(1)}+N_{t_{j+1}-x}^{(2)}-N_{x}^{(1)}-N_{t_{j}-x}^{(2)}=m_{j+1}, \forall i<j<n\right\}\right) \mathrm{d} F_{X}(x)
\end{aligned}
$$

Then, the three event in the last integral are independent from each other because the Poisson processes $N^{(1)}$ and $N^{(2)}$ are independent from each other and Poisson processes have independent increments. Moreover, it holds that $N_{x}^{(1)}+N_{t_{i+1}-x}^{(2)}-N_{t_{i}}^{(1)}=N_{x-t_{i}}^{(1)}+N_{t_{i+1}-x}^{(2)} \sim$ $\operatorname{Poi}\left(\lambda\left(t_{i+1}-t_{i}\right)\right)$, where λ was the intensity of $N^{(1)}$ and $N^{(2)}$. This leads to

$$
\begin{aligned}
\mathbb{P}\left(N_{t_{1}}-N_{t_{0}}\right. & \left.=m_{1}, \ldots, N_{t_{n}}-N_{t_{n-1}}=m_{n}\right) \\
& =\sum_{i=0}^{n+1} \int_{t_{i}}^{t_{i+1}} \prod_{j=1}^{n} \mathbb{P}\left(N_{t_{j}}-N_{t_{j-1}}=m_{j}\right) \mathrm{d} F_{X}(x) \\
& =\prod_{j=1}^{n} \mathbb{P}\left(N_{t_{j}}-N_{t_{j-1}}=m_{j}\right) \\
& =\prod_{j=1}^{n} \frac{\left(\left(\lambda\left(t_{j}-t_{j-1}\right)\right)^{m_{j}}\right.}{m_{j}!} \exp \left(-\lambda\left(t_{j}-t_{j-1}\right)\right) .
\end{aligned}
$$

Now we know that the process N_{t} has independent increments. Let $h>0$ be arbitrary. Then we get

$$
\begin{aligned}
\mathbb{P}\left(N_{t_{1}+h}\right. & \left.-N_{t_{0}+h}=m_{1}, \ldots, N_{t_{n}+h}-N_{t_{n-1}+h}=m_{n}\right) \\
& =\sum_{m_{0}=0}^{\infty} \mathbb{P}\left(N_{t_{0}+h}-N_{t_{0}}=m_{0}, N_{t_{1}+h}-N_{t_{0}+h}=m_{1}, \ldots, N_{t_{n}+h}-N_{t_{n-1}+h}=m_{n}\right)
\end{aligned}
$$

Now we are in the same case as above and obtain:

$$
\begin{aligned}
& =\sum_{m_{0}=0}^{\infty} \frac{(\lambda h)^{m_{0}}}{m_{0}!} \exp (-\lambda h) \prod_{j=1}^{n} \frac{\left(\left(\lambda\left(t_{j}-t_{j-1}\right)\right)^{m_{j}}\right.}{m_{j}!} \exp \left(-\lambda\left(t_{j}-t_{j-1}\right)\right) \\
& =\prod_{j=1}^{n} \frac{\left(\left(\lambda\left(t_{j}-t_{j-1}\right)\right)^{m_{j}}\right.}{m_{j}!} \exp \left(-\lambda\left(t_{j}-t_{j-1}\right)\right)
\end{aligned}
$$

This shows us that N_{t} has stationary increments.

