ulm university universität

Winter Term 2014/15

Stochastics III Problem Sheet 7

Deadline: February 11, 2015 at noon, before the practical

Exercise 1 (3 points)

Consider a linear model $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, where X is an $n \times m$ matrix with rk(X) = r < m. Let $\boldsymbol{a} \in \mathbb{R}^m$. Show that the function $\boldsymbol{a}^\top \boldsymbol{\beta}$ is an estimable function if and only if $\boldsymbol{a}^\top X^- X = \boldsymbol{a}^\top$, where X^- is a generalized inverse of X.

Exercise 2 (3 + 4 points)

Consider the following linear model:

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix}.$$

a) Show that $\beta_1 + \frac{1}{3}\beta_2 + \frac{2}{3}\beta_3$ is an estimable function.

b) Determine the BLUE estimator for $\beta_1 + \frac{1}{3}\beta_2 + \frac{2}{3}\beta_3$.

Exercise 3 (4 points)

Consider the linear model $\boldsymbol{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ with $\boldsymbol{Y} \in \mathbb{R}^6$, $\boldsymbol{\beta} = (\beta_1, \beta_2, \beta_3, \beta_4)^\top \in \mathbb{R}^4$, $\mathbb{E}\boldsymbol{\varepsilon} = \boldsymbol{o}$, $\mathbb{E}(\varepsilon_i \varepsilon_j) = \delta_{ij} \sigma^2$, where $\sigma^2 > 0$ and

	/1	1	0	0	
X =	1	1	0	0	
	1	0	1	0	
	1	0	1	0	•
	1	0	0	1	
	$\backslash 1$	0	0	1/	

Show that the set of all estimable functions is given by

$$\{(a_1 + a_2 + a_3)\beta_1 + a_1\beta_2 + a_2\beta_3 + a_3\beta_4 : a_1, a_2, a_3 \in \mathbb{R}\}.$$

Dr. Tim Brereton Lisa Handl

Exercise 4 (4 points)

Suppose chocolate bar sales depend on the two factors *wrapping* and *shelf placement*. There are two types of wrapping (red and blue) and three different shelf placements (top, middle and bottom). The following sales numbers have been recorded in different supermarkets:

	red	blue
top	$68 \ 65 \ 63 \ 59 \ 67$	$59\ 57\ 54\ 56\ 53$
middle	$59\ 60\ 61\ 48\ 63$	$53 \ 47 \ 48 \ 50 \ 51$
bottom	$47 \ 39 \ 40 \ 46 \ 45$	$40 \ 39 \ 35 \ 36 \ 37$

Determine unbiased estimators of the parameters μ , $\alpha_{i_1}^{(1)}$, $\alpha_{i_2}^{(2)}$ und $\alpha_{i_1i_2}$, for $i_1 = 1, 2$ and $i_2 = 1, 2, 3$, assuming the balanced two-factor analysis of variance model is appropriate.

Exercise 5 (3 + 2 + 2 + 3 points)

On the course website you will find the file *medicine.txt*, which is structured as follows.

Time until it takes effect (in h)	Medicine A	Medicine B
0.98	1	0
1.08	1	0
1.55	0	1

The information on medicine use is encoded as follows:

- 0: medicine has not been used
- 1: medicine has been used

Consider a linear model for this data with normally distributed error terms. The time until the medicine takes effect is the response variable.

- a) What are the expected times until medicine A and medicine B take effect?
- b) Show that the regression coefficients β_1 , β_2 and β_3 are not estimable functions.
- c) Show that the linear combination $\beta_2 \beta_3$ is an estimable function.
- d) Conduct a test for the hypothesis $\beta_2 \beta_3 = 0$ with significance level $\alpha = 0.05$.

Hint: You can use ginv() in the package MASS to compute generalized inverses.

Good luck with all your exams and enjoy your holidays! :)