

ulm university universität

Dr. Tim Brereton Lisa Handl Winter Term 2014/15

Stochastics III Problem Sheet 1

Deadline: October 29, 2014 at noon, before the practical

Exercise 1 (3 + 2 points)

a) Let $A \in \mathbb{R}^{n \times m}$ with rk(A) = r. Show: If A has representation

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix},$$

where A_{11} is nonsingular with $rk(A_{11}) = r$, then

$$A^{-} = \begin{pmatrix} A_{11}^{-1} & 0\\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{m \times n}$$

is a generalized inverse of A, i.e., $AA^{-}A = A$.

b) Determine the generalized inverse of the matrix $A \in \mathbb{R}^{3 \times 4}$,

$$A = \begin{pmatrix} 4 & 7 & -1 & 2 \\ 1 & 2 & 5 & -1 \\ 7 & 13 & 14 & -1 \end{pmatrix}.$$

Exercise 2 (1 + 3 points)

Let $\boldsymbol{X} = (X_1, \dots, X_n)^{\top}$ be an *n*-dimensional random vector, where $\mathbb{E}(X_i^2) < \infty$, $1 \le i \le n$. Furthermore, let $A \in \mathbb{R}^{m \times n}$. Show that

- a) $\mathbb{E}(A\boldsymbol{X}) = A \mathbb{E}\boldsymbol{X},$
- b) $\operatorname{Cov}(A\boldsymbol{X}) = A \operatorname{Cov}(\boldsymbol{X}) A^{\top},$

where the expectation vector and covariance matrix of a random vector \boldsymbol{X} are $\mathbb{E}(\boldsymbol{X}) = (\mathbb{E}(X_1), \dots, \mathbb{E}(X_n))^{\top}$ and $\operatorname{Cov}(\boldsymbol{X}) = \mathbb{E}((\boldsymbol{X} - \mathbb{E}(\boldsymbol{X}))(\boldsymbol{X} - \mathbb{E}(\boldsymbol{X}))^{\top}) = (\operatorname{Cov}(X_i, X_j))_{i,j=1,\dots,n}$.

Exercise 3 (4 points)

Consider the 2-by-2 matrix

$$A = \begin{pmatrix} 2 & 7 \\ -1 & -6 \end{pmatrix}.$$

Calculate a diagonal matrix D and a regular matrix P such that $A = P D P^{-1}$.

Exercise 4 (3 points)

Give an example of two random variables X and Y which are normally distributed but such that the vector $(X, Y)^{\top}$ is not multivariate non-degenerate normally distributed. Justify your answer.

Exercise 5 (3 + 2 points)

Let $\mathbf{X} = (X_1, X_2, X_3)^\top \sim \mathbf{N}(\boldsymbol{\mu}, K)$ with expectation vector $\boldsymbol{\mu} = (1, 2, 3)^\top$ and covariance matrix

$$K = \sigma^2 \left(\begin{array}{ccc} 2 & \rho & 0 \\ \rho & 1 & \rho \\ 0 & \rho & 2 \end{array} \right) \ .$$

- a) Determine the marginal distributions of X_2 und $(X_1, X_3)^{\top}$.
- b) For which ρ are the random variables $X_1 + X_2 + X_3$ and $X_1 X_2 X_3$ independent?

Exercise 6 (3 + 2 points)

Let $(X, Y)^{\top}$ bivariate normally distributed with expectation vector $\boldsymbol{\mu} = (1, 2)^{\top}$ and covariance matrix

$$K = \left(\begin{array}{cc} 5 & 2\\ 2 & 3 \end{array}\right) \,.$$

a) Using **R**, plot the density $f_{(X,Y)}$ of the random vector $(X,Y)^{\top}$. *Hint:* Use the commands dmvnorm and persp.

b) Calculate the expectation and the variance of the random variable 2X - Y + 3 in **R**.