Stochastics II
 Exercise Sheet 8

Deadline: December 10, 2014 at 4 pm before the exercises

Exercise $1 \quad(3+3+2+4+4)$
Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)^{\top} \in \mathbb{R}^{n}$ and $K=\left(k_{i, j}\right)_{i, j=1, \ldots, n}$ a symmetric and positive definite $n \times n$ matrix. The random vector $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{\top}$ is said to be (non-degenerate) multivariate normal distributed with mean vector μ and covariance matrix K if the distribution of Z is absolutely continuous with respect to the n-dimensional Lebesgue measure and its density is given by

$$
f_{Z}(z)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(K)}} \exp \left(-\frac{1}{2}(z-\mu)^{\top} K^{-1}(z-\mu)\right)
$$

for all $z \in \mathbb{R}^{n}$. Then, it holds $\mathbb{E} Z_{i}=\mu_{i}$ and $\operatorname{Cov}\left(Z_{i}, Z_{j}\right)=k_{i j}$ for all $i, j \in\{1, \ldots, n\}$. We write $Z \sim N(\mu, K)$. The characteristic function of Z is given by $\varphi(t)=\exp \left(i t^{\top} \mu-\frac{1}{2} t^{\top} K t\right)$ for all $t \in \mathbb{R}^{n}$.
A stochastic process $\left\{V_{t}, t \geq 0\right\}$ is said to be a Gaussian process if the random vector $\left(V_{t_{1}}, \ldots, V_{t_{n}}\right)$ is multivariate normal for each $n \in \mathbb{N}$ and for all $0 \leq t_{1}, \ldots, t_{n}<\infty$.
a) Let $Z \sim N(o, K)$, where $o=(0, \ldots, 0) \in \mathbb{R}^{n}$ and let A be a $m \times n$-matrix with rank $\operatorname{rk}(A)=m \leq n$. Show that $Y=A Z \sim N\left(o, A K A^{\top}\right)$.
b) Let $\left\{X_{t}, t \geq 0\right\}$ be a Wiener process. Define the stochastic processes $\left\{Y_{t}, t \geq 0\right\}$ and $\left\{U_{t}, t \geq 0\right\}$ by $Y_{t}=\exp \left(X_{t}\right)$ and $U_{t}=\exp (-t / 2) X_{\exp (t)}$. Is $\left\{Y_{t}, t \geq 0\right\}$ respectively $\left\{U_{t}, t \geq 0\right\}$ a Gaussian process?
c) Compute $\mathbb{E} Y_{t}$ and $\operatorname{Cov}\left(Y_{s}, Y_{t}\right)$ for all $s, t \geq 0$.
d) Is $\left\{U_{t}, t \geq 0\right\}$ a stationary process?
e) You may assume without proof that $\left\{U_{t}, t \geq 0\right\}$ is a Markov process. Determine its initial distribution $\boldsymbol{\alpha}$ and the transition kernel $\{\mathbf{P}(h, x, B), h \geq 0, x \in \mathbb{R}, B \in \mathcal{B}(\mathbb{R})\}$ and show that it holds

$$
\boldsymbol{\alpha}([a, b))=\int_{\mathbb{R}} \mathbf{P}(h, x,[a, b)) \boldsymbol{\alpha}(\mathrm{d} x),
$$

for all $h \geq 0, a<b \in \mathbb{R}$.

Exercise 2 (3)

Let $\left\{X_{t}, t \geq 0\right\}$ be a Wiener process on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $z_{1}, \ldots, z_{n} \in \mathbb{R}$
be arbitrary. Then, $Z=\left\{t \geq 0: X_{t} \in\left\{z_{1}, \ldots, z_{n}\right\}\right\}$ is a random (closed) subset of $[0, \infty)$. You may assume without proof that $\nu(Z)$ is a well-defined (measurable) random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, where ν denotes the one-dimensional Lebesgue measure. Show $\mathbb{P}(\nu(Z)=0)=1$.

Exercise 3

(3)

Let $\left\{X_{t}, t \geq 0\right\}$ a Wiener process. Compute $\mathbb{P}\left(X_{t}<X_{t+2}<X_{t+1}\right)$ for each $t \geq 0$.

