Prof. Dr. Volker Schmidt
Matthias Neumann
Winter term 2014/15

Stochastics II
 Exercise Sheet 7

Deadline: December 3, 2014 at 4pm before the exercises

Exercise 1 (4)

Let $\left\{X_{t}, t \geq 0\right\}$ and $\left\{Y_{t}, t \geq 0\right\}$ be two independent Wiener processes defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $a, b \in \mathbb{R}$. Define the stochastic process $\left\{Z_{t}, t \geq 0\right\}$ by $Z_{t}=$ $a X_{t}+b Y_{t}$ for each $t \geq 0$. For which constellations of a, b is $\left\{Z_{t}, t \geq 0\right\}$ a Wiener process?

Exercise $2(2+3)$

Let $\left\{X_{t}, t \in[0,1]\right\}$ be a Wiener process and define the stochastic process $\left\{B_{t}, t \in[0,1]\right\}$ by $B_{t}=X_{t}-t \cdot X_{1}$ for each $t \in[0,1]$.
a) Compute $\operatorname{Cov}\left(B_{s}, B_{t}\right)$ for arbitrary $s, t \in[0,1]$.
b) Compute $\operatorname{Cov}\left(B_{s_{1}}-B_{s_{2}}, B_{t_{1}}-B_{t_{2}}\right)$ for arbitrary $0 \leq t_{2} \leq t_{1} \leq s_{2} \leq s_{1} \leq 1$ and show that $\left\{B_{t}, t \in[0,1]\right\}$ does not have independent increments.

Exercise $3 \quad(2+3+3+2)$
Let $s \geq 0$ be arbitrary and let $\left\{X_{t}, t \geq 0\right\}$ be a Wiener process. Define the sequence of random variables Z_{1}, Z_{2}, \ldots by

$$
Z_{n}=-s+\sum_{i=1}^{2^{n}}\left(X_{i s / 2^{n}}-X_{(i-1) s / 2^{n}}\right)^{2},
$$

for each $n \in \mathbb{N}$. Show:
a) $\mathbb{E} Z_{n}=0$, for each $n \in \mathbb{N}$
b) $\operatorname{Var} Z_{n}=s^{2} 2^{1-n}$ for each $n \in \mathbb{N}$
c) $\lim _{n \rightarrow \infty} Z_{n}=0$ a.s.
d) $\lim _{n \rightarrow \infty} \sum_{i=1}^{2^{n}}\left|X_{i s / 2^{n}}-X_{(i-1) s / 2^{n}}\right|=\infty$ a.s.

Write an R- or Matlab program in order to simulate an approximation of the Wiener process on $[0,2]$. Use the first 10 Schauder functions for the approximation. Hand in your code and a plot of one realization.

