NURBITAT OF COMPOSITION

ulm university universität

Winter Term 2014/15

Dr. Tim Brereton Lisa Handl

Stochastics III Extra Problem Sheet (Reading Course Material)

Regarding all exercises: Use R only as a calculator, not for doing all the work!

Exercise 1

In a biological study the weight of 20 rats has been determined:

356.4	362.5	394.7	356.0	387.6
305.1	385.1	383.2	346.6	314.2
394.8	370.8	434.2	365.2	377.1
365.9	384.4	297.4	404.3	412.0

You can download the data in the file *rats.txt* from the course website.

- a) Suppose it is known that the weight of this type of rat is usually normally distributed with mean $\mu_0 = 370$ grams and standard deviation $\sigma_0 = 27$ grams. Conduct a test for the hypothesis that the weight of the animals in the sample above is $N(\mu_0, \sigma_0^2)$ distributed, using the Kolmogorov-Smirnov test with significance level $\alpha = 0.05$.
- b) Plot the empirical distribution function of the sample above together with the distribution function of the normal distribution from a).

Hint: It is $s_{20,0.95} = 1.315$.

Exercise 2

The following numbers of calls have been registered in a hotel center in 50 time intervals of 15 minutes (each):

Number k of calls	0	1	2	3	4	5	6	7	8	9	10	> 10
Number of time intervals with k calls	1	6	8	10	6	6	7	1	1	2	2	0

Use a χ^2 test to test whether the number of calls within 15 minutes is Poisson-distributed with parameter $\lambda = 3$ with a significance level of $\alpha = 0.01$. Choose the partition such that $np_{0,j} \geq 8$ for each class $j = 1, \ldots, r$.

Exercise 3

Let X_1, \ldots, X_n be a sequence of independent and identically Bin(1, p)-distributed random variables with $p \in (0, 1)$.

- a) Show that the distribution of $D_n = \sup_{t \in \mathbb{R}} \left| \widehat{F}(t; x_1, \dots, x_n) F_0(t) \right|$ depends on p for every $n \in \mathbb{N}$.
- b) Show that the asymptotic distribution of $\sqrt{n}D_n$ depends on p as well.

Exercise 4

The following data, which can be downloaded in the file *steel.txt* from the course website, contains the tensile strength of 30 steel panels (in kg/mm^2):

42.844.042.840.841.444.443.944.042.244.843.342.544.745.842.045.241.143.843.543.842.943.741.4 42.645.044.541.645.844.343.5

- a) Use Pearson's χ^2 test to verify whether the tensile strength is normally distributed with mean 45 and variance 4 with significance level $\alpha = 0.05$. Partition the data into 4 classes such that $p_{0,1} = p_{0,2} = p_{0,3} = p_{0,4} = 0.25$.
- b) Test whether the data follow a normal distribution (with unspecified parameters) using the χ^2 test of Pearson-Fisher and a significance level of $\alpha = 0.05$. Partition the data into classes of 6 elements.