Prof. Dr. Evgeny Spodarev Alexander Nerlich WS 2014/2015

Elementare Wahrscheinlichkeitsrechnung und Statistik

Ubungsblatt 14

Abgabe am 05.02.2015 vor Beginn der Übung

Sei (Ω, Σ, P) stets ein Wahrscheinlichkeitsraum.

1.(12 Punkte) Sei $(X_k)_{k\in\mathbb{N}}$ eine Folge unabhängiger Zufallsvariablen, mit $P(X_1=1)=P(X_1=-1)=\frac{1}{2}$ und

$$P(X_k = 1) = P(X_k = -1) = \frac{1}{2}(1 - c)$$
 $P(X_k = k) = P(X_k = -k) = \frac{1}{2k^2}c$

$$P(X_k = 0) = (1 - \frac{1}{k^2})c$$

für alle $k \in \mathbb{N}, k \geq 2$, wobei $c \in (0,1)$. Ferner sei $X_{nk} := \frac{X_k}{\sqrt{n}}$ für alle $n \in \mathbb{N}$ und k = 1, ..., n. Zeigen oder widerlegen Sie, dass $\{X_{nk}, n \in \mathbb{N}, k = 1, ..., n\}$ die Lindeberg-Bedingung erfüllt, das heißt zeigen ob

$$\lim_{n \to \infty} \sum_{k=1}^{n} \mathbb{E}\left(X_{nk}^{2} \mathbb{1}\{|X_{nk}| > \varepsilon\}\right) = 0 \ \forall \varepsilon > 0.$$
 (1)

Zeigen Sie ferner, dass $\{X_{nk}, n \in \mathbb{N}, k = 1, ..., n\}$ gleichmäßig asymptotisch kleine Summanden hat, das heißt

$$\lim_{n \to \infty} \max_{k=1,\dots,n} P(|X_{nk}| > \varepsilon) = 0 \ \forall \varepsilon > 0.$$
 (2)

Entscheiden Sie nun ob $\{X_{nk}, n \in \mathbb{N}, k = 1, ..., n\}$ den zentralen Grenzwertsatz erfüllt, das heißt, ob

$$\sum_{k=1}^{n} X_{nk} \stackrel{d}{\to} Y \sim N(0,1) \tag{3}$$

für $n \to \infty$ gilt. (Hierbei soll die Entscheidung natürlich begründet werden.)

2.(10 Punkte) Sei $(X_n)_{n\in\mathbb{N}}\subset L^2$ eine Folge unabhängiger und identisch verteiler Zufallsvariablen, mit $\mathbb{E}X_1=0$ und $\mathrm{Var}(X_1)=1$. Ferner sei $(N_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen, welche unabhängig von $(X_n)_{n\in\mathbb{N}}$ ist. Außerdem gelte für jedes $n\in\mathbb{N}$, dass

$$P(N_n = jn) = p_j \ \forall j \in \mathbb{N},\tag{4}$$

wobei $p_j > 0$ für alle $j \in \mathbb{N}$ und $\sum_{j=1}^{\infty} p_j = 1$. Zeigen Sie, dass

$$\frac{1}{\sqrt{N_n}} \sum_{k=1}^{N_n} X_k \tag{5}$$

für $n \to \infty$ in Verteilung gegen eine standardnormalverteilte Zufallsvariable konvergiert.