uulm

Dr. Tim Brereton
Winter Term 2014/15
Lisa Handl

Stochastics III
 Problem Sheet 1

Deadline: October 29, 2014 at noon, before the practical
Exercise $1 \quad(3+2$ points $)$
a) Let $A \in \mathbb{R}^{n \times m}$ with $r k(A)=r$. Show: If A has representation

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{11} is nonsingular with $r k\left(A_{11}\right)=r$, then

$$
A^{-}=\left(\begin{array}{cc}
A_{11}^{-1} & 0 \\
0 & 0
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

is a generalized inverse of A, i.e., $A A^{-} A=A$.
b) Determine the generalized inverse of the matrix $A \in \mathbb{R}^{3 \times 4}$,

$$
A=\left(\begin{array}{cccc}
4 & 7 & -1 & 2 \\
1 & 2 & 5 & -1 \\
7 & 13 & 14 & -1
\end{array}\right)
$$

Exercise $2(1+3$ points $)$

Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{\top}$ be an n-dimensional random vector, where $\mathbb{E}\left(X_{i}^{2}\right)<\infty, 1 \leq i \leq n$. Furthermore, let $A \in \mathbb{R}^{m \times n}$. Show that
a) $\mathbb{E}(A \boldsymbol{X})=A \mathbb{E} \boldsymbol{X}$,
b) $\operatorname{Cov}(A \boldsymbol{X})=A \operatorname{Cov}(\boldsymbol{X}) A^{\top}$,
where the expectation vector and covariance matrix of a random vector \boldsymbol{X} are $\mathbb{E}(\boldsymbol{X})=\left(\mathbb{E}\left(X_{1}\right), \ldots, \mathbb{E}\left(X_{n}\right)\right)^{\top}$ and $\operatorname{Cov}(\boldsymbol{X})=\mathbb{E}\left((\boldsymbol{X}-\mathbb{E}(\boldsymbol{X}))(\boldsymbol{X}-\mathbb{E}(\boldsymbol{X}))^{\top}\right)=$ $\left(\operatorname{Cov}\left(X_{i}, X_{j}\right)\right)_{i, j=1, \ldots, n}$.

Exercise 3 (4 points)
Consider the 2-by-2 matrix

$$
A=\left(\begin{array}{cc}
2 & 7 \\
-1 & -6
\end{array}\right)
$$

Calculate a diagonal matrix D and a regular matrix P such that $A=P D P^{-1}$.

Exercise 4 (3 points)

Give an example of two random variables X and Y which are normally distributed but such that the vector $(X, Y)^{\top}$ is not multivariate non-degenerate normally distributed. Justify your answer.

Exercise 5 ($3+2$ points)

Let $\boldsymbol{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\top} \sim \mathrm{N}(\boldsymbol{\mu}, K)$ with expectation vector $\boldsymbol{\mu}=(1,2,3)^{\top}$ and covariance matrix

$$
K=\sigma^{2}\left(\begin{array}{lll}
2 & \rho & 0 \\
\rho & 1 & \rho \\
0 & \rho & 2
\end{array}\right) .
$$

a) Determine the marginal distributions of X_{2} und $\left(X_{1}, X_{3}\right)^{\top}$.
b) For which ρ are the random variables $X_{1}+X_{2}+X_{3}$ and $X_{1}-X_{2}-X_{3}$ independent?

Exercise 6 ($3+2$ points)

Let $(X, Y)^{\top}$ bivariate normally distributed with expectation vector $\boldsymbol{\mu}=(1,2)^{\top}$ and covariance matrix

$$
K=\left(\begin{array}{ll}
5 & 2 \\
2 & 3
\end{array}\right) .
$$

a) Using \mathbf{R}, plot the density $f_{(X, Y)}$ of the random vector $(X, Y)^{\top}$.

Hint: Use the commands dmvnorm and persp.
b) Calculate the expectation and the variance of the random variable $2 X-Y+3$ in \mathbf{R}.

