Dr. Tim Brereton
Winter Term 2014/15
Lisa Handl

Stochastics III

Problem Sheet 2

Deadline: November 12, 2014 at noon, before the practical
Exercise $1 \quad$ (4 +4 points)
Prove Theorem 1.4 in the lecture notes:

Let \boldsymbol{Y} be an n-dimensional random vector with expectation vector $\boldsymbol{\mu}=\mathbb{E} \boldsymbol{Y}$ and covariance matrix $K=\operatorname{Cov}(\boldsymbol{Y})$, such that $\operatorname{rk}(K)=r$ with $r \leq n$. The random vector \boldsymbol{Y} is normally distributed if and only if the following (equivalent) conditions are fulfilled.
a) The characteristic function $\varphi(\boldsymbol{t})=\mathbb{E} \exp \left(\mathrm{i} \sum_{j=1}^{n} t_{j} Y_{j}\right)$ of \boldsymbol{Y} is given by

$$
\varphi(\boldsymbol{t})=\exp \left(\mathrm{i} \boldsymbol{t}^{\top} \boldsymbol{\mu}-\frac{1}{2} \boldsymbol{t}^{\top} K \boldsymbol{t}\right), \quad \forall \boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)^{\top} \in \mathbb{R}^{n}
$$

b) The linear function $\boldsymbol{c}^{\top} \boldsymbol{Y}$ of \boldsymbol{Y} for every $\boldsymbol{c} \in \mathbb{R}^{n}$ with $\boldsymbol{c} \neq \boldsymbol{o}$ is normally distributed with

$$
\boldsymbol{c}^{\top} \boldsymbol{Y} \sim \mathrm{N}\left(\boldsymbol{c}^{\top} \boldsymbol{\mu}, \boldsymbol{c}^{\top} K \boldsymbol{c}\right) .
$$

Exercise 2 (6 points)
Let $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{\top} \sim \mathrm{N}(\boldsymbol{o}, K)$ a normally distributed random vector with covariance matrix $K=\left(k_{i j}\right)_{i, j=1, \ldots, n}$. Show that for any $i, j, l, m \in\{1, \ldots, n\}$ it holds that

$$
\mathbb{E}\left(Z_{i} Z_{j} Z_{l}\right)=0
$$

and

$$
\mathbb{E}\left(Z_{i} Z_{j} Z_{l} Z_{m}\right)=k_{i j} k_{l m}+k_{i l} k_{j m}+k_{j l} k_{i m} .
$$

Exercise 3 (4 +4 points)
a) Write your own function in \mathbf{R} to sample from a multivariate normal distribution using Corollary 1.5. The expectation vector and the (positive definite) covariance matrix should be passed as arguments of the function. You may use rnorm and chol but not rmvnorm or similar.
b) Use your function from a) to sample 10000 times from the 2D normal distribution given in Exercise 6 of Problem Sheet 1 and plot the realizations and a 2D histogram.

Exercise $4 \quad(3+4$ points $)$

Let \boldsymbol{X} and \boldsymbol{Y} be two n-dimensional random vectors, such that $\boldsymbol{X} \sim \mathrm{N}\left(\boldsymbol{\mu}_{\boldsymbol{X}}, K_{X X}\right)$ with $\boldsymbol{\mu}_{\boldsymbol{X}}=(1,2,3)^{\top}$ and

$$
K_{X X}=\left(\begin{array}{lll}
2 & \rho & 0 \\
\rho & 1 & \rho \\
0 & \rho & 2
\end{array}\right)
$$

where $\rho \in(0,1)$. About \boldsymbol{Y} we just know that $\boldsymbol{\mu}_{\boldsymbol{Y}}=\mathbb{E} \boldsymbol{Y}=(-1,0,2)^{\top}$ and

$$
K_{Y X}=\left(\operatorname{Cov}\left(X_{i}, Y_{j}\right)\right)_{i j}=\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 2
\end{array}\right) .
$$

a) Find the expectation of the random variable

$$
Z=2 X_{1} Y_{1}+4 X_{2} Y_{2}+3 X_{3} Y_{3}+X_{1} Y_{3}+X_{3} Y_{1}-X_{2} Y_{3}-X_{3} Y_{2}
$$

b) For which ρ are the random variables $X_{1}^{2}+2 X_{2}^{2}+X_{3}^{2}$ and $X_{1}^{2}-X_{2}^{2}+X_{3}^{2}-2 X_{1} X_{3}$ uncorrelated?

Exercise 5 (4 points)
In \mathbf{R}, use your simulation method from Exercise 3 to sample 1000 times from the two random variables in Exercise 4 b) and draw a scatter plot of the values you obtain. Use the ρ from your solution of 4 b) and describe the dependency structure that you observe in the plot.
Hint: If you couldn't solve Exercise 3 or Exercise 4 b), use rmvnorm and $\rho=0.5$.

