

ulm university universität

Prof. Dr. Volker Schmidt Matthias Neumann

Winter term 2014/15

Stochastics II Exercise Sheet 7

Deadline: December 3, 2014 at 4pm before the exercises

Exercise 1 (4)

Let $\{X_t, t \ge 0\}$ and $\{Y_t, t \ge 0\}$ be two independent Wiener processes defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $a, b \in \mathbb{R}$. Define the stochastic process $\{Z_t, t \ge 0\}$ by $Z_t = aX_t + bY_t$ for each $t \ge 0$. For which constellations of a, b is $\{Z_t, t \ge 0\}$ a Wiener process?

Exercise 2 (2+3)

Let $\{X_t, t \in [0, 1]\}$ be a Wiener process and define the stochastic process $\{B_t, t \in [0, 1]\}$ by $B_t = X_t - t \cdot X_1$ for each $t \in [0, 1]$.

- a) Compute $Cov(B_s, B_t)$ for arbitrary $s, t \in [0, 1]$.
- b) Compute $\text{Cov}(B_{s_1} B_{s_2}, B_{t_1} B_{t_2})$ for arbitrary $0 \le t_2 \le t_1 \le s_2 \le s_1 \le 1$ and show that $\{B_t, t \in [0, 1]\}$ does not have independent increments.

Exercise 3 (2+3+3+2)

Let $s \ge 0$ be arbitrary and let $\{X_t, t \ge 0\}$ be a Wiener process. Define the sequence of random variables Z_1, Z_2, \ldots by

$$Z_n = -s + \sum_{i=1}^{2^n} (X_{is/2^n} - X_{(i-1)s/2^n})^2,$$

for each $n \in \mathbb{N}$. Show:

- a) $\mathbb{E}Z_n = 0$, for each $n \in \mathbb{N}$
- b) Var $Z_n = s^2 2^{1-n}$ for each $n \in \mathbb{N}$
- c) $\lim_{n\to\infty} Z_n = 0$ a.s.
- d) $\lim_{n \to \infty} \sum_{i=1}^{2^n} |X_{is/2^n} X_{(i-1)s/2^n}| = \infty$ a.s.

Exercise 4 (5)

Write an R- or Matlab program in order to simulate an approximation of the Wiener process on [0, 2]. Use the first 10 Schauder functions for the approximation. Hand in your code and a plot of one realization.