

ulm university universität

Prof. Dr. Volker Schmidt Matthias Neumann

Winter term 2014/15

Stochastics II Exercise Sheet 9

Deadline: December 17, 2014 at 4pm before the exercises

Exercise 1 (6)

Let $\{X_t, t \ge 0\}$ be a Wiener process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $c, t_0 > 0$ be arbitrary. Define the stochastic processes $\{Y_t^{(i)}, t \ge 0\}$ for $i \in \{1, 2, 3\}$ by $Y_t^{(1)} = -X_t, Y_t^{(2)} = X_{t+t_0} - X_{t_0}$ and $Y_t^{(3)} = \sqrt{c}X_{t/c}$ for each $t \ge 0$. Show that $\{Y_t^{(i)}, t \ge 0\}$ is a Wiener process on $(\Omega, \mathcal{F}, \mathbb{P})$ for each $i \in \{1, 2, 3\}$.

Exercise 2 (3+2+2+2)

Let $\{X_t, t \ge 0\}$ be a Wiener process. Define $M_t = \max_{0 \le s \le t} X_s$ for each $t \ge 0$ and define $T_a = \inf\{t \ge 0 : X_t = a\}$.

- a) Show that $\mathbb{P}(X_t \leq a y, M_t \geq a) = \mathbb{P}(X_t > a + y)$ for all $a > 0, y \geq 0$.
- b) Show that $\mathbb{P}(M_t \ge a) = 2\mathbb{P}(X_t \ge a)$ for each $a \ge 0$.
- c) Determine the distribution of T_a for each a > 0.
- d) Determine the distribution of M_t for each t > 0.

Hint: Define the process $\{X_t^{\star}, t \geq 0\}$ *by*

$$X_t^{\star} = X_t \mathbb{I}(t \le T_a) + (2a - X_t)\mathbb{I}(t > T_a)$$

for each $t \ge 0$. You may assume without proof that $\{X_t^{\star}, t \ge 0\}$ is a Wiener process.

Exercise 3 (4)

Let $\{X_t, t \ge 0\}$ be a Wiener process and define $M_t = \max_{0 \le s \le t} X_s$. Show that the set $A_t = \{s \in [0, t] : X_s = M_t\}$ consists almost surely of one single point for each t > 0.