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1 Introduction

• Markov chains

– are a fundamental class of stochastic models for sequences of non–independent random variables, i.e.
of random variables possessing a specific dependency structure.

– have numerous applications e.g. in insurance and finance.
– play also an important role in mathematical modelling and analysis in a variety of other fields such as

physics, chemistry, life sciences, and material sciences.

• Questions of scientific interest often exhibit a degree of complexity resulting in great difficulties if the
attempt is made to find an adequate mathematical model that is solely based on analytical formulae.

• In these cases Markov chains can serve as an alternative tool as they are crucial for the construction of
computer algorithms for the Markov Chain Monte Carlo simulation (MCMC) of the mathematical models
under consideration.

This course on Markov chains and Monte Carlo simulation will be based on the methods and models introduced
in the course “Elementare Wahrscheinlichkeitsrechnung und Statistik”. Further knowledge of probability theory
and statistics can be useful but is not required.

• The main focus of this course will be on the following topics:

– discrete–time Markov chains with finite state space
– stationarity and ergodicity
– Markov Chain Monte Carlo (MCMC)
– reversibility and coupling algorithms

• Notions and results introduced in “Elementare Wahrscheinlichkeitsrechnung and Statistik” will be used
frequently. References to these lecture notes will be labelled by the prefix “WR” in front of the number
specifying the corresponding section, theorem, lemma, etc.

• The following list contains only a small collection of introductory texts that can be recommended for in–
depth studies of the subject complementing the lecture notes.

– E. Behrends (2000) Introduction to Markov Chains. Vieweg, Braunschweig
– P. Bremaud (2008) Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer,

New York
– B. Chalmond (2003) Modeling and Inverse Problems in Image Analysis. Springer, New York
– D. Gamerman, H. Lopes (2006) Markov Chain Monte Carlo: Stochastic Simulation for Bayesian

Inference. Chapman & Hall, London
– O. Häggström (2002) Finite Markov Chains and Algorithmic Applications. Cambridge University

Press, Cambridge
– D. Levin, Y. Peres, E. Wilmer (2009) Markov chains and mixing times. Publications of the AMS,

Riverside
– S. Resnick (1992) Adventures in Stochastic Processes. Birkhäuser, Boston
– C. Robert, G. Casella (2009) Introducing Monte Carlo Methods with R. Springer, Berlin
– T. Rolski, H. Schmidli, V. Schmidt, J. Teugels (1999) Stochastic Processes for Insurance and Finance.

Wiley, Chichester
– Y. Suhov, M. Kelbert (2008) Probability and Statistics by Example. Volume 2. Markov Chains: A

Primer in Random Processes and their Applications. Cambridge University Press, Cambridge
– H. Thorisson (2002) Coupling, Stationarity, and Regeneration. Springer, New York
– G. Winkler (2003) Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer,

Berlin
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2 Markov Chains

• Markov chains can describe the (temporal) dynamics of objects, systems, etc.

– that can possess one of finitely or countably many possible configurations at a given time,

– where these configurations will be called the states of the considered object or system, respectively.

• Examples for this class of objects and systems are

– the current prices of products like insurance policies, stocks or bonds, if they are observed on a discrete
(e.g. integer) time scale,

– the monthly profit of a business,

– the current length of the checkout lines (so–called “queues”) in a grocery store,

– the vector of temperature, air pressure, precipitation and wind velocity recorded on an hourly basis at
the meteorological office Ulm–Kuhberg,

– digital maps, for example describing the momentary spatial dispersion of a disease.

– microscopical 2D or 3D images describing the current state (i.e. structural geometrical properties) of
biological tissues or technical materials such as polymers, metals or ceramics.

Remarks

• In this course we will focus on discrete–time Markov chains, i.e., the temporal dynamics of the consi-
dered objects, systems etc. will be observed stepwise, e.g. at integer points in time.

• The algorithms for Markov Chain Monte Carlo simulation we will discuss in part II of the course are
based on exactly these discrete–time Markov chains.

• The number of potential states can be very high.

• For mathematical reasons it is therefore convenient to consider the case of infinitely many states as
well. As long as the infinite case is restricted to countably many states, only slight methodological
changes will be necessary.

2.1 Specification of the Model and Examples

2.1.1 State Space, Initial Distribution and Transition Probabilities

• The stochastic model of a discrete–time Markov chain with finitely many states consists of three components:
state space, initial distribution and transition matrix.

– The model is based on the (finite) set of all possible states called the state space of the Markov chain.
W.l.o.g. the state space can be identified with the set E = {1, 2, . . . , `} where ` ∈ N = {1, 2, . . .} is an
arbitrary but fixed natural number.

– For each i ∈ E, let αi be the probability of the system or object to be in state i at time n = 0, where
it is assumed that

αi ∈ [0, 1] ,
∑̀

i=1

αi = 1 . (1)

The vector α = (α1, . . . , α`)> of the probabilities α1, . . . , α` defines the initial distribution of the
Markov chain.

– Furthermore, for each pair i, j ∈ E we consider the (conditional) probability pij ∈ [0, 1] for the
transition of the object or system from state i to j within one time step.
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– The `× ` matrix P = (pij)i,j=1,...,` of the transition probabilities pij where

pij ≥ 0 ,
∑̀

j=1

pij = 1 , (2)

is called one–step transition matrix of the Markov chain.

• For each set E = {1, 2, . . . , `}, for any vector α = (α1, . . . , α`)> and matrix P = (pij) satisfying the
conditions (1) and (2) the notion of the corresponding Markov chain can now be introduced.

Definition

• Let X0, X1, . . . : Ω → E be a sequence of random variables defined on the probability space (Ω,F , P )
and mapping into the set E = {1, 2, . . . , `}.

• Then X0, X1, . . . is called a (homogeneous) Markov chain with initial distribution α = (α1, . . . , α`)>

and transition matrix P = (pij), if

P (X0 = i0, X1 = i1, . . . , Xn = in) = αi0pi0i1 . . . pin−1in
(3)

for arbitrary n = 0, 1, . . . and i0, i1, . . . , in ∈ E.

Remarks

• A quadratic matrix P = (pij) satisfying (2) is called a stochastic matrix.
• The following Theorem 2.1 reveals the intuitive meaning of condition (3). In particular the motivation

for the choice of the words “initial distribution” and “transition matrix” will become evident.
• Furthermore, Theorem 2.1 states another (equivalent) definition of a Markov chain that is frequently

found in literature.

Theorem 2.1 The sequence {Xn} of E–valued random variables is a Markov chain if and only if there is a
stochastic matrix P = (pij) such that

P (Xn = in | Xn−1 = in−1, . . . , X0 = i0) = pin−1in (4)

for any n = 1, 2, . . . and i0, i1, . . . , in ∈ E such that P (Xn−1 = in−1, . . . , X0 = i0) > 0.

Proof

• Clearly condition (4) is necessary for {Xn} to be a Markov chain as (4) follows immediately from (3)
and the definition of the conditional probability; see Section WR–2.6.1.

• Let us now assume {Xn} to be a sequence of E-valued random variables such that a stochastic matrix
P = (pij) exists that satisfies condition (4).

• For all i ∈ E we define αi = P (X0 = i) and realize that condition (3) obviously holds for n = 0.
• Furthermore,

– P (X0 = i0) = 0 implies P (X0 = i0, X1 = i1) = 0,
– and in case P (X0 = i0) > 0 from (4) we can conclude that

P (X0 = i0, X1 = i1) = P (X0 = i0)P (X1 = i1 | X0 = i0)
(4)
= αi0pi0i1 .

• Therefore

P (X0 = i0, X1 = i1) =





0 , if αi0 = 0,

αi0pi0i1 , if αi0 > 0,

i.e., we showed that (3) also holds for the case n = 1.
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• Now assume that (3) holds for some n = k − 1 ≥ 1.
– By the monotonicity of probability measures (see statement 2 in Theorem WR–2.1)

P (X0 = i0, X1 = i1, . . . , Xk−1 = ik−1) = 0 immediately implies
P (X0 = i0, X1 = i1, . . . , Xk = ik) = 0.

– On the other hand if P (X0 = i0, X1 = i1, . . . , Xk−1 = ik−1) > 0, then

P (X0 = i0, X1 = i1, . . . , Xk = ik)
= P (X0 = i0, X1 = i1, . . . , Xk−1 = ik−1)P (Xk = ik | Xk−1 = ik−1, . . . , X0 = i0)
= αi0pi0i1 . . . pik−2ii−1pik−1ik

.

• Thus, (3) also holds for n = k and hence for all n ∈ N. ¤

Corollary 2.1 Let {Xn} be a Markov chain. Then,

P (Xn = in | Xn−1 = in−1, . . . , X0 = i0) = P (Xn = in | Xn−1 = in−1) (5)

holds whenever P (Xn−1 = in−1, . . . , X0 = i0) > 0.

Proof

• Let P (Xn−1 = in−1, . . . , X0 = i0) and hence also P (Xn−1 = in−1) be strictly positive.
• In this case (3) yields

P (Xn = in | Xn−1 = in−1) =
P (Xn = in, Xn−1 = in−1)

P (Xn−1 = in−1)

=

∑
i0,...,in−2∈E

P (Xn = in, . . . , X0 = i0)
∑

i0,...,in−2∈E

P (Xn−1 = in−1, . . . , X0 = i0)

(3)
=

∑
i0,...,in−2∈E

αi0pi0i1 . . . pin−2in−1pin−1in

∑
i0,...,in−2∈E

αi0pi0i1 . . . pin−2in−1

= pin−1in .

• This result and (4) imply (5). ¤

Remarks

• Corollary 2.1 can be interpreted as follows:
– The conditional distribution of the (random) state Xn of the Markov chain {Xn} at “time” n is

completely determined by the state Xn−1 = in−1 at the preceding time n− 1.
– It is independent from the states Xn−2 = in−2, . . . , X1 = i1, X0 = i0 observed in the earlier history

of the Markov chain.
• The definition of the conditional probability immediately implies

– the equivalence of (5) and

P (Xn = in, Xn−2 = in−2 . . . , X0 = i0 | Xn−1 = in−1)
= P (Xn = in | Xn−1 = in−1) P (Xn−2 = in−2 . . . , X0 = i0 | Xn−1 = in−1) . (6)

– The conditional independence (6) is called the Markov property of {Xn}.
• The definitions and results of Section 2.1.1 are still valid,

– if instead of a finite state space E = {1, 2, . . . , `} a countably infinite state space such as the set
of all integers or all natural numbers is considered.

– It merely has to be taken into account that in this case α and P possess an infinite number of
components and entries, respectively.
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2.1.2 Examples

1. Weather Forecast
(see. O. Häggström (2002) Finite Markov Chains and Algorithmic Applications. CU Press, Cambridge)

• We assume to observe the weather in an area whose typical weather is characterized by longer periods
of rainy or dry days (denoted by rain and sunshine), where rain and sunshine exhibit approximately
the same relative frequency over the entire year.

– It is sometimes claimed that the best way to predict tomorrow’s weather is simply to guess that
it will be the same tomorrow as it is today.

– If we assume that this way of predicting the weather will be correct in 75% of the cases (regardless
whether today’s weather is rain or sunshine), then the weather can be easily modelled by a Markov
chain.

– The state space consists of the two states 1 =rain and 2 = sunshine.
– The transition matrix is given as follows:

P =


 0.75 0.25

0.25 0.75


 . (7)

• Note that a crucial assumption for this model is the perfect symmetry between rain and sunshine in
the sense that the probability that today’s weather will persist tomorrow is the same regardless of
today’s weather.

• In areas where sunshine is much more common than rain a more realistic transition matrix would be
the following:

P =


 0.5 0.5

0.1 0.9


 (8)

2. Random Walks; Risk Processes

• Classic examples for Markov chains are so–called random walks. The (unbounded) basic model is
defined in the following way:

– Let Z, Z1, Z2, . . . : Ω → Z be a sequence of independent and identically distributed random va-
riables mapping to Z = {. . . ,−1, 0, 1, . . .}.

– Let X0 : Ω → Z be an arbitrary random variable, which is independent from the increments
Z1, Z2, . . ., and define

Xn = Xn−1 + Zn , ∀n ≥ 1 . (9)

– Then the random variables X0, X1, . . . form a Markov chain on the countably infinite state space
E = Z with initial distribution α = (α1, α2, . . .)>, where αi = P (X0 = i). The transition
probabilities are given by pij = P (Z = j − i).

• Remarks

– The Markov chain given in (9) can be used as a model for the temporal dynamics of the solvability
reserve of insurance companies. X0 will then be interpreted as the (random) initial reserve and
the increments Zn as the difference Zn = a−Z ′n between the risk–free premium income a > 0 and
random expenses for the liabilities Z ′n in time period n− 1.

– Another example for a random walk are the total winnings in n roulette games already discussed
in Section WR–1.3. In this case we have X0 = 0. The distribution of the random increment Z is
given by P (Z = i) = 1/2 for i = −1, 1 and P (Z = i) = 0 for i ∈ Z \ {−1, 1}.
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3. Queues

• The number of customers waiting in front of an arbitrary but fixed checkout desk in a grocery store
can be modelled by a Markov chain in the following way:

– Let X0 = 0 be the number of customers waiting in the line, when the store opens.
– By Zn we denote the random number of new customers arriving while the cashier is serving the

nth customer (n = 1, 2, . . .).
– We assume the random variables Z,Z1, Z2, . . . : Ω → {0, 1, . . .} to be independent and identically

distributed.

• The recursive definition
Xn = max{0, Xn−1 + Zn − 1} , ∀n ≥ 1 , (10)

yields a sequence of random variables X0, X1, . . . Ω → {0, 1, . . .} that is a Markov chain whose transition
matrix P = (pij) has the entries

pij =





P (Z = j + 1− i) , if j + 1 ≥ i > 0 or j > i = 0,

P (Z = 0) + P (Z = 1) , if j = i = 0,

0 , else

• Xn denotes the random number of customers waiting in the line right after the cashier has finished
serving the nth customer, i.e., the customer who has just started checking out and hence already left
the line is not counted any more.

4. Branching Processes

• We consider the reproduction process of a certain population, where Xn denotes the total number of
descendants in the nth generation; X0 = 1.

• We assume that

Xn =
Xn−1∑

i=1

Zn,i , (11)

where {Zn,i, n, i ∈ N} is a set of independent and identically distributed random variables mapping
into the set E = {0, 1, . . .}.

• The random variable Zn,i is the random number of descendants of individual i in generation (n− 1).

• The sequence X0, X1, . . . : Ω → {0, 1, . . .} of random variables given by X0 = 1 and the recursion (11)
is called a branching process.

• One can show (see Section 2.1.3) that X0, X1, . . . is a Markov chain with transition probabilities

pij =





P
( i∑

k=1

Z1,k = j
)

, if i > 0,

1 , if i = j = 0,

0 , else.

5. Cyclic random walks

• Further examples of Markov chains can be constructed as follows (see E. Behrends (2000) Introduction
to Markov Chains. Vieweg, Braunschweig, p. 4).

– We consider the finite state space E = {0, 1, . . . , 999}, the initial distribution

α = (1/16, 4/16, 6/16, 4/16, 1/16, 0, . . . , 0)> (12)
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and the transition probabilities

pij =





1
6

, if (j + 1000− i) mod (1000) ∈ {1, . . . , 6},

0 , else.

– Let X0, Z1, Z2, . . . : Ω → {0, 1, . . . , 999} be independent random variables, where the distribution
of X0 is given by (12) and

P (Z1 = i) = P (Z2 = i) = . . . = 1/6 , ∀ i = 1, . . . , 6 .

– The sequence X0, X1, . . . Ω → {0, 1, . . . , 999} of random variables defined by the recursion formula

Xn = (Xn−1 + Zn) mod (1000) (13)

for n ≥ 1 is a Markov chain called cyclic random walk.

• Remarks

– An experiment corresponding to the Markov chain defined above can be designed in the following
way. First of all we toss a coin four times and record the frequency of the event “versus”. The
number x0 of these events is regarded as realization of the random initial state X0; see the Bernoulli
scheme in Section WR–3.2.1.

– Afterwards a dice is tossed n times. The outcome zi of the ith experiment, is interpreted as a
realization of the random “increment” Zi; i = 1, . . . , n.

– The new state xn of the system results from the update of the old state xn−1 according to (13)
taking zn−1 as increment.

– If the experiment is not realized by tossing a coin and a dice, respectively, but by a computer–based
generation of pseudo–random numbers x0, z1, z2, . . . the procedure is referred to as Monte–Carlo
simulation.

– Methods allowing the construction of dynamic simulation algorithms based on Markov chains will
be discussed in the second part of this course in detail; see Chapter 3 below.

2.1.3 Recursive Representation

• In this section we will show

– how Markov chains can be constructed from sequences of independent and identically distributed
random variables,

– that the recursive formulae (9), (10), (11) and (13) are special cases of a general principle for the
construction of Markov chains,

– that vice versa every Markov chain can be considered as solution of a recursive stochastic equation.

• As usual let E = {1, 2, . . . , `} be a finite (or countably infinite) set.

– Furthermore, let (D,D) be a measurable space, e.g. D = Rd could be the d–dimensional Euclidian
space and D = B(Rd) the Borel σ–algebra on Rd, or D = [0, 1] could be defined as the unit interval
and D = B([0, 1]) as the Borel σ–algebra on [0, 1].

– Let now Z1, Z2, . . . : Ω → D be a sequence of independent and identically distributed random variables
mapping into D, and let X0 : Ω → E be independent of Z1, Z2, . . ..
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– Let the random variables X1, X2, . . . : Ω → E be given by the stochastic recursion equation

Xn = ϕ(Xn−1, Zn) , (14)

where ϕ : E ×D → E is an arbitrary measurable function.

Theorem 2.2

• Let the random variables X0, X1, . . . : Ω → E be given by (14).

• Then
P (Xn = in | Xn−1 = in−1, . . . , X0 = i0) = P (Xn = in | Xn−1 = in−1)

holds for any n ≥ 1 and i0, i1, . . . , in ∈ E such that P (Xn−1 = in−1, . . . , X0 = i0) > 0.

Proof

• Formula (14) implies that

P (Xn = in | Xn−1 = in−1, . . . , X0 = i0) = P (ϕ(Xn−1, Zn) = in | Xn−1 = in−1, . . . , X0 = i0)
= P (ϕ(in−1, Zn) = in | Xn−1 = in−1, . . . , X0 = i0)
= P (ϕ(in−1, Zn) = in) ,

– where the last equality follows from the transformation theorem for independent and identically
distributed random variables (see Theorem WR–3.18),

– as the random variables X0, . . . , Xn−1 are functions of Z1, . . . , Zn−1 and hence independent of
ϕ(in−1, Zn).

• In the same way one concludes that

P (ϕ(in−1, Zn) = in) = P (ϕ(in−1, Zn) = in | Xn−1 = in−1)
= P (ϕ(Xn−1, Zn) = in | Xn−1 = in−1)
= P (Xn = in | Xn−1 = in−1) . ¤

Remarks

• The proof of Theorem 2.2 yields that the conditional probability

pij = P (Xn = j | Xn−1 = i)

is given by pij = P (ϕ(i, Zn) = j).

• pij does not dependent on n, as the “innovations” Zn are identically distributed.

• Moreover, the joint probability P (X0 = i0, X1 = i1, . . . , Xn = in) is given by

P (X0 = i0, X1 = i1, . . . , Xn = in) = αi0pi0i1 . . . pin−1in , (15)

where αi0 = P (X0 = i0).

• Consequently, the sequence X0, X1, . . . of random variables given by the recursive definition (14) is a
Markov chain following the definition given in (3).

Our next step will be to show that vice versa, every Markov chain can be regarded as the solution of a recursive
stochastic equation.
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• Let X0, X1, . . . : Ω → E be a Markov chain with state space E = {1, 2, . . . , `}, initial distribution α =
(α1, . . . , α`)> and transition matrix P = (pij).

• Based on a recursive equation of the form (14) we will construct a Markov chain X ′
0, X

′
1, . . . with initial

distribution α and transition matrix P such that

P (X0 = i0, . . . , Xn = in) = P (X ′
0 = i0, . . . , X

′
n = in) , ∀ i0, . . . , in ∈ E (16)

for all n ≥ 0:

1. We start with a sequence Z0, Z1, . . . of independent random variables that are uniformly distributed
on the interval (0, 1].

2. First of all the E–valued random variable X ′
0 is defined as follows:

X ′
0 = k if and only if Z0 ∈

(k−1∑

i=1

αi,

k∑

i=1

αi

]
,

for all k = 1, . . . , `, i.e.

X ′
0 =

∑̀

k=1

k1I
(k−1∑

i=1

αi < Z0 ≤
k∑

i=1

αi

)
. (17)

3. The random variables X ′
1, X

′
2, . . . are defined by the recursive equation

X ′
n = ϕ(X ′

n−1, Zn) , (18)

where the function ϕ : E × (0, 1] → E is given by

ϕ(i, z) =
∑̀

k=1

k1I
(k−1∑

j=1

pij < z ≤
k∑

j=1

pij

)
. (19)

• It is easy to see that the probabilities P (X ′
0 = i0, X

′
1 = i1, . . . , X

′
n = in) for the sequence {X ′

n} defined by
(17)–(18) are given by (3), i.e., {X ′

n} is a Markov chain with initial distribution α and transition matrix P.

Remarks

• If (16) holds for two sequences {Xi} and {X ′
i} of random variables, these sequences are called stochas-

tically equivalent.

• The construction principle (17)–(19) can be exploited for the Monte–Carlo simulation of Markov chains
with given initial distribution and transition matrix.

• Markov chains on a countably infinite state space can be constructed and simulated in the same way.
However, in this case (17)–(19) need to be modified by considering vectors α and matrices P of infinite
dimensions.

2.1.4 The Matrix of the n–Step Transition Probabilities

• Let X0, X1, . . . : Ω → E be a Markov chain on the state space E = {1, 2, . . . , `} with initial distribution
α = (α1, . . . , α`)> and transition matrix P = (pij).

• For arbitrary but fixed n ≥ 1 and i, j ∈ E the product pii1pi1i2 . . . pin−1j can be interpreted as the probability
of the path i → i1 → . . . → in−1 → j.
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• Consequently, the probability of the transition from state i to state j within n steps is given by the sum

p
(n)
ij =

∑

i1,...,in−1∈E

pii1pi1i2 . . . pin−1j , (20)

where
p
(n)
ij = P (Xn = j | X0 = i) if P (X0 = i) > 0. (21)

Remarks

• The matrix P(n) = (p(n)
ij )i,j=1,...,` is called the n–step transition matrix of the Markov chain {Xn}.

• If we introduce the convention P(0) = I, where I denotes the ` × `–dimensional identity matrix, then
P(n) has the following representation formulae.

Lemma 2.1 The equation
P(n) = Pn (22)

holds for arbitrary n = 0, 1, . . . and thus for arbitrary n,m = 0, 1, . . .

P(n+m) = P(n)P(m). (23)

Proof Equation (22) is an immediate consequence of (20) and the definition of matrix multiplication. ¤

Example (Weather Forecast)

• Consider E = {1, 2}, and let

P =


 1− p p

p′ 1− p′




be an arbitrarily chosen transition matrix, i.e. 0 < p, p′ ≤ 1.

• One can show that the n–step transition matrix P(n) = Pn is given by the formula

Pn =
1

p + p′


 p′ p

p′ p


 +

(1− p− p′)n

p + p′


 p −p

−p′ p′


 .

Remarks

• The matrix identity (23) is called the Chapman-Kolmogorov equation in literature.

• Formula (23) yields the following useful inequalities.

Corollary 2.2 For arbitrary n,m, r = 0, 1, . . . and i, j, k ∈ E,

p
(n+m)
ii ≥ p

(n)
ij p

(m)
ji (24)

and
p
(r+n+m)
ij ≥ p

(r)
ik p

(n)
kk p

(m)
kj . (25)

Furthermore, Lemma 2.1 allows the following representation of the distribution of Xn. Recall that Xn denotes
the state of the Markov chain at step n.
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Theorem 2.3

• Let X0, X1, . . . be a Markov chain with state space E = {1, . . . , `}, initial distribution α and one–step
transition matrix P.

• Then the vector αn = (αn1, . . . , αn`)> of the probabilities αni = P (Xn = i) is given by the equation

α>n = α>Pn. (26)

Proof

• From the formula of total probability (see Theorem WR–2.6) and (21) we conclude that

P (Xn = j) =
∑

i∈E

αi P (Xn = j | X0 = i) =
∑

i∈E

αip
(n)
ij ,

where we define P (Xn = j | X0 = i) = 0 if αi = P (X0 = i) = 0.

• Now statement (26) follows from Lemma 2.1. ¤

Remarks

• Due to Theorem 2.3 the probabilities αni = P (Xn = i) can be calculated via the nth power Pn of the
transition matrix P.

• In this context it is often useful to find a so–called spectral representation of Pn. It can be constructed
by using the eigenvalues and a basis of eigenvectors of the transition matrix as follows. Note that there
are matrices having no spectral representation.

• A short recapitulation

– Let A be a (not necessarily stochastic) ` × ` matrix, let φ, ψ 6= 0 be two `–dimensional (column–)
vectors such that for each of them at least one of their components is different from 0, and let θ be an
arbitrary (real or complex) number.

– If
Aφ = θφ and ψ>A = θψ> , respectively, (27)

then θ is an eigenvalue of A and φ and ψ are left and right eigenvectors (for θ).

– As (27) is equivalent to

(A− θI)φ = 0 and ψ>(A− θI) = 0> , respectively,

θ is an eigenvalue of A if and only if θ is a solution of the so-called characteristic equation

det(A− θI) = 0 . (28)

– Note that the determinant in (28) is a polynomial of order `. Thus, the algebraic equation (28) has `
possibly complex solutions θ1, . . . , θ`. These solutions might not be all different from each other.

– W.l.o.g. we may assume the eigenvalues θ1, . . . , θ` to be ordered such that

|θ1| ≥ |θ2| ≥ . . . ≥ |θ`| .

– For every eigenvalue θi left and right eigenvectors φi and ψi, respectively, can be found.
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– Let Φ = (φ1, . . . , φ`) be the `× ` matrix consisting of the right eigenvectors φ1, . . . , φ` and let

Ψ =




ψ>
1

...

ψ>
`




be the `× ` matrix formed by the left eigenvectors ψ1, . . . , ψ`.

– By definition of the eigenvectors
AΦ = Φ diag(θ) , (29)

where θ = (θ1, . . . , θ`)> and diag(θ) denotes the diagonal matrix with diagonal elements θ1, . . . , θ`.

• If the eigenvectors φ1, . . . , φ` are linearly independent,

– the inverse Φ−1 exists and we can set Ψ = Φ−1.

– Moreover, in this case (29) implies

A = Φ diag(θ)Φ−1 = Φ diag(θ)Ψ

and hence
An = Φ( diag(θ))nΦ−1 = Φ( diag(θ))nΨ .

– This yields the spectral representation of A:

An =
∑̀

i=1

θn
i φiψ

>
i . (30)

Remarks

• An application of (30) for the transition matrix A = P results in a simple algorithm calculating the
nth power Pn of (26).

• For the necessary calculation of the eigenvalues and eigenvectors of P standard software like MAPLE,
MATLAB or MATHEMATICA can be used.

• A striking advantage of the spectral representation (30) can be seen in the fact that the complexity of
the numerical calculation for Pn stays constant if n is increased.

• However, the derivation of (30) requires the eigenvectors φ1, . . . , φ` to be linearly independent. The
next lemma gives a sufficient condition for the linear independence of eigenvectors.

Lemma 2.2

• If all eigenvalues θ1, . . . , θ` of A are pairwise distinct, every family of corresponding right eigenvectors
φ1, . . . , φ` is linearly independent.

• Furthermore, if the left eigenvectors ψ1, . . . , ψ` are given by Ψ = Φ−1 it holds that

ψ>
i φj =





1 if i = j,

0 if i 6= j.
(31)

Proof

• The first statement will be proved by complete induction.

– As every eigenvector φ1 has at least one non–zero component, a1φ1 = 0 implies a1 = 0.
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– Let now all eigenvalues θ1, . . . , θ` of A be pairwise different and let the eigenvectors φ1, . . . , φk−1

be linearly independent for a certain k ≤ ` .
– In order to show the independence of φ1, . . . , φk it suffices to show that

k∑

j=1

ajφj = 0 (32)

implies a1 = . . . = ak = 0.
– Let a1, . . . , ak be such that (32) holds. This also implies

0 = A0 =
k∑

j=1

ajAφj =
k∑

j=1

ajθjφj .

– The same argument yields

0 = θk 0 = θk

k∑

j=1

ajφj =
k∑

j=1

θkajφj

and thus

0 =
k−1∑

j=1

(θk − θj)ajφj .

– As the eigenvectors φ1, . . . , φk−1 are linearly independent

(θk − θ1)a1 = (θk − θ2)a2 = . . . = (θk − θk−1)ak−1 = 0

and hence a1 = a2 = . . . = ak−1 = 0 as θk 6= θj for 1 ≤ j ≤ k − 1.
– Now (32) immediately implies ak = 0.

• If the eigenvalues θ1, . . . , θ` of A are pairwise distinct,

– the `× ` matrix Φ consists of ` linearly independent column vectors,
– and thus Φ is invertible.
– Consequently, the matrix Ψ of the left eigenvectors is simply the inverse Ψ = Φ−1. This imme-

diately implies (31). ¤

2.2 Ergodicity and Stationarity

2.2.1 Basic Definitions and Quasi-positive Transition Matrices

• If the Markov chain X0, X1, . . . has a very large number ` of possible states, the spectral representation (30)
of the n-step transition matrix P(n) = Pn discussed in Section 2.1.4 turns out to be inappropriate in order
to calculate

– the conditional probabilities p
(n)
ij = P (Xn = j | X0 = i) of the random state Xn

– as well as the (unconditional) probabilities P (Xn = j) =
∑`

i=1 αip
(n)
ij of Xn

after n À 1 (time-) steps.

• However, there are certain conditions

– ensuring the existence of the limits limn→∞ p
(n)
ij and limn→∞ P (Xn = j), respectively, as well as their

equality and independence of i,
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– thus justifying to consider the limit πj = lim
n→∞

p
(n)
ij = lim

n→∞
P (Xn = j) as approximation of p

(n)
ij and

P (Xn = j) if n À 1.

This serves as a motivation to formally introduce the notion of the ergodicity of Markov chains.

Definition The Markov chain X0, X1, . . . with transition matrix P = (pij) and the corresponding n-step
transition matrices P(n) = (p(n)

ij ) (= Pn) is called ergodic if the limits

πj = lim
n→∞

p
(n)
ij (33)

1. exist for all j ∈ E

2. are positive and independent of i ∈ E

3. form a probability function π = (π1, . . . , π`)>, i.e.
∑

j∈E πj = 1.

Example (Weather Forecast)

• In order to illustrate the notion of an ergodic Markov chain we return to the simple example of weather
forecast already discussed in Sections 2.1.2 and 2.1.4.

• Let E = {1, 2} and

P =


 1− p p

p′ 1− p′




be an arbitrary transition matrix such that 0 < p, p′ ≤ 1.

• The n-step transition matrix P(n) = Pn is given by

Pn =
1

p + p′


 p′ p

p′ p


 +

(1− p− p′)n

p + p′


 p −p

−p′ p′


 .

• If p + p′ < 2, this and (26) imply

lim
n→∞

Pn =
1

p + p′


 p′ p

p′ p




and
π = lim

n→∞
αn =

( p′

p + p′
,

p

p + p′

)>
, (34)

respectively. Note that the limit distribution π in (34) does not depend on the choice of the initial
distribution α (= α0).

• However, if p + p′ = 2, then

Pn =





P if n is odd,

I if n is even.

The ergodicity of Markov chains on an arbitrary finite state space can be characterized by the following notion
from the theory of positive matrices.



2 MARKOV CHAINS 18

Definition

• The `× ` matrix A = (aij) is called non-negative if all entries aij of A are non-negative.

• The non-negative matrix A is called quasi-positive if there is a natural number n0 ≥ 1 such that all
entries of An0 are positive.

Remark If A is a stochastic matrix and we can find a natural number n0 ≥ 1 such that all entries of An0 are
positive, then it is easy to see that for all natural numbers n ≥ n0 all entries of An are positive.

Theorem 2.4 The Markov chain X0, X1, . . . with state space E = {1, . . . , `} and transition matrix P is ergodic
if and only if P is quasi-positive.

Proof

• First of all we show that the condition
min
i,j∈E

p
(n0)
ij > 0 (35)

for some n0 ∈ N is sufficient for the ergodicity of {Xn}.
– Let m

(n)
j = mini∈E p

(n)
ij and M

(n)
j = maxi∈E p

(n)
ij . The Chapman–Kolmogorov equation (23) yields

p
(n+1)
ij =

∑

k∈E

pikp
(n)
kj

and thus
m

(n+1)
j = min

i
p
(n+1)
ij = min

i

∑

k

pikp
(n)
kj ≥ min

i

∑

k

pik min
l

p
(n)
lj = m

(n)
j ,

i.e., m
(n)
j ≤ m

(n+1)
j for all n ≥ 0, where we define P(0) = I. A similar argument shows that

M
(n)
j ≥ M

(n+1)
j for all n ≥ 0.

– Consequently, in order to show the existence of the limits πj in (33) it suffices to show that for all
j ∈ E

lim
n→∞

(M (n)
j −m

(n)
j ) = 0 . (36)

– For this purpose we consider the sets E′ = {k ∈ E : p
(n0)
i0k ≥ p

(n0)
j0k } and E′′ = E \ E′ for arbitrary

but fixed states i0, j0 ∈ E.
– Let a = mini,j∈E p

(n0)
ij > 0. Then

∑

k∈E′

(
p
(n0)
i0k − p

(n0)
j0k

)
= 1−

∑

k∈E′′
p
(n0)
i0k −

∑

k∈E′
p
(n0)
j0k ≤ 1− `a

and ∑

k∈E′′

(
p
(n0)
i0k − p

(n0)
j0k

)
= −

∑

k∈E′

(
p
(n0)
i0k − p

(n0)
j0k

)
.
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– By another application of the Chapman–Kolmogorov equation (23) this yields for arbitrary n ≥ 0
and j ∈ E

p
(n0+n)
i0j − p

(n0+n)
j0j =

∑

k∈E

(
p
(n0)
i0k − p

(n0)
j0k

)
p
(n)
kj

=
∑

k∈E′

(
p
(n0)
i0k − p

(n0)
j0k

)
p
(n)
kj +

∑

k∈E′′

(
p
(n0)
i0k − p

(n0)
j0k

)
p
(n)
kj

≤
∑

k∈E′

(
p
(n0)
i0k − p

(n0)
j0k

)
M

(n)
j +

∑

k∈E′′

(
p
(n0)
i0k − p

(n0)
j0k

)
m

(n)
j

=
∑

k∈E′

(
p
(n0)
i0k − p

(n0)
j0k

)
M

(n)
j −

∑

k∈E′

(
p
(n0)
i0k − p

(n0)
j0k

)
m

(n)
j

=
∑

k∈E′

(
p
(n0)
i0k − p

(n0)
j0k

)(
M

(n)
j −m

(n)
j

)

≤ (1− `a)
(
M

(n)
j −m

(n)
j

)
.

– As a consequence, M
(n0+n)
j −m

(n0+n)
j ≤ (M (n)

j −m
(n)
j )(1− `a) and by induction one shows that

for any k ≥ 1
M

(kn0+n)
j −m

(kn0+n)
j ≤ (M (n)

j −m
(n)
j )(1− `a)k . (37)

– This ensures the existence of an (unbounded) sequence n1, n2, . . . such that for all j ∈ E

lim
k→∞

(M (nk)
j −m

(nk)
j ) = 0 . (38)

– By the monotonicity of the differences M
(n)
j −m

(n)
j in n, (38) holds for every sequence n1, n2, . . .

of natural numbers.
– This proves (36).

• The limits πj are positive because

πj = lim
n→∞

p
(n)
ij ≥ lim

n→∞
m

(n)
j ≥ m

(n0)
j ≥ a > 0 .

• Furthermore,
∑

j∈E πj =
∑

j∈E limn→∞ p
(n)
ij = limn→∞

∑
j∈E p

(n)
ij = 1 as the sum consists of finitely

many summands.
• It follows immediately from minj∈E πj > 0 and (33) that the condition (35) is necessary for ergodicity

if one takes into account that the state space E is finite. ¤

Remarks

• As the limits πj = limn→∞ p
(n)
ij of ergodic Markov chains do not depend on i and the state space

E = {1, . . . , `} is finite, clearly

lim
n→∞

α>n = α> lim
n→∞

P(n) = π> .

• The proof of Theorem 2.4 does not only show the existence of the limits πj = limn→∞ p
(n)
ij but also

yields the following estimate for the rate of convergence: The inequality (37) implies

sup
i,j∈E

|p(n)
ij − πj | ≤ sup

j∈E

(
M

(n)
j −m

(n)
j

) ≤ (1− `a)bn/n0c (39)

and hence
sup
j∈E

|αnj − πj | ≤ (1− `a)bn/n0c , (40)

where bn/n0c denotes the integer part of n/n0.
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• Estimates like (39) and (40) are referred to as geometric bounds for the rate of convergence in literature.

Now we will show that the limits πj = limn→∞ p
(n)
ij can be regarded as solution of a system of linear equations.

Theorem 2.5

• Let X0, X1, . . . be an ergodic Markov chain with state space E = {1, . . . , `} and transition matrix P = (pij).

• In this case the vector π = (π1, . . . , π`)> of the limits πj = limn→∞ p
(n)
ij is the uniquely determined (positive)

solution of the linear equation system

πj =
∑

i∈E

πipij , j ∈ E, (41)

when additionally the condition
∑

j∈E πj = 1 is imposed.

Proof

• The definition (33) of the limits πj and the Chapman–Kolmogorov equation (23) imply by changing
the order of limit and sum that

πj
(33)
= lim

n→∞
p
(n)
kj

(23)
= lim

n→∞

∑

i∈E

p
(n−1)
ki pij =

∑

i∈E

lim
n→∞

p
(n−1)
ki pij

(33)
=

∑

i∈E

πipij .

• Suppose now that there is another solution π′ = (π′1, . . . , π
′
`)
> of (41) such that π′j =

∑
i∈E π′ipij for

all j ∈ E and
∑

j∈E π′j = 1.

• By induction one easily shows
π′j =

∑

i∈E

π′ip
(n)
ij , j ∈ E , (42)

for all n = 1, 2, . . ..

• In particular (42) implies

π′j
(42)
= lim

n→∞

∑

i∈E

π′ip
(n)
ij =

∑

i∈E

π′i lim
n→∞

p
(n)
ij

(33)
= πj .

¤

Remarks

• In matrix notation the linear equation system (41) is of the form π> = π>P.

• If the number ` of elements in the state space is reasonably small this equation system can be used for
the numerical calculation of the probability function π; see Section 2.2.5.

• In case ` À 1, Monte–Carlo simulation turns out to be a more efficient method to determine π; see
Section 3.3.

2.2.2 Estimates for the Rate of Convergence; Perron–Frobenius–Theorem

• Recall:

– If {Xn} is a Markov chain whose 1-step transition matrix P has only strictly positive entries pij ,
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– then the geometric bound for the rate of convergence to the limit distribution π = (π1, . . . , π`)> derived
in (40) is given as follows:

max
j∈E

|αnj − πj | = O((1− `a)n) , (43)

where a = mini,j∈E pij > 0.

• Whenever the minimum a of the entries pij of the transition matrix P is close to 0 the bound in (43) is not
very useful.

• However, in some cases the basis 1− `a of the convergence estimate (43) can be improved.

Example (Weather Forecast)

• Let E = {1, 2} and

P =


 1− p p

p′ 1− p′


 , where 0 < p, p′ < 1.

• In Section 2.2.1 we showed that

– the n-step transition matrix P(n) = Pn is given by

Pn =
1

p + p′


 p′ p

p′ p


 +

(1− p− p′)n

p + p′


 p −p

−p′ p′




– and thus
(
P∞ =

)
lim

n→∞
Pn =

1
p + p′


 p′ p

p′ p


 .

– Consequently

Pn −P∞ =
(1− p− p′)n

p + p′


 p −p

−p′ p′




(
= O(|1− p− p′|n)

)
, (44)

where p + p′ > 2a = 2mini,j∈E pij and hence |1− p− p′| < 1− 2a if p 6= p′.

• Remarks

– The basis |θ2| = |1− p− p′| of the rate of convergence in (44) is the absolute value of the second
largest eigenvalue θ2 of the transition matrix P,

– as the characteristic equation
(
det(P− θI) =

)
(1− p− θ)(1− p′ − θ)− pp′ = 0

of P has the two solutions θ1 = 1 and θ2 = 1− p− p′.

In general geometric estimates of the form (44) for the rate of convergence can be derived by means of the following
so–called Perron–Frobenius theorem for quasi-positive matrices.

Theorem 2.6

• Let A be a quasi-positive `× ` matrix with eigenvalues θ1, . . . , θ` such that |θ1| ≥ . . . ≥ |θ`|.
• Then the following holds:
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(a) The eigenvalue θ1 is real and positive.
(b) θ1 > |θi| for all i = 2, . . . , `,
(c) The right and left eigenvectors φ1 and ψ1 of θ1 are uniquely determined up to a constant factor and

can be chosen such that all components of φ1 and ψ1 are positive.

A proof of Theorem 2.6 can be found in Chapter 1 of E. Seneta (1981) Non-Negative Matrices and Markov Chains,
Springer, New York.

Corollary 2.3 Let P be a quasi-positive transition matrix. Then

• θ1 = 1,φ1 = e and ψ1 = π, where e = (1, . . . , 1)> and π = (π1, . . . , π`)>.

• |θi| < 1 for all i = 2, . . . , `.

Proof

• As P is a stochastic matrix, obviously Pe = e and (41) implies π>P = π>.
• Thus 1 is an eigenvalue of P and e and π are right and left eigenvectors of this eigenvalue, respectively.
• Let now θ be an arbitrary eigenvalue of P and let φ = (φ1, . . . , φ`)> be an eigenvector corresponding

to θ.
• By definition (27) of θ and φ

|θ| |φi| ≤
∑̀

j=1

pij |φj | ≤ max
j∈E

|φj | , ∀ i ∈ E .

• Consequently |θ| ≤ 1 and therefore θ1 = 1 is the largest eigenvalue of P.
• Theorem 2.6 now implies |θi| < 1 for i = 2, . . . , `. ¤

Corollary 2.3 yields the following geometric convergence estimate.

Corollary 2.4 Let P be a quasi-positive transition matrix such that all eigenvalues θ1, . . . , θ` of P are pairwise
distinct. Then

sup
j∈E

|αnj − πj | = O(|θ2|n) . (45)

Proof

• Corollary 2.3 implies

lim
n→∞

∑̀

i=2

θn
i φiψ

>
i = 0 , (46)

as |θi| < 1 for all i = 2, . . . , `.
• Furthermore, Corollary 2.3 implies θ1 = 1 as well as φ1 = (1, . . . , 1)> and ψ1 = π being the right and

left eigenvectors of θ1, respectively.
• Taking into account the spectral representation (30) of Pn, i.e.,

Pn =
∑̀

i=1

θn
i φiψ

>
i ,

it is easy to see that

Pn −




π>

...

π>


 = Pn − θn

1 φ1ψ
>
1 =

∑̀

i=2

θn
i φiψ

>
i .
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• As α>n = α>Pn (see Theorem 2.3) this together with (46) shows (45). ¤

Example (Reaching a Consensus)
see C. Hesse (2003) Angewandte Wahrscheinlichkeitstheorie. Vieweg, Braunschweig, p. 349

• A committee consisting of ` members has the mandate to project a certain (economical) parameter
µ ∈ R, one could think of the German Council of Economic Experts projecting economic growth for
the next year.
– In a first step each of the ` experts gives a personal projection for µ, where the single projection

results are denoted by µ̂
(0)
1 , . . . , µ̂

(0)
` .

– What could be a method for the experts to settle on a common projection, i.e. reach a consensus?
– A simple approach would be to calculate the arithmetic mean (µ̂(0)

1 + . . . + µ̂
(0)
` )/`, thus ignoring

the different levels of expertise within the group.
• Alternatively, every committee member could modify his own projection based on the projections by

his `− 1 colleagues and his personal assessment of their authors expertise.
– For arbitrary i, j ∈ {1, . . . , `} the expert i attributes the „trust probability” pij to the expert j

such that

pij > 0 and
∑̀

j=1

pij = 1 , ∀ i, j ∈ {1, . . . , `}

– and expert i modifies his original projection µ̂
(0)
i replacing it by

µ̂
(1)
i =

∑̀

j=1

pij µ̂
(0)
j .

– In most cases the modified projections µ̂
(1)
1 , . . . , µ̂

(1)
` will still be different from each other. Therefore

the procedure is repeated until the differences are sufficiently small.
• Theorem 2.4 ensures

– that this can be achieved if the modification procedure is repeated often enough,
– as according to Theorem 2.4 the limits

lim
n→∞

µ̂
(n)
i =

∑̀

j=1

πjµ̂
(0)
j (47)

exist and do not depend on i,
– where the vector π = (π1, . . . , π`)> of the limits πj = limn→∞ p

(n)
ij is the (uniquely determined)

solution of the linear equation system (41), i.e. π> = π>P with P = (pij).
• The equality (47) can be seen as follows:

lim
n→∞

µ̂
(n)
i = lim

n→∞

∑̀

j=1

pij µ̂
(n−1)
j = lim

n→∞

∑̀

j=1

p
(n)
ij µ̂

(0)
j

=
∑̀

j=1

lim
n→∞

p
(n)
ij µ̂

(0)
j =

∑̀

j=1

πj µ̂
(0)
j .

• The consensus, i.e. the common projection of the unknown parameter µ, reached by the committee is
given by

µ̂ =
∑̀

j=1

πj µ̂
(0)
j . (48)



2 MARKOV CHAINS 24

Remarks

• For large ` the algebraic solution of the linear equation system (41) can be difficult.
• In this case the estimates for the rate of convergence in (47) become relevant for the practical imple-

mentation of the method to reach a consensus described in (47).
• We consider the following numerical example.

– Let ` = 3 and

P =




2
6

1
6

3
6

1
4

1
4

2
4

2
8

1
8

5
8




. (49)

– The entries of this stochastic matrix imply that the third expert has a particularly high reputation
among his colleagues.

– The solution π = (π1, π2, π3)> of the corresponding linear equation system (41) is given by

π1 =
21
77

, π2 =
12
77

, π3 =
44
77

,

i.e. the projection µ̂
(0)
3 of the third expert with the outstanding reputation is most influential.

• The eigenvalues of the transition matrix given in (49) are θ1 = 1, θ2 = 1/8 and θ3 = 1/12.
• The „basis” in the rate of convergence given by (43) is

1− 3a = 1− 3 min
i,j=1,2,3

pij = 1− 3
8

=
5
8

,

whereas Corollary 2.4 yields the following substantially improved geometric rate of convergence

max
i∈{1,...,`}

∣∣ µ̂− µ̂
(n)
i

∣∣ = O(|θ2|n)

where θ2 = 1/8 denotes the second largest eigenvalue of the stochastic matrix P given by (49).

2.2.3 Irreducible and Aperiodic Markov Chains

• Recall that in Theorem 2.4 we characterized the ergodicity of the Markov chain X0, X1, . . . by the quasi-
positivity of its transition matrix P.

• However, it can be difficult to show this property of P directly, especially if ` À 1.

• Therefore, we will derive another (probabilistic) way to characterize the ergodicity of a Markov chain with
finite state space. For this purpose we will need the following notion.

– For arbitrary but fixed states i, j ∈ E we say that the state j is accessible from state i if p
(n)
ij > 0 for

some n ≥ 0 where P(0) = I. (notation: i → j)
– Another (equivalent) definition for accessibility of states is the following:
– Let τj = min{n ≥ 0 : Xn = j} be the number of steps until the Markov chain {Xn} reaches the state

j ∈ E for the first time. We define τj = ∞ if Xn 6= j for all n ≥ 0.

Theorem 2.7 Let i ∈ E be such that P (X0 = i) > 0. In this case j is accessible from i ∈ E if and only if
P (τj < ∞ | X0 = i) > 0.
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Proof

• The condition is obviously necessary because

{Xn = j} ⊂ {τj ≤ n} ⊂ {τj < ∞} and thus 0 < p
(n)
ij ≤ P (τj < ∞ | X0 = i)

for some n ≥ 0 if j is accessible from i.

• On the other hand if i 6= j and p
(n)
ij = 0 for all n ≥ 0, then

P (τj < ∞ | X0 = i) = lim
n→∞

P (τj < n | X0 = i)

= lim
n→∞

P
(n−1⋃

k=0

{Xk = j}
∣∣∣ X0 = i

)

≤ lim
n→∞

n−1∑

k=0

P (Xk = j | X0 = i) = lim
n→∞

n−1∑

k=0

p
(k)
ij = 0 .

¤

Remarks

• The property of accessibility is

– transitive, i.e., i → k and k → j imply that i → j.
– This is an immediate consequence of the inequality p

(r+m)
ij ≥ p

(r)
ik p

(m)
kj (see Corollary 2.2) and of

the definition of accessibility.
– Moreover, in case i → j and j → i we say that the states i and j communicate. (notation: i↔j)

• The property of communicating is an equivalence relation as

(a) i↔i (reflexivity),
(b) i↔j if and only if j↔i (symmetry),
(c) i↔k and k↔j implies i↔j (transitivity).

• As a consequence,

– the state space E can be completely divided into disjoint equivalence classes with respect to the
equivalence relation ↔.

– The Markov chain {Xn} with transition matrix P = (pij) is called irreducible if the state space E
consists of only one equivalence class, i.e. i↔j for all i, j ∈ E.

Examples

• The definition of irreducibility immediately implies that the 2× 2 matrices

P1 =


 1/2 1/2

1/2 1/2


 and P2 =


 1/2 1/2

1/4 3/4




are irreducible.

• On the other hand the 4× 4 block matrix P consisting of P1 and P2

P =


 P1 0

0 P2




is not irreducible.
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Besides irreducibility we need a second property of the transition probabilities, namely the so-called aperiodicity,
in order to characterize the ergodicity of a Markov chain in a simple way.

Definition

• The period di of the state i ∈ E is given by di = gcd{n ≥ 1 : p
(n)
ii > 0} where „gcd” denotes the greatest

common divisor. We define di = ∞ if p
(n)
ii = 0 for all n ≥ 1.

• A state i ∈ E is said to be aperiodic if di = 1.
• The Markov chain {Xn} and its transition matrix P = (pij) are called aperiodic if all states of {Xn}

are aperiodic.

We will now show that the periods di and dj coincide if the states i, j belong to the same equivalence class of
communicating states. For this purpose we introduce the notation i → j[n] if p

(n)
ij > 0.

Theorem 2.8 If the states i, j ∈ E communicate, then di = dj.

Proof

• If j → j[n], i → j[k] and j → i[m] for certain k,m, n ≥ 1, then the inequalities from Corollary 2.2
imply that i → i[k + m] and i → i[k + m + n].

• Thus, k + m and k + m + n are divisible by di.
• As a consequence the difference n = (k + m + n)− (k + m) is also divisible by di.

• This shows that di is a common divisor for all natural numbers n having the property that p
(n)
jj > 0,

i.e. di ≤ dj .
• For reasons of symmetry the same argument also proves that dj ≤ di. ¤

Corollary 2.5 Let the Markov chain {Xn} be irreducible. Then all states of {Xn} have the same period.

In order to show

• that the characterization of an ergodic Markov chain (see Theorem 2.4) considered in Section 2.2.1 is
equivalent to the Markov chain being irreducible and aperiodic,

• we need the following elementary lemma from number theory.

Lemma 2.3 Let k = 1, 2, . . . an arbitrary but fixed natural number. Then there is a natural number n0 ≥ 1 such
that

{n0, n0 + 1, n0 + 2, . . .} ⊂ {n1k + n2(k + 1); n1, n2 ≥ 0} .

Proof

• If n ≥ k2 there are integers m, d ≥ 0 such that n− k2 = mk + d and d < k.
• Therefore n = (k − d + m)k + d(k + 1) and hence

n ∈ {n1k + n2(k + 1); n1, n2 ≥ 0} ,

i.e., n0 = k2 is the desired number. ¤
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Theorem 2.9 The transition matrix P is quasi-positive if and only if P is irreducible and aperiodic.

Proof

• Let us first assume the transition matrix P to be irreducible and aperiodic.

– For every i ∈ E we consider the set J(i) = {n ≥ 1 : p
(n)
ii > 0} whose greatest common divisor is 1

as P is aperiodic.
– The inequalities from Corollary 2.2 yield

p
(n+m)
ii ≥ p

(n)
ii p

(m)
ii

and hence
n + m ∈ J(i) if n, m ∈ J(i). (50)

• We show that J(i) contains two successive numbers.

– If J(i) did not contain two successive numbers, the elements of J(i) would have a minimal distance
k ≥ 2.

– The consequence would be that mk + d ∈ J(i) for some m = 0, 1, . . . and d = 1, . . . , k − 1 as
otherwise n = mk for all n ∈ J(i).

– But this is a contradiction to our hypothesis gcd(J(i)) = 1.

• Let now n1, n1 + k ∈ J(i). Statement (50) then implies also a(n1 + k) ∈ J(i) and n + bn1 ∈ J(i) for
arbitrary a, b ∈ N, where

n = mk + d ∈ J(i) . (51)

• We will show

– that there are natural numbers a, b ∈ {1, 2, . . .} such that the difference between a(n1 + k) ∈ J(i)
and n + bn1 ∈ J(i) is less than k.

– From (51) we obtain

a(n1 + k)− n− bn1 = (a− b)n1 + (a−m)k − d

and hence for a = b = m + 1

a(n1 + k)− n− bn1 = k − d < k .

• Therefore, the set J(i) contains two successive numbers.

• Statement (50) and Lemma 2.3 yield that for every i ∈ E there is an n(i) ≥ 1 such that

J(i) ⊃ {n(i), n(i) + 1, . . .} . (52)

• This result, the irreducibility of P and the inequality (25) in Corollary 2.2, i.e.

p
(r+n+m)
ij ≥ p

(r)
ik p

(n)
kk p

(m)
kj ,

imply that for each pair i, j ∈ E of states there is a natural number n(ij) ≥ 1 such that

J(ij) = {n ≥ 0 : p
(n)
ij > 0} ⊃ {n(ij), n(ij) + 1, . . .} ,

i.e., P is quasi-positive.

• Conversely, the irreducibility and aperiodicity of quasi-positive transition matrices are immediate conse-
quences of the definitions. ¤



2 MARKOV CHAINS 28

Remarks

• A simple example for a non–irreducible Markov chain

– can be given by our well-known model for the weather forecast where E = {1, 2} and

P =


 1− p p

p′ 1− p′


 .

– If p = 0 or p′ = 0, then the corresponding Markov chain is clearly not irreducible and therefore by
Theorem 2.9 not ergodic.

• It is nevertheless possible that the linear equation system

α> = α>P (53)

has one (or infinitely many) probability solutions α> = (α1, α2).

– If for example p = 0 and p′ > 0, then i = 1 is a so-called absorbing state and α> = (1, 0) is the
(uniquely determined) solution of the linear equation system (53).

– If p = 0 and p′ = 0, every probability solution α> = (α1, α2) solves the linear equation system
(53).

• Now we give some examples for non-aperiodic Markov chains X0, X1, . . . : Ω → E.

– In this context the random variables X0, X1, . . . : Ω → E are not given by a stochastic recur-
sion formula Xn = ϕ(Xn−1, Zn) of the type (14) where the increments Z1, Z2, . . . : Ω → D are
independent and identically distributed random variables.

– We merely assume that the random variables Z1, Z2, . . . : Ω → D are conditionally independent in
the following sense.

– Note: As was shown in Section 2.1.3 it is nevertheless possible to construct a Markov chain that
is stochastically equivalent to X0, X1, . . . having independent increments, see the construction
principle considered in (17)–(19).

• Let E and D be arbitrary finite (or countably finite) sets, let ϕ : E ×D → E be an arbitrary function
and let X0, X1, . . . : Ω → E and Z1, Z2, . . . : Ω → D be random variables

– such that
Xn = ϕ(Xn−1, Zn) (54)

– and such that for every n ∈ N the random variable Zn is conditionally independent of the random
variables Z1, . . . , Zn−1, X0, . . . , Xn−2 given Xn−1,

– i.e., for arbitrary n ∈ N, i0, i1 . . . , in−1 ∈ E and k1, . . . , kn ∈ D

P (Zn = kn, Zn−1 = kn−1, . . . , Z1 = k1, Xn−1 = in−1, . . . , X0 = i0)
= P (Zn = kn | Xn−1 = in−1)P (Zn−1 = kn−1, . . . , Z1 = k1, Xn−1 = in−1, . . . , X0 = i0) ,

where we define P (Zn = kn | Xn−1 = in−1) = 0 if P (Xn−1 = in−1) = 0.
– Moreover, we assume that for arbitrary i ∈ E and k ∈ D the probabilities P (Zn = k | Xn−1 = i)

do not depend on n ∈ N.
• One can show that the sequence X0, X1, . . . : Ω → E recursively defined by (54) is a Markov chain

whose transition matrix P = (pij) is given by

pij = P (ϕ(i, Z1) = j | X0 = i) ,

if P (X0 = i) > 0 for all i ∈ E.
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Example (Diffusion Model)
see P. Brémaud (1999) Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New
York, p. 76

• The following simple model describing a diffusion process through a membrane was suggested in 1907
by the physicists Tatiana and Paul Ehrenfest. It is designed to model the heat exchange between two
systems at different temperatures.

– We consider ` particles, which are distributed between two containers A and B that are permeably
connected but insulated with respect to their environment.

– Assume there are Xn−1 = i particles in A at time n − 1. Then one of the ` particles in the two
containers is selected at random and transferred into the other container.

– The state Xn of the system at time n is hence either Xn = i−1 with probability i/` (if the selected
particle was in container A) or Xn = i + 1 with probability (` − i)/` (if the selected particle was
in container B).

• The random variables X0, X1, . . . : Ω → {0, 1, . . . , `} can thus be defined recursively

– by the stochastic recursion formula

Xn = Xn−1 + Zn , (55)

– where given Xn−1 the random variable Zn is conditionally independent of the random variables
Z1, . . . , Zn−1, X0, . . . , Xn−1 with P (Zn = −1) + P (Zn = 1) = 1 and

P (Zn = −1 | Xn−1 = i) =
i

`
if P (Xn−1 = i) > 0 .

– The entries pij of the transition matrix P = (pij) are therefore given by

pij =





`− i

`
if i < ` and j = i + 1,

i

`
if i > 0 and j = i− 1,

0 else

– In particular this implies di = gcd{n ≥ 1 : p
(n)
ii > 0} = 2 for all i ∈ {0, 1, . . . , `}, i.e. the Markov

chain given by (55) is not aperiodic (and thus by Theorem 2.9 not ergodic).

• In spite of this, the linear equation system

α> = α>P (56)

has a (uniquely determined) probability solution α> = (α0, . . . , α`) where

αi =
1
2`

(
`

i

)
, ∀ i ∈ {0, 1, . . . , `} . (57)

Remarks

• The diffusion model of Ehrenfest is a special case of the following class of Markov chains called birth
and death processes with two reflecting barriers in literature.
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• The state space considered is E = {0, 1, . . . , `} whereas the transition matrix P = (pij) is given by

P =




0 1

q1 r1 p1

q2 r2 p2

. . . . . . . . .

qi ri pi

. . . . . . . . .

q`−1 r`−1 p`−1

1 0




, (58)

where pi > 0, qi > 0 and pi + qi + ri = 1 for all i ∈ {1, . . . , `− 1}.
• The linear equation system α> = α>P is of the form

αi =





pi−1αi−1 + riαi + qi+1αi+1 , if 0 < i < `,

q1α1 , if i = 0,

p`−1α`−1 , if i = `.

– One can show that
αi = α0

p1p2 · . . . · pi−1

q1q2 · . . . · qi
,

– where α0 > 0 is defined by the condition
∑`

i=0 αi = 1, i.e.

α0

(
1 +

1
q1

+
p1

q1q2
+ . . . +

p1p2 · . . . · p`−1

q1q2 · . . . · q`

)
= 1

and, consequently,

α0 =

(
1 +

1
q1

+
p1

q1q2
+ . . . +

p1p2 · . . . · p`−1

q1q2 · . . . · q`

)−1

.

• As we assume pi > 0 and qi > 0 for all i ∈ {1, . . . , `− 1}, birth and death processes with two reflecting
barriers are obviously irreducible.

• If the additional condition ri > 0 is satisfied for some i ∈ {1, . . . , `−1}, then birth and death processes
with two reflecting barriers are also aperiodic (and hence ergodic by Theorem 2.9).

2.2.4 Stationary Initial Distributions

• Recall

– If {Xn} is an irreducible and aperiodic Markov chain with (finite) state space E = {1, . . . , `} and
(quasi-positive) transition matrix P = (pij),

– then the limit distribution π = limn→∞αn is the uniquely determined probability solution of the
following matrix equation (see Theorem 2.5):

α> = α>P . (59)

• If the Markov chain {Xn} is not assumed to be irreducible there can be more than one solution for (59).
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– Moreover, if the initial distribution α0 of {Xn} is a solution of (59), then Theorem 2.3 and (59) imply

α>1 = α>0 P = α>0

and thus αn = α0 for all n ≥ 0.

– Due to this invariance property every probability solution α of (59) is called a stationary initial
distribution of {Xn}.

• Conversely, it is possible to show that

– there is a unique probability solution α for the matrix equation (59) if P is irreducible.

– However, this solution α of (59) is not necessarily the limit distribution π = limn→∞αn as π does not
exist if P is not aperiodic.

Theorem 2.10

• Let P = (pij)i,j∈E be an irreducible transition matrix, where E = {1, . . . , `}.

• For arbitrary but fixed i, j ∈ E the entries q
(n)
ij of the stochastic (` × `)–dimensional matrices Qn = (q(n)

ij )
where

Qn =
1
n

(
P + P2 + . . . + Pn

)
(60)

converge to a limit
αj = lim

n→∞
q
(n)
ij > 0 , (61)

which does not depend on i. The vector α = (α1, . . . , α`)> is a solution of the matrix equation (59) and
satisfies

∑`
j=1 αj = 1.

• The distribution α given by (60)–(61) is the only probability solution of (59).

A proof of Theorem 2.10 can be found in Chapter 7 of E. Behrends (2000) Introduction to Markov Chains, Vieweg,
Braunschweig.

Remarks

• Besides the invariance property α0 = α1 = . . ., the Markov chain {Xn} with stationary initial dis-
tribution α0 exhibits still another invariance property for all finite dimensional distributions that is
considerably stronger.

• In this context we consider the following notion of a (strongly) stationary sequence of random variables.

Definition

• Let X0, X1, . . . : Ω → E be an arbitrary sequence of random variables mapping into E = {1, . . . , `}
(which is not necessarily a Markov chain).

• The sequence {Xn} of E-valued random variables is called stationary if for arbitrary k, n ∈ {0, 1, . . .}
and i0, . . . , in ∈ E

P (Xk = i0, Xk+1 = i1, . . . , Xk+n = in) = P (X0 = i0, X1 = i1, . . . , Xn = in) . (62)
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Theorem 2.11

• Let X0, X1, . . . : Ω → E be a Markov chain with state space E = {1, . . . , `}.
• Then {Xn} is a stationary sequence of random variables if and only if the Markov chain {Xn} has a
stationary initial distribution.

Proof

• The necessity of the condition follows immediately

– from Theorem 2.3 and from the definitions for a stationary initial distribution and a stationary
sequence of random variables, respectively,

– as (62) in particular implies that P (X1 = i) = P (X0 = i) for all i ∈ E

– and from Theorem 2.3 we thus obtain α>0 = α>1 = α>0 P, i.e., α0 is a stationary initial distribution.

• Conversely, suppose now that α0 is a stationary initial distribution of the Markov chain {Xn}.
– Then, by the definition (3) of a Markov chain {Xn}, we have

P (Xk = i0, Xk+1 = i1, . . . , Xk+n = in)

=
∑

i′0,...,i′k−1∈E

P (X0 = i′0, . . . , Xk−1 = i′k−1, Xk = i0, Xk+1 = i1, . . . , Xk+n = in)

=
∑

i′0,...,i′k−1∈E

αi′0 pi′0i′1 . . . pi′k−2i′k−1
pi′k−1i0 pi0i1 . . . pin−1in

=
(
α>0 Pk

)
i0

pi0i1 . . . pin−1in

= α0,i0 pi0i1 . . . pin−1in

= P (X0 = i0, X1 = i1, . . . , Xn = in) ,

– where the last but one equality is due to the stationarity of the initial distribution α0 and the last
equality uses again the definition (3) of the Markov chain {Xn}. ¤

Remarks

• For some Markov chains, whose transition matrices exhibit a specific structure, we already calculated
their stationary initial distributions in Sections 2.2.2 and 2.2.3.

• Now we will discuss two additional examples of this type.

– In these examples the state space is infinite requiring an additional condition apart from quasi–
positivity (or irreducibility and aperiodicity) in order to ensure the ergodicity of the Markov chains.

– Namely, a so–called contraction condition is imposed that prevents the probability mass to „migrate
towards infinity”.

Examples

1. Queues
see T. Rolski, H. Schmidli, V. Schmidt, J. Teugels (2002) Stochastic Processes for Insurance and
Finance. J. Wiley & Sons, Chichester, p. 147.

• We consider the example already discussed in Section 2.1.2
– of the recursively defined Markov chain X0, X1, . . . Ω → {0, 1, . . .} with X0 = 0 and

Xn = max{0, Xn−1 + Zn − 1} , ∀n ≥ 1 , (63)



2 MARKOV CHAINS 33

– where the random variables Z, Z1, Z2, . . . : Ω → {0, 1, . . .} are independent and identically
distributed and the transition matrix P = (pij) is given by

pij =





P (Z = j + 1− i) if j + 1 ≥ i > 0 or j > i = 0,

P (Z = 0) + P (Z = 1) if j = i = 0,

0 otherwise.

(64)

• It is not difficult to show that
– the Markov chain {Xn} defined by the recursion formula (63) with its corresponding transition

matrix (64) is irreducible and aperiodic if

P (Z = 0) > 0 , P (Z = 1) > 0 and P (Z = 2) > 0 , (65)

– for all n ≥ 1 the solution of the recursion equation (63) can be written as

Xn = max
{

0, max
k∈{1,...,n}

n∑

r=k

(Zr − 1)
}

d= max
{

0, max
k∈{1,...,n}

k∑
r=1

(Zr − 1)
}

, (66)

– the limit probabilities πi exist for all i ∈ {0, 1, . . .} where

πi = lim
n→∞

P
(
max

{
0, max

k∈{1,...,n}

k∑
r=1

(Zr − 1)
}

= i
)

=





P
(

sup
k∈{1,2,...}

k∑
r=1

(Zr − 1) = i
)

for i > 0,

P
(

sup
k∈{1,2,...}

k∑
r=1

(Zr − 1) ≤ 0
)

for i = 0.

• Furthermore

πi = 0 for all i ∈ {0, 1, . . .} if EZ ≥ 1,

πi > 0 for all i ∈ {0, 1, . . .} and
∑

i≥0 πi = 1 if (65) holds and EZ < 1.

• Thus, for Markov chains with (countably) infinite state space,
– irreducibility and aperiodicity do not always imply ergodicity,
– but, additionally, a certain contraction condition needs to be satisfied,
– where in the present example this condition is the requirement of a negative drift , i.e.,
E (Z − 1) < 0.

• If the conditions (65) are satisfied and EZ < 1, then
– the equation α> = α>P has a uniquely determined probability solution α> = (α0, α1, . . .),
– which coincides with π> = (π0, π1, . . .) (= limn→∞α>n ) but which in general cannot be deter-

mined explicitly.
– However, there is a simple formula for the generating function gπ : (−1, 1) → [0, 1] of π =

(π0, π1, . . .)>, where

gπ(s) =
∞∑

i=0

siπi

(
= E sX∞

)

and

X∞ = max
{

0, sup
k∈{1,2,...}

k∑
r=1

(Zr − 1)
}

. (67)
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– Namely, we have

gπ(s) =
(1− ρ)(1− s)

gZ(s)− s
, ∀ s ∈ (−1, 1) , (68)

where ρ = EZ and gZ(s) = E sZ is the generating function of Z.

• Proof of (68)

– By the definition (67) of X∞, we have X∞
d= max{0, X∞ + (Z − 1)}.

– Furthermore, using the notation x+ = max{0, x}, we obtain

gπ(s) = E sX∞ = E s(X∞+Z−1)+

= E
(
s(X∞+Z−1)+ 1I(X∞ + Z − 1 ≥ 0)

)
+ E

(
s(X∞+Z−1)+ 1I(X∞ + Z − 1 = −1)

)

=
1
s

∞∑

k=1

skP (X∞ + Z = k) + P (X∞ + Z = 0)

= s−1gπ(s)gZ(s) + (s−1 − 1)P (X∞ + Z = 0) ,

i.e.
gπ(s) =

(s− 1)P (X∞ + Z = 0)
s− gZ(s)

. (69)

– As
lim
s↑1

gπ(s) = 1 and lim
s↑1

d

ds
gZ(s) = EZ ,

by l’Hôpital’s rule we can conclude that

1 =
P (X∞ + Z = 0)

1− ρ
.

– Hence (68) is a consequence of (69).

2. Birth and death processes with one reflecting barrier

• We modify the example of the death and birth process discussed in Section 2.2.3 now considering
the infinite state space E = {0, 1, . . .} and the transition matrix

P =




0 1

q1 r1 p1

q2 r2 p2

. . . . . . . . .

qi ri pi

. . . . . . . . .




(70)

where pi > 0, qi > 0 and pi + qi + ri = 1 is assumed for all i ∈ {1, 2, . . .}.
• The linear equation system α> = α>P is of the form

αi =





pi−1αi−1 + riαi + qi+1αi+1 if i > 0,

q1α1 if i = 0.
(71)

• Similarly to the birth and death processes with two reflecting barriers one can show that
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– the equation system (71) has a uniquely determined probability solution α> if

∞∑

j=1

p1p2 · . . . · pj

q1q2 · . . . · qj+1
< ∞ , (72)

– the solution α> = (α0, α1, . . .) of (71) is given by

αi = α0
p1p2 · . . . · pi−1

q1q2 · . . . · qi
, ∀ i > 0 ,

– where α0 > 0 is defined by the condition
∑∞

i=0 αi = 1, i.e.

α0

(
1 +

1
q1

+
∞∑

j=1

p1p2 · . . . · pj

q1q2 · . . . · qj+1

)
= 1

and, consequently,

α0 =

(
1 +

1
q1

+
∞∑

j=1

p1p2 · . . . · pj

q1q2 · . . . · qj+1

)−1

.

• As we assume pi > 0 and qi > 0 for all i ∈ {1, 2, . . .} birth and death processes with one reflecting
barrier are obviously irreducible.

• Furthermore, if ri > 0 for some i ∈ {1, 2 . . . , } then birth and death processes with one reflecting
barrier are also aperiodic (as well as ergodic if the contraction condition (72) is satisfied).

2.2.5 Direct and Iterative Computation Methods

First we show how the stationary initial distribution α0 (= π = limn→∞αn) of the Markov chain {Xn} can be
computed based on methods from linear algebra in case the transition matrix P does not exhibit a particularly
nice structure (but is quasi–positive) and if the number ` of states is reasonably small.

Theorem 2.12

• Let the transition matrix P of the Markov chain {Xn} be quasi-positive.

• Then the matrix I − P + E is invertible and the uniquely determined probability solution π = limn→∞αn

of the matrix equation π> = π>P is given by

π> = e> (I−P + E)−1 , (73)

where e = (1, . . . , 1)> and all entries of the `× ` matrix E are equal to 1.

Proof

• In order to prove that the matrix I−P+E is invertible we show that the only solution of the equation

(I−P + E)x = 0 (74)

is given by x = 0.

– As π satisfies the equation π> = π>P we obtain

π>(I−P) = 0 . (75)
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– Thus (74) implies
0 = π>(I−P + E)x = 0 + π>Ex ,

i.e.
π>Ex = 0 . (76)

• On the other hand, clearly π>E = e> and hence as a consequence of (76)

e>x = 0 and Ex = 0 . (77)

– Taking into account (74) this implies (I−P)x = 0 and, equivalently, Px = x.
– Thus, we also have x = Pn x for all n ≥ 1.

• Furthermore, Theorem 2.4 implies Pn → Π,

– where Π denotes the `× ` matrix consisting of the ` identical (row) vectors π>.
– In other words: For n →∞ we have

x = Pn x → Πx ,

i.e. xi =
∑`

j=1 πjxj for all i = 1, . . . , `.
– As the right hand sides of these equations do not depend on i we can conclude x = c e for some

constant c ∈ R.
– Moreover, as a consequence of (77),

0 = e>x = c e>e = c`

and hence c = 0, i.e. x = 0.

• Thus, the matrix I−P + E is invertible.

• Finally, (75) implies
π>(I−P + E) = π>E = e>

and, equivalently,
π> = e> (I−P + E)−1 . ¤

Remarks

• Given a larger number ` of states the numerical computation of the inverse matrix (I − P + E)−1 in
(73) can cause difficulties.

• In this case it is often more convenient to solve the matrix equation π> = π>P iteratively.

• If the transition matrix P is quasi–positive and hence π` > 0 one can start by setting π̂` = 1 and
solving the modified equation

π̂>(I− P̂) = b> (78)

where P̂ = (pij)i,j=1,...,`−1 and π̂> = (π̂1, . . . , π̂`−1), b> = (p`1, . . . , p`,`−1).

• The probability function π> = (π1, . . . , π`) desired originally is given by

πi = π̂i/c with c = π̂1 + . . . + π̂` ∀ i = 1, . . . , ` .

• When solving the modified matrix equation (78) we use the facts of I − P̂ being invertible and that
there is an expansion of (I − P̂)−1 as a power series, which is a consequence of the following two
lemmata.
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Lemma 2.4

• Let A be an `× ` matrix such that An → 0 for n →∞.

• Then the matrix I−A is invertible and for all n = 1, 2, . . .

I + A + . . . + An−1 = (I−A)−1(I−An) . (79)

Proof

• Obviously for all n = 1, 2, . . .

(I−A)(I + A + . . . + An−1) = I + A + . . . + An−1 −A− . . .−An

= I−An . (80)

• Furthermore, the matrix I−An is invertible for sufficiently large n as by hypothesis An → 0.

• Consequently, for sufficiently large n we have

0 6= det(I−An)

= det
(
(I−A)(I + A + . . . + An−1)

)

= det(I−A) det(I + A + . . . + An−1) .

• This implies det(I−A) 6= 0 and hence I−A is invertible.

• The assertion (79) now follows from (80). ¤

Lemma 2.5

• Let the stochastic matrix P be quasi-positive and let P̂ be the (`− 1)× (`− 1) matrix introduced in (78).

• Then, P̂n → 0 for n →∞, the matrix I− P̂ is invertible, and

(I− P̂)−1 =
∞∑

n=0

P̂n . (81)

Proof

• Because of Lemma 2.4 it suffices to show that P̂n → 0.

• As P is quasi–positive by hypothesis there is a natural number n0 ≥ 1 such that

δ = max
i∈Ê

∑

j∈Ê

p
(n0)
ij < 1 , where Ê = {1, . . . , `− 1}.

• Furthermore,

(P̂n)ij =
∑

i1,...,in−1∈Ê

pii1pi1i2 . . . pin−1j ≤
∑

i1,...,in−1∈E

pii1pi1i2 . . . pin−1j = (Pn)ij

and thus 0 ≤ (P̂n)ij ≤ (Pn)ij = p
(n)
ij < 1 for all n ≥ n0; i, j ∈ Ê.
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• Writing n as n = kn0 + m for some k ≥ 1 and m ∈ {0, . . . , n0 − 1} we obtain

(P̂n)ij =
∑

i1,...,ik∈Ê

(P̂n0)ii1(P̂
n0)i1i2 . . . (P̂n0)ik−1ik

(P̂m)ikj

≤
∑

i1,...,ik∈Ê

p
(n0)
ii1

p
(n0)
i1i2

. . . p
(n0)
ik−1ik

=
∑

i1,...,ik−1∈Ê

p
(n0)
ii1

p
(n0)
i1i2

. . . p
(n0)
ik−2ik−1

( ∑

ik∈Ê

p
(n0)
ik−1ik

)

≤ δ
∑

i1,...,ik−1∈Ê

p
(n0)
ii1

p
(n0)
i1i2

. . . p
(n0)
ik−2ik−1

...
≤ δk .

• This yields limn→∞(P̂n)ij ≤ limk→∞ δk = 0. ¤

Remarks

• As a consequence of Lemma 2.5 the solution π̂> of the equation (78), i.e. π̂>(I− P̂) = b>, is given by

π̂> = b>
∞∑

n=0

P̂n , (82)

thus allowing an iterative solution of π̂> = (π̂1, . . . , π̂`−1).

• Notice that we start the iteration with b>0 = b> as initial value later setting b>n+1 = b>n P̂ for all n ≥ 0.
• Thus, (82) can be rewritten as

π̂> =
∞∑

n=0

b>n , (83)

and
∑n0

n=0 b>n can be used as an approximation for π̂> if n0 ≥ 1 is sufficiently large.

2.3 Reversibility; Estimates for the Rate of Convergence

2.3.1 Definition and Examples

• A stationary Markov chain X0, X1, . . . : Ω → E and its corresponding pair (P,α) consisting of the transition
matrix P and the stationary initial distribution α is called reversible if its finite–dimensional distributions
do not depend on the orientation of the time axis, i.e., if

P (X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = in) = P (Xn = i0, Xn−1 = i1, . . . , X1 = in−1, X0 = in) (84)

for arbitrary n ≥ 0 and i0, . . . , in ∈ E.

• The reversibility of Markov chains is a particularly useful property for the construction of dynamic simulation
algorithms, see Sections 3.3–3.5.

First of all we will derive a simple characterization for the reversibility of stationary (but not necessarily ergodic)
Markov chains.
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Theorem 2.13

• Let X0, X1, . . . : Ω → E be a Markov chain with state space E, transition matrix P = (pij) and stationary
initial distribution α = (α1, α2, . . .)>.

• The Markov chain is reversible if and only if

αi pij = αj pji for arbitrary i, j ∈ E. (85)

Proof

• By definition (84) the condition (85) is clearly necessary as (84) implies in particular

P (X0 = i,X1 = j) = P (X1 = i, X0 = j) for arbitrary i, j ∈ E.

• Therefore

αi pij = P (X0 = i, X1 = j)
= P (X1 = i, X0 = j)
= αj pji .

• Conversely, if (85) holds then the definition (3) of Markov chains yields

P (X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = in)
(3)
= αi0pi0i1pi1i2 . . . pin−1in

(85)
= pi1i0αi1pi1i2 . . . pin−1in

...
(85)
= pi1i0pi2i1 . . . pinin−1αin

= αinpinin−1 . . . pi2i1pi1i0

(3)
= P (X0 = in, X1 = in−1, . . . , Xn−1 = i1, Xn = i0)
= P (Xn = i0, Xn−1 = i1, . . . , X1 = in−1, X0 = in) .

• i.e., (84) holds. ¤

Remarks

• The proof of Theorem 2.13 does not require the stationary Markov chain X0, X1, . . . to be ergodic.

• In other words,

– if the transition matrix P is not irreducible or not aperiodic and hence the limit distribution π
does not exist or is not uniquely determined, respectively,

– then Theorem 2.13 still holds if α is an arbitrary stationary initial distribution.

• As P = (pij) is a stochastic matrix, (85) implies for arbitrary i ∈ E

αi = αi

∑

j∈E

pij =
∑

j∈E

αi pij
(85)
=

∑

j∈E

αj pji .

• In other words: Every initial distribution α satisfying the so-called detailed balance condition (85) is
necessarily a stationary initial distribution, i.e. it satisfies the global balance condition α> = α>P.
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Examples

1. Diffusion Model

• We return to the diffusion model already discussed in Section 2.2.3 with the finite state space
E = {0, 1, . . . , `}, the irreducible (but aperiodic) transition matrix P = (pij) where

pij =





`− i

`
if i < ` and j = i + 1,

i

`
if i > 0 and j = i− 1,

0 else,

(86)

and the (according to Theorem 2.10 uniquely determined but not ergodic) stationary initial dis-
tribution

α> = (α0, . . . , α`) , where αi =
1
2`

(
`

i

)
, ∀ i ∈ {0, 1, . . . , `} . (87)

• One can easily see that
αi pij = αj pji

for arbitrary i, j ∈ E, i.e., the pair (P, α) given by (86) and (87) is reversible.

2. Birth and Death Processes

• For the birth and death processes with two reflecting barriers considered in Section 2.2.3 let the
transition matrix P = (pij) be of such a form that the equation α> = α>P has a uniquely
determined probability solution α> = (α1, α2, . . .).

• For this situation one can show that

αi pij = αj pji ∀ i, j ∈ E .

3. Random Walks on Graphs

• We consider a connected graph G = (V, K)
– with the set V = {v1, . . . , v`} of ` vertices and the set K of edges, each of them connecting

two vertices
– such that for every pair vi, vj ∈ V of vertices there is a path of edges in K connecting vi and

vj .

• We say that two vertices vi and vj are neighbors if there is an edge connecting them, i.e., an edge
having both of them as endpoints, where di denotes the number of neighbors of vi.
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• A random walk on the graph G = (V, K) is a Markov chain X0, X1, . . . : Ω → E with state space
E = {1, . . . , `} and transition matrix P = (pij), where

pij =





1
di

if the vertices vi and vj are neighbors,

0 else.
(88)

• Figure 1 shows such a graph G = (V,K) where the set V = {v1, . . . , v8} contains 8 vertices and
the set K consists of 12 edges. More precisely

K =
{
(v1, v2), (v1, v3), (v2, v3), (v2, v8), (v3, v4), (v3, v7), (v3, v8), (v4, v5), (v4, v6), (v5, v6),

(v6, v7), (v7, v8)
}

.

• One can show that
– the transition matrix given by (88) is irreducible,
– the (according to Theorem 2.10 uniquely determined) stationary initial distribution α is given

by

α =
(d1

d
, . . . ,

d`

d

)>
, where d =

∑̀
i=1

di, (89)

– the pair (P,α) given by (88)–(89) is reversible as for arbitrary i, j ∈ {1, . . . , `}

αi pij =





di

d

1
di

=
1
d

=
dj

d

1
dj

= αj pji if the vertices vi and vj are neighbors,

0 = αj pji else.

• The transition matrix P given by (88) for the numerical example defined in Figure 1 is not only
irreducible but also aperiodic and the stationary initial distribution α (= π = limn→∞αn) is
given by

α =
( 2

24
,

3
24

,
5
24

,
3
24

,
2
24

,
3
24

,
3
24

,
3
24

)>
.

4. Cyclic Random Walks

• The following example of a cyclic random walk is not reversible.
– Let E = {1, 2, 3, 4} and

P =




0 0.75 0 0.25

0.25 0 0.75 0

0 0.25 0 0.75

0.75 0 0.25 0




(90)

– i.e., the transition graph is given by Figure 2.

• The transition matrix (90) is obviously irreducible, but not aperiodic, and the initial distribution
α (which is uniquely determined by Theorem 2.10) is given by α = (1/4, 1/4, 1/4, 1/4)>.

• However,

α1p12 =
1
4

3
4

=
3
16

>
1
16

=
1
4

1
4

= α2p21 .

• It is intuitively plausible that this cyclic random work is not reversible as clockwise steps are much
more likely than counterclockwise movements.
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5. Doubly–Stochastic Transition Matrix

• Finally we consider the following example of a transition matrix P = (pij) and a stationary initial
distribution α = (α1, . . . , α`)> which are not reversible: For a, b > 0 such that b < a and 2a+b = 1
let

P =




a a− b 2b

a + b b a− b

0 a + b a




. (91)

• This transition matrix P is doubly–stochastic, i.e., the transposed matrix P> is also a stochastic
matrix and P is obviously quasi–positive.

• The (uniquely determined) stationary initial distribution π = limn→∞αn is given by

π = (1/3, 1/3, 1/3)> .

• As the transition matrix P in (91) is not symmetric the pair (P, π) is not reversible.

2.3.2 Recursive Construction of the „Past”

• Recall that

– in Section 2.1.3 we showed that a stationary Markov chain X0, X1, . . . with transition matrix P = (pij)
and stationary initial distribution α = (α1, . . . , α`)> can be constructed as follows, where

– we started with a sequence Z0, Z1, . . . of independent and on [0, 1] uniformly distributed random va-
riables and defined

X0 = k if and only if Z0 ∈
(k−1∑

i=1

αi,

k∑

i=1

αi

]
,

for all k = 1, . . . , `, i.e.

X0 =
∑̀

k=1

k1I
(k−1∑

i=1

αi < Z0 ≤
k∑

i=1

αi

)
. (92)
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– The random variables X1, X2, . . . were defined by the recursion formula

Xn = ϕ(Xn−1, Zn) for n = 1, 2, . . . , (93)

where the function ϕ : E × [0, 1] → E was given by

ϕ(i, z) =
∑̀

k=1

k1I
(k−1∑

j=1

pij < z ≤
k∑

j=1

pij

)
. (94)

• If the pair (P,α) is reversible, then the stationary Markov chain X0, X1, . . . constructed in (92)–(94) can
be tracked back into the past in the following way.

– First of all we extend the sequence Z0, Z1, . . . of independent and on [0, 1] uniformly distributed random
variables to a sequence . . . , Z−1, Z0, Z1, . . . of independent and identically random variables that is
unbounded in both directions.

– Note that due to the assumed independence of . . . , Z−1, Z0, Z1, . . . this expansion does not pose any
problems as the underlying probability space can be constructed via an appropriate product space,
product–σ–algebra, and product measure.

– The random variables X−1, X−2, . . . are now constructed recursively setting

Xn−1 = ϕ(Xn, Zn−1) for n = 0,−1, . . . , (95)

where the function ϕ : E × [0, 1] → E is defined in (94).

Theorem 2.14

• Let X0, X1, . . . : Ω → E be a reversible Markov chain with state space E, transition matrix P = (pij) and
stationary initial distribution α = (α1, . . . , α`)>.

• Then the sequence . . . , X−1, X0, X1, . . . : Ω → E defined by (92)–(95) is

– a stationary Markov chain with transition matrix P and the one–dimensional marginal distribution α,

– i.e., for arbitrary k ∈ Z = {. . . ,−1, 0, 1, . . .}, ik, ik+1, . . . , in ∈ E and m ≥ 1

P (Xk = ik, Xk+1 = ik+1, . . . , Xn−1 = in−1, Xn = in)
= P (Xk+m = ik, Xk+m+1 = ik+1, . . . , Xn+m−1 = in−1, Xn+m = in)
= αik

pikik+1 . . . pin−1in .

The proof of Theorem 2.14 is quite similar to the ones given for Theorems 2.11 and 2.13 and is therefore omitted.

2.3.3 Determining the Rate of Convergence under Reversibility

• Let E = {1, . . . , `} and P be a quasi-positive (i.e. an irreducible and aperiodic) transition matrix.

– In case the eigenvalues θ1, . . . , θ` of P are pairwise distinct we showed by the Perron–Frobenius–
Theorem (see Corollary 2.4) that

max
j∈E

|αnj − πj | = O(|θ2|n) , (96)

where π = (π1, . . . , π`)> is the (uniquely determined) solution of the equation π> = π>P.

– If (P, π) is also reversible one can show that the basis |θ2| considered in (96) cannot be improved.
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• Let (P,π) be reversible, where P is an irreducible and aperiodic transition matrix.

– In this case the detailed balance condition (85) implies the symmetry of the matrix DPD−1 where
D = diag(

√
πi).

– As the eigenvalues θ1, . . . , θ` of P coincide with the eigenvalues of DPD−1 we obtain θi ∈ R for all
i ∈ E,

– and the right eigenvectors φ∗1, . . . , φ
∗
` of DPD−1 can be chosen such that all of their components are

real,

– that furthermore φ∗1, . . . , φ
∗
` are also left eigenvectors of DPD−1 and that the rows as well as the lines

of the `× ` matrix (φ∗1, . . . , φ
∗
` ) are orthonormal vectors.

• The spectral representation (30) of A = DPD−1 yields for every n ≥ 1

Pn =
(
D−1AD

)n = D−1AnD =
∑̀

k=1

θn
kD−1φ∗k(φ∗k)>D .

– By plugging in θ1 = 1 and φ∗1 = (
√

π1, . . . ,
√

π`)> we obtain for arbitrary i, j ∈ E

p
(n)
ij = πj +

√
πj

πi

∑̀

k=2

θn
k φ∗kiφ

∗
kj , where φ∗k = (φ∗k1, . . . , φ

∗
k`)

>. (97)

– If n is even or all eigenvalues θ2, . . . , θ` are nonnegative, then

sup
α0

max
j∈E

|αnj − πj | ≥ max
j∈E

∣∣ p
(n)
jj − πj

∣∣ = max
j∈E

∣∣∣
∑̀

k=2

θn
k (φ∗kj)

2
∣∣∣ ≥ θn

2 max
j∈E

(φ∗2j)
2 .

• This shows that |θ2| is the smallest positive number such that the estimate for the rate of convergence
considered in (96) holds uniformly for all initial distributions α0.

Remarks

• Notice that (97) yields the following more precise specification of the convergence estimate (96). We
have

∣∣p(n)
ij − πj

∣∣ ≤ 1√
min
i∈E

πi

∑̀

k=2

|θk|n|φ∗ki||φ∗kj | ≤

∑̀
k=2

|φ∗ki||φ∗kj |
√

min
i∈E

πi

|θ2|n ≤ 1√
min
i∈E

πi

|θ2|n ,

as the column vectors φ∗1, . . . , φ
∗
` and hence also the row vectors (φ1,j , . . . , φ`,j) where j = 1, . . . , ` form

an orthonormal basis in R` and thus by the Cauchy–Schwarz inequality

∑̀

k=2

|φ∗ki||φ∗kj | ≤
(∑̀

k=1

(φ∗ki)
2
)1/2(∑̀

k=1

(φ∗kj)
2
)1/2

= 1 .

• Consequently,

max
j∈E

|αnj − πj | ≤ 1√
min
i∈E

πi

|θ2|n . (98)

• However, the practical benefit of the estimate (98) can be limited for several reasons:

– The factor in front of |θ2|n in (98) does not depend on the choice of the initial distribution α0.
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– The derivation of the estimate (98) requires the Markov chain to be reversible.
– It can be difficult to determine the eigenvalue θ2 if the number of states is large.

• Therefore in Section 2.3.5 we consider an alternative convergence estimate,

– which depends on the initial distribution
– and does not require the reversibility of the Markov chain.
– Furthermore, in Section 2.3.7 we will derive an upper bound for the second largest absolute value
|θ2| among the eigenvalues of a reversible transition matrix.

2.3.4 Multiplicative Reversible Version of the Transition Matrix; Spectral Representation

At first we will discuss a method enabling us to transform (ergodic) transition matrices such that the resulting
matrix is reversible.

• Let P = (pij) be an irreducible and aperiodic (but not necessarily reversible) transition matrix and let
π = (π1, . . . , π`)> be the corresponding stationary initial distribution such that πi > 0 for all i ∈ E.

• Moreover, we consider the stochastic matrix P̃ = (p̃ij) where

p̃ij =
πjpji

πi
, (99)

i.e., P̃ = D−2P>D2 where D = diag(
√

πi) is also an irreducible and aperiodic transition matrix having the
same stationary initial distribution π = (π1, . . . , π`)>.

• The pair (M, π), where the stochastic matrix M = (mij) is given by M = PP̃, is reversible as we observe

πimij = πi

∑̀

k=1

pik
πjpjk

πk
= πj

∑̀

k=1

pjk
πipik

πk
= πjmji .

Definition The matrix M = PP̃ is called the multiplicative reversible version of the transition matrix P.

Remarks

• All eigenvalues θM,1, . . . , θM,` of M are real and in [0, 1] because M has the same eigenvalues as the
symmetric and nonnegative definite matrix M∗ = DMD−1, where

m∗
ij =

√
πi√
πj

mij =
√

πi√
πj

∑̀

k=1

pik
πjpjk

πk
=

∑̀

k=1

(√πi√
πk

pik

)(√πj√
πk

pjk

)

and hence
M∗ = DMD−1 =

(
DPD−1

)(
DPD−1

)>
.

• As a consequence, the symmetric matrix M∗ is diagonalizable and the right and left eigenvectors φ∗i
and ψ∗

i can be chosen such that

– φ∗i = ψ∗
i for all i ∈ E

– the vectors φ∗1, . . . , φ
∗
` are an orthonormal basis in R`.
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• Then φ1, . . . , φ` and ψ1, . . . , ψ`, where

φi = D−1φ∗i and ψi = Dψ∗
i , ∀ i ∈ E , (100)

are right and left eigenvectors of M, respectively, as for every i ∈ E

Mφi = MD−1φ∗i = D−1DMD−1φ∗i = D−1θM,iφ
∗
i = θM,iφi

and
ψ>

i M =
(
Dψ∗

i

)>
M = (ψ∗

i )
>DMD−1D = θM,i(ψ∗

i )
>D = θM,iψ

>
i .

This yields the following spectral representation of the multiplicative reversible version M obtained from the
transition matrix P; see also the spectral representation given by formula (30).

Theorem 2.15 For arbitrary n ∈ N and x ∈ R`

Mnx =
∑̀

i=1

θn
M,iφiψ

>
i x . (101)

where φi and ψi are the right and left eigenvectors of M defined in (100).

Proof

• As the (right) eigenvectors φ1, . . . , φ` of M defined in (100) are also a basis in R`, for every x ∈ R`

there is a (uniquely determined) vector
(
x

(r)
1 , . . . , x

(r)
`

)> ∈ R` such that

x =
∑̀

i=1

x
(r)
i φi .

• Furthermore, we have Mφi = θM,iφi and hence Mnφi = θn
M,iφi for arbitrary i ∈ E and n ∈ N.

• Thus we obtain

Mnx =
∑̀

i=1

x
(r)
i Mnφi =

∑̀

i=1

x
(r)
i θn

M,iφi .

• On the other hand, (100) implies for arbitrary i ∈ E and x ∈ R`

ψ>
i x =

(
Dψ∗

i

)>
x =

(
ψ∗

i

)> ∑̀

j=1

x
(r)
j Dφj =

(
ψ∗

i

)>∑̀

j=1

x
(r)
j φ∗j =

∑̀

j=1

x
(r)
j

(
ψ∗

i

)>
φ∗j = x

(r)
i , (102)

where the last equality takes into account that ψ∗
i = φ∗i for all i ∈ E and that the eigenvectors

φ∗1, . . . , φ
∗
` von M∗ are an orthonormal basis of R`.

• This proves the spectral representation (101). ¤

2.3.5 Alternative Estimate for the Rate of Convergence; χ2-Contrast

Based on the multiplicative reversible version M = PP̃ of the ergodic (but not necessarily reversible) transition
matrix P we will now deduce an alternative estimate for the rate of convergence α>Pn → π> for n → ∞; see
Theorem 2.16.

The following abbreviations and lemmata will turn out to be useful in the proof of Theorem 2.16.
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• Let L(E) denote the family of all functions

– defined on E and mapping into the real line R
– and let π = (π1, . . . , π`)> be an arbitrary positive probability function from L(E), i.e. πi > 0 for all

i ∈ E and
∑`

i=1 πi = 1.

• For arbitrary vectors x = (x1, . . . , x`)> ∈ L(E) and y = (y1, . . . , y`)> ∈ L(E) we denote by (x,y)π the
inner product

(x,y)π =
∑̀

i=1

xiyiπi (103)

and by ‖x‖π the induced norm, i.e.,

‖x‖π =

√√√√∑̀

i=1

x2
i πi .

• The terms (π–weighted) mean (x)π and variance Var π(x) of x ∈ L(E) will be used to denote the quantities

(x)π =
∑̀

i=1

xiπi

(
= (x, e)π

)
(104)

and
Var π(x) = ‖x‖2π − (x)2π , (105)

respectively.

Lemma 2.6 For all x ∈ L(E), it holds that

Var π(x) = Var π(P̃x) +
(
(I−M)x,x

)
π

. (106)

Proof

• Introducing the notation x̂ = x− (x)πe we obtain that (x̂)π = 0 and

(P̃x̂)π =
∑̀

i=1

(∑̀

j=1

p̃ij

(
xj − (x)π

))
πi =

∑̀

i,j=1

p̃ijxjπi − (x)π =
∑̀

i,j=1

πjpjixj − (x)π = 0 ,

where the last but one equality follows from the definition (99) of the matrix P̃.
• This implies

‖x̂‖2π = Var π(x̂) = Var π(x) and ‖P̃x̂‖2π = Var π(P̃x̂) = Var π(P̃x) . (107)

• On the other hand

‖P̃x̂‖2π =
(
P̃x̂, P̃x̂

)
π

=
∑̀

i=1

(∑̀

k=1

p̃ikx̂k

)2

πi

=
∑̀

i=1

∑̀

j,k=1

p̃ij p̃ik︸︷︷︸
=

πkpki
πi

x̂jx̂kπi

=
∑̀

k=1

∑̀

j=1

(PP̃)kjx̂j

︸ ︷︷ ︸
=(PP̃x)k

x̂kπk

=
(
PP̃x̂, x̂

)
π

=
(
Mx̂, x̂

)
π
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and thus
‖x̂‖2π − ‖P̃x̂‖2π = ‖x̂‖2π −

(
Mx̂, x̂

)
π

=
(
(I−M)x̂, x̂

)
π

=
(
(I−M)x,x

)
π

,

as M is a stochastic matrix such that π>M = π> and therefore (I−M)e = 0 and

(
(I−M)x, e

)
π

=
∑̀

i,j=1

(
δj(i)−mij

)
xjπi =

∑̀

i=1

xiπi −
∑̀

j=1

xj

∑̀

i=1

πimij

︸ ︷︷ ︸
=πj

= 0 .

• Taking into account (107) this shows the validity of (106). ¤

We introduce the following notions.

• Let E = {1, . . . , `}, let α = (α1, . . . , α`)> and β = (β1, . . . , β`)> be arbitrary probability distributions on
E, and let

dTV(α, β) =
1
2

∑

i∈E

|αi − βi| , (108)

i.e., the distance dTV(α, β) between α and β is expressed via the total variation

|α− β| =
∑

i∈E

|αi − βi| (109)

of the „signed measure” α− β.

• If βi > 0 for all i ∈ E we also consider the term

χ2(α;β) =
∑

i∈E

(αi − βi)2

βi
(110)

which is called the χ2–contrast of α with respect to β.

The distance dTV(α, β) between α and β can be estimated via the χ2–contrast χ2(α; β) of α with respect to β
as follows.

Lemma 2.7 If βi > 0 for all i ∈ E, then

d2
TV(α, β) ≤ 1

4
χ2(α;β) . (111)

Proof

• Taking into account that
∑

i∈E βi = 1, an application of the Cauchy–Schwarz inequality yields

(∑

i∈E

|αi − βi|
)2

=
(∑

i∈E

1√
βi

∣∣αi − βi

∣∣ √
βi

)2

≤
∑

i∈E

1
βi

(αi − βi)2 .

• This implies the assertion of the lemma. ¤

The rate of convergence α>Pn → π> for n →∞ can now be estimated based on
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• the second largest eigenvalue θM,2 of the multiplicative reversible version M = PP̃ of the (ergodic) transition
matrix P

• and the χ2 contrast χ2(α; π) of the initial distribution α with respect to the stationary limit distribution
π.

Theorem 2.16 For any initial distribution α and for all n ∈ N,

d2
TV

((
α>Pn

)>
, π

) ≤ χ2(α;π)
4

θn
M,2 . (112)

Proof

• Let ρn = (ρn1, . . . , ρn`)> where ρni = (α>Pn)i/πi.

– Then for all i ∈ E
∑̀

k=1

πkpki

πi

(α>Pn)k

πk
=

(α>Pn+1)i

πi

and thus
P̃ρn = ρn+1 .

– Moreover, by definition (110) of the χ2-contrast χ2
n = χ2

((
α>Pn

)>;π
)
of

(
α>Pn

)> with respect
to π we obtain

χ2
n =

∑̀

i=1

(
(α>Pn)i − πi

)2

πi
=

∑̀

i=1

( (α>Pn)i

πi
− 1

)2

πi

=
∑̀

i=1

(
ρni − (ρn)π

)2
πi = Var π(ρn) ,

i.e.,
χ2

n = Var π(ρn) . (113)

– Now the identity (106) derived in Lemma 2.6 yields

χ2
n = χ2

n+1 +
(
(I−M)ρn, ρn

)
π

. (114)

• On the other hand the spectral representation (101) of M derived in Theorem 2.15 implies

(
(I−M)ρn, ρn

)
π

= (ρn, ρn)π − (Mρn, ρn)π

= (ρn, ρn)π −
∑̀

i=1

θM,i(φiψ
>
i ρn, ρn)π

= (ρn, ρn)π − 1−
∑̀

i=2

θM,i(φiψ
>
i ρn, ρn)π ,

as θM,1 = 1, φ1 = e and ψ>
1 = π> and therefore

(
φ1ψ

>
1 ρn, ρn)π =

(
Πρn, ρn

)
π

= (e, ρn)π = (ρn)π = 1
(
= (ρn)2π

)
.

– As the eigenvectors φ1, . . . , φ` von M defined in (100) are a basis of R` there is a (uniquely
determined) vector

(
ρ
(r)
n1 , . . . , ρ

(r)
n`

)> ∈ R`, such that ρn =
∑`

i=1 ρ
(r)
ni φi.

– Moreover, in (102) we have shown that ψ>
i ρn = ρ

(r)
ni . As ψ>

1 = π> we can conclude ψ>
1 ρn = 1.
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– Furthermore, as φi = D−1φ∗i and ψi = Dφ∗i for all i ∈ E we obtain

∑̀

i=2

θM,i(φiψ
>
i ρn, ρn)π =

∑̀

i=2

∑̀

j=1

θM,iρ
(r)
ni ρ

(r)
nj (φi, φj)π

=
∑̀

i=2

∑̀

j=1

θM,iρ
(r)
ni ρ

(r)
nj

(
D−1φ∗i , D−1φ∗j

)
π︸ ︷︷ ︸

=δi(j)

=
∑̀

i=2

θM,i

(
ρ
(r)
ni

)2

≤ θM,2

∑̀

i=2

(
ρ
(r)
ni

)2 = θM,2

(∑̀

i=1

(
ρ
(r)
ni

)2 − (
ρ
(r)
n1︸︷︷︸

=ψ>1 ρn=1

)2
)

= θM,2

(∑̀

i=1

∑̀

j=1

ρ
(r)
ni ρ

(r)
nj (φi, φj)π − 1

)
= θM,2

(
(ρn, ρn)π − 1

)

︸ ︷︷ ︸
=Var π(ρn)

.

• Summarizing our results we have seen that
(
(I−M)ρn, ρn

)
π
≥ (

1− θM,2

)
Var π(ρn) .

– Because of (113) and (114) this implies

χ2
n ≥ χ2

n+1 +
(
1− θM,2

)
χ2

n and χ2
n+1 ≤ θM,2 χ2

n .

– Thus, we have shown that χ2
n ≤ θn

M,2 χ2
0 for all n ≥ 1 and, consequently, the assertion follows from

Lemma 2.7. ¤

2.3.6 Dirichlet–Forms and Rayleigh–Theorem

• Let E = {1, . . . , `} be an arbitrary finite set and let P be an (` × `)–dimensional transition matrix, which
is irreducible and aperiodic (i.e. quasi–positive) as well as reversible.

• Recall that

– all eigenvalues of P are real (see Section 2.3.3), and
– by the Perron–Frobenius theorem (see Theorem 2.6 and Corollary 2.3) the eigenvalues of P are in the

interval (−1, 1], where
– the largest eigenvalue is 1 and the absolute values of the other eigenvalues are (strictly) less than 1.

Remarks

• Instead of ordering the eigenvalues according to their absolute values (like above) we will now order
them with respect to their own size and denote them by λ1, . . . , λ` such that

1 = λ1 > λ2 ≥ . . . ≥ λ` > −1 .

• Moreover, for the multiplicative reversible version M = PP̃ of the transition matrix P that was
introduced in Section 2.3.4 we have

1 = λ1 > λ2 ≥ . . . ≥ λ` > 0 ,

i.e., for the eigenvalues of the matrix M the notations θ1, . . . , θ` and λ1, . . . , λ` coincide.
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• For large `,

– the calculation of the second largest absolute value |θ2| = max{λ2, |λ`|} among the eigenvalues can
cause difficulties.

– Therefore, in Section 2.3.7 we will derive bounds for λ2 and λ`, whose calculation is very simple.

• These bounds are particularly useful if

– the stationary (limit) distribution is at least in principle known,
– but in spite of this the corresponding Markov chain is started with a non-stationary initial distri-

bution α; for example it could be started in a predetermined state i ∈ E, i.e. αi = 1 and αj = 0
for j 6= i.

In order to derive an upper bound for λ2, we need a representation formula for λ2,

• that is usually called the Rayleigh–theorem in literature

• and that is expressed based on the so–called Dirichlet–form

D(P,π)(x,x) =
(
(I−P)x,x

)
π

(115)

of the reversible pair (P, π) , where (y,x)π denotes the inner product of y and x with respect to π; see
(103).

First of all we will show the following lemma.

Lemma 2.8 For all x = (x1, . . . , x`)> ∈ R`,

D(P,π)(x,x) =
1
2

∑

i,j∈E

πipij(xj − xi)2 . (116)

Proof From the definition (103) of the inner product and the reversibility of the pair (P, π) we obtain

2
(
(I−P)x,x

)
π

= 2
∑

i,j∈E

πipijxi(xi − xj)

i→j
=

∑

i,j∈E

πipijxi(xi − xj) +
∑

i,j∈E

πjpjixj(xj − xi)

(85)
=

∑

i,j∈E

πipijxi(xi − xj) +
∑

i,j∈E

πipijxj(xj − xi)

=
∑

i,j∈E

πipij(xj − xi)2 .
¤

We will now prove the Rayleigh–theorem that yields a representation formula for the second largest eigenvalue
λ2 of the reversible pair (P, π).

Theorem 2.17

• Let R`
6= =

{
x = (x1, . . . , x`)> ∈ R` : xi 6= xj for some pair i, j ∈ E

}
denote the set of all vectors in R`

whose components are not all equal.



2 MARKOV CHAINS 52

• For the eigenvalue λ2 of the reversible pair (P, π) the following holds

λ2 = 1− inf
x∈R`

6=

D(P,π)(x,x)
Var π(x)

, (117)

where Var π(x) denotes the variance of the components of x with respect to π defined in (105).

Proof

• Lemma 2.8 implies for arbitrary c ∈ R and x ∈ R`

D(P,π)(x,x) = D(P,π)(x− c e,x− c e) .

– Thus, the assertion (117) is equivalent to

1− λ2 = inf
x∈R`

0

D(P,π)(x,x)
Var π(x)

, (118)

where R`
0 =

{
x = (x1, . . . , x`)> ∈ R` : (x)π = 0, x 6= 0

}
.

– Let now the left eigenvectors φ1, . . . , φ` of P be chosen such that they are an orthonormal basis of
R` with respect to the inner product (· , ·)π, i.e. (φi,φj)π = 1 if i = j and (φi, φj)π = 0 if i 6= j
where φ1 = e.

– First of all, the eigenvectors φ∗1, . . . , φ
∗
` of the symmetric vectors DPD−1 are chosen such that

they are orthonormal with respect to the ordinary Euclidian inner product. Then we can define
φi = D−1φ∗i for all i ∈ E (see also Section 2.3.3).

– For every x ∈ R` there is now a uniquely determined vector
(
x

(r)
1 , . . . , x

(r)
`

)> ∈ R` such that

x =
∑̀

i=1

x
(r)
i φi .

– As λ1 = 1 we obtain

(I−P)x =
∑̀

i=2

(1− λi)x
(r)
i φi and hence D(P,π)(x,x) =

∑̀

i=2

(1− λi)
(
x

(r)
i

)2
.

• On the other hand as φ1 = e and the eigenvectors φ1, . . . , φ` are orthonormal with respect to the
inner product (· , ·)π we can conclude that

(x)π = (x, e)π = x
(r)
1 and Var π(x) =

∑̀

i=2

(
x

(r)
i

)2
, if (x)π = 0 .

– Thus for every x ∈ R`
0

D(P,π)(x,x)
Var π(x)

=

∑̀
i=2

(1− λi)
(
x

(r)
i

)2

∑̀
i=2

(
x

(r)
i

)2

= (1− λ2) +

∑̀
i=2

(1− λi)
(
x

(r)
i

)2 − (1− λ2)
∑̀
i=2

(
x

(r)
i

)2

∑̀
i=2

(
x

(r)
i

)2

= (1− λ2) +

∑̀
i=3

(λ2 − λi)
(
x

(r)
i

)2

∑̀
i=2

(
x

(r)
i

)2
≥ 1− λ2 .
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– This shows that (118) holds as the last expression for the quotient D(P,π)(x,x)/Var π(x) implies

D(P,π)(x,x)
Var π(x)

= 1− λ2 ,

for x = φ2 where φ2 ∈ R`
0 as φ1 = e and φ2 are linearly independent. ¤

2.3.7 Bounds for the Eigenvalues λ2 and λ`

In order to derive bounds for the eigenvalues λ2 and λ` the following notions and notations are necessary.

• For each pair i, j ∈ E such that i 6= j and pij > 0 we denote

– by e = eij the corresponding directed edge of the transition graph

– by e− = i and e+ = j the starting and target vertices of e, respectively.

– Let E be the set of all directed edges e = eij such that i 6= j and pij > 0.

• Furthermore, for each i, j ∈ E such that i 6= j we consider exactly one path γij from i to j,

– which is given by a vector γij = (i0, i1, . . . , im−1, im) of states such that i = i0, j = im and

pii1pi1i2 . . . pim−1j > 0 ,

such that none of the edges eik−1ik
is contained more than once (and m is the smallest possible number).

– Let Γ be the set of all these paths and for each path γij ∈ Γ define

|γij | =
∑

e∈γij

1
Q(e)

=
1

πipii1

+
1

πi1pi1i2

+ . . . +
1

πim−1pim−1j
, (119)

where Q(eik−1ik
) = πik−1pik−1ik

.

– The so–called Poincaré–coefficient κ of the set of paths Γ is then defined as

κ = κ(Γ) = max
e∈E

∑
γij3e

|γij |πiπj . (120)

• Finally we consider

– the extended set of edges E ′ ⊃ E also containing the edges of the type i → i in case pii > 0.

– for all i ∈ E exactly one path γi from i to i which contains an odd number of edges in E ′ such that no
edge occurs more than once.

– Let Γ′ be the set of all these paths and for every path
γi ∈ Γ′ let

|γi| =
∑
e∈γi

1
Q(e)

. (121)

– The coefficient ζ of the path set Γ′ is then defined as

ζ = ζ(Γ′) = max
e∈E′

∑
γi3e

|γi|πi . (122)
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Theorem 2.18 For the eigenvalues λ2 and λ` of P the following inequalities hold

1− 1
κ
≥ λ2 ≥ λ` ≥ −1 +

2
ζ

(123)

and hence
max{λ2, |λ`|} ≤ 1−min

{ 1
κ

,
2
ζ

}
. (124)

Proof

• First we will show that λ2 ≤ 1− κ−1.

– Because of Theorem 2.17 it suffices to show that

Var π(x) ≤ κ D(P,π)(x,x) , ∀x ∈ R` . (125)

– Using the notation introduced in (119) we obtain

Var π(x) =
1
2

(
2‖x‖2π − 2(x)2π

)

=
1
2

(∑

i∈E

x2
i πi +

∑

j∈E

x2
jπj − 2

∑

i,j∈E

xixjπiπj

)

=
1
2

∑

i,j∈E

(xi − xj)2πiπj

=
1
2

∑

i,j∈E

( ∑
e∈γij

1√
Q(e)

√
Q(e)(xe− − xe+)

)2

πiπj .

– An application of the Cauchy–Schwarz inequality yields

Var π(x) ≤ 1
2

∑

i,j∈E

(
|γij |

∑
e∈γij

Q(e)(xe− − xe+)2
)
πiπj

=
1
2

∑

e∈E

(
Q(e)(xe− − xe+)2

( ∑
γij3 e

|γij | πiπj

))

≤ κ D(P,π)(x,x) ,

where the last inequality follows from Lemma 2.8 and by definition of the Poincaré–coefficient; see
(120). This shows (125).

• In order to finish the proof it is left to show that λ` ≥ −1 + 2ζ−1.

– For this purpose we exploit the following equation: For all x = (x1, . . . , x`)> ∈ R`

1
2

∑

i,j∈E

(xi + xj)2πipij = (Px,x)π + ‖x‖2π , (126)

as the reversibility of (P, π) implies

1
2

∑

i,j∈E

(xi + xj)2πipij =
1
2

∑

i,j∈E

x2
i πipij

︸ ︷︷ ︸
=

∑
i∈E

x2
i πi

+
∑

i,j∈E

xixjπipij +
1
2

∑

i,j∈E

x2
j πipij︸ ︷︷ ︸

(85)
= πjpji︸ ︷︷ ︸

=
∑

j∈E

x2
jπj

= ‖x‖2π + (Px,x)π .
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– Let now γi = (i0, i1, . . . , i2m, i2m+1) where i = i0 = i2m+1 is a path from i to i, containing an odd
number of edges such that every edge does not occur more than once.

– Then

xi =
1
2

(
(xi + xi1)− (xi1 + xi2) + . . . + (xi2m + xi)

)

=
1
2

∑
e∈γi

(−1)n(e)(xe+ + xe−) ,

where n(e) = k if e = (ik, ik+1) ∈ γi.
– Similarly to the first part of the proof, the Cauchy–Schwarz inequality implies that for all x =

(x1, . . . , x`)> ∈ R`

‖x‖2π =
∑

i∈E

πi

4

(∑
e∈γi

1√
Q(e)

√
Q(e)(−1)n(e)(xe+ + xe−)

)2

≤
∑

i∈E

(πi

4
|γi|

∑
e∈γi

(xe+ + xe−)2Q(e)
)

=
1
4

∑

e∈E′

(
(xe+ + xe−)2Q(e)

∑
γi3 e

|γi|πi

)

≤ ζ

4

∑

e∈E′
(xe+ + xe−)2Q(e) .

– From (126) we can now conclude that

‖x‖2π ≤
ζ

2

(
(Px,x)π + ‖x‖2π

)
.

– For x = φ` we obtain in particular that

1 ≤ ζ

2
(λ` + 1) and λ` ≥ −1 +

2
ζ

. ¤

Example Random Walk on a Graph

• We return to the example of a random walk on a graph that has been already discussed in Section 2.3.1.

– Let G = (V, K) be a connected graph with vertices V = {v1, . . . , v`} and edges K where each edge
connects two vertices,

– such that for each pair vi, vj ∈ V of vertices there is a „path” of edges in K connecting vi and vj .

• A random walk on the graph G = (V,K) is a Markov chain X0, X1, . . . : Ω → E

– with state space E = {1, . . . , `} and transition matrix P = (pij) where

pij =





1
di

if the vertices vi and vj are neighbors,

0 else.
(127)

– Recall that two vertices vi and vj are called neighbors if they are endpoints of the same edge
where, for each vertex vi, di denotes its number of neighbors.

• We already showed that

– the transition matrix P given in (127) is always irreducible (where we now additionally assume P
to be aperiodic),
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– the uniquely determined initial distribution π is given by

π =
(d1

d
, . . . ,

d`

d

)>
, where d =

∑̀
i=1

di, (128)

– the pair (P,π) given by (127)–(128) is reversible.
• For the Poincaré–coefficient κ introduced in (120) we obtain

κ = κ(Γ) = max
e∈E

∑
γij3e

|γij |πiπj ,

where
|γij | =

∑
e∈γij

1
Q(e)

= d∆(γij)

and ∆(γij) = #{e : e ∈ γij} denotes the number of edges (i.e. the length) of the path γij .
• Taking into account (127)–(128), this implies

κ(Γ) ≤ δ2∆β

d
, (129)

where d/2 denotes the total number of edges,
– δ = maxi∈E di is the maximum number of edges originating at a vertex,
– ∆ = maxγ∈Γ ∆(γ) denotes the maximal path length and
– β = maxe∈E #{γ ∈ Γ : γ 3 e} is the so–called Bottleneck–coefficient, i.e. the maximal number of

paths containing a single edge.
• From (123) and (129) we obtain the following estimate

λ2 ≤ 1− 1
κ
≤ 1− d

δ2∆β
(130)

for the second largest eigenvalue λ2 of P.
• In a similar way one obtains the upper bound

ζ = ζ(Γ′) = max
e∈E′

∑
γi3e

|γi|πi ≤ δ ∆′ β′ ,

where
|γi| =

∑
e∈γi

1
Q(e)

= d∆(γi) , ∆′ = max
γ∈Γ′

∆(γ) , β′ = max
e∈E′

#{γ ∈ Γ′ : γ 3 e}

and hence
λ` ≥ −1 +

2
ζ
≥ −1 +

2
δ ∆′ β′

. (131)

• Remarks.
– For the numerical example from Section 2.3.1
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the following holds:

d = 24, δ = 5, ∆ = 3, β = 7 and ∆′ = 3, β′ = 3.

– The inequalities (130) and (131) thus imply

λ2 ≤ 1− 24
25 · 3 · 7 <

24
25

and λ8 > −1 +
2

5 · 3 · 3 = − 43
45

,

and hence
max{λ2, |λ8|} <

24
25

.
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3 Monte–Carlo Simulation

• Besides the traditional ways of data acquisition in laboratory experiments and field tests the generation of
so-called synthetic data via computer simulation has gained increasing importance.

• There is a variety of reasons for the increased benefit drawn from computer simulation used to investigate
a wide range of issues, objects and processes:

– The most prominent reason is the rapidly growing performance of modern computer systems which has
extended our computational capabilities in a way that would not have been imaginable even a short
time ago.

– Consequently, computer-based data generation is often considerably cheaper and less time-consuming
than traditional data acquisition in laboratory experiments and field tests.

– Moreover, computer experiments can be repeated under constant conditions as frequently as necessary
whereas in traditional scientific experiments the investigated object is often damaged or even destroyed.

• A further reason for the value of computer simulations is the fact

– that volume and structure of the analyzed data is often very complex

– and that in this case data processing and evaluation is typically based on mathematical models whose
characteristics cannot be (completely) described by analytical formulae.

– Thus, computer simulations of the considered models present a valuable alternative tool for analysis.

• Computer experiments for the investigation of the issues, objects and processes of scientific interest are
based on stochastic simulation algorithms. In this context one also uses the term Monte–Carlo simulation
summarizing a huge variety of simulation algorithms.

1. Random number generators are the basis for Monte–Carlo simulation of single features, quantities and
variables.

– By these algorithms realizations of random variables can be generated via the computer. Those
are called pseudo–random numbers.

– The simulation of random variables is based on so–called standard random number generators
providing realizations of random variables that are uniformly distributed on the unit interval
(0, 1].

– Certain transformation and rejection methods can be applied to these standard pseudo–random
numbers in order to generate pseudo–random numbers for other (more complex) random variables
having e.g. binomial, Poisson or normal distributions.

2. Computer experiments designed to investigate high–dimensional random vectors or the evolution of
certain objects in time are based on more sophisticated algorithms from so–called dynamic Monte–
Carlo simulation.

– In this context Markov–Chain–Monte–Carlo–Simulation (MCMC simulation) is a construction
principle for algorithms that are particularly appropriate to simulate time stationary equilibria of
objects or processes.

– Another example for the application of MCMC simulation is statistical image analysis.
– An active field of research that resulted in numerous publications during the last years are so-called

coupling algorithms for perfect MCMC simulation.
– These coupling algorithms enable us to simulate time–stationary equilibria of objects and processes

in a way that does not only allow approximations but simulations that are „perfect” in a certain
sense.
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3.1 Generation of Pseudo-Random Numbers

3.1.1 Simple Applications; Monte–Carlo Estimators

First we recall two simple problems that can be solved by means of Monte–Carlo simulation and have already
been discussed in the course „Elementare Wahrscheinlichkeitsrechnung und Statistik”.

1. Algorithm to determine the number π

• A simple computer algorithm for the Monte–Carlo simulation of π is the following improved version of
Buffon’s needle experiment; see Sections 2.5 and 5.2.3 of the course „Elementare Wahrscheinlichkeits-
rechnung und Statistik”.

• This algorithm is based on the following geometrical facts.

– We consider the square
B = (−1, 1]× (−1, 1] ⊂ R2 ,

– the circle C inscribed into B, where

C = {(x, y) : (x, y) ∈ B, x2 + y2 < 1} ,

– and arbitrarily toss a point into the set B.

• Translated into the language of stochastics this means:

– We consider two independent random variables S and T that are uniformly distributed on the
interval (−1, 1] and

– determine the probability of the event

A = {(S, T ) ∈ C} = {S2 + T 2 < 1} ,

i.e. that the „random point” (S, T ) is in C ⊂ B.
– Then

P (A) = P (S2 + T 2 < 1) =
|C|
|B| =

π

4
,

where |B| and |C| denote the area of B and C, respectively.

• Similarly to Buffon’s needle experiment the equation P (A) = π/4 yields a

– method for the statistical estimation of π,
– which is based on the strong law of large numbers (SLLN) and can be easily implemented.

• Let (S1, T1), . . . , (Sn, Tn) be independent and identically distributed random vectors,

– whose distribution coincides with the one of (S, T )
– and which are regarded as a stochastic model for n (independent) experiments.
– Then X1, X2, . . . , Xn where

Xi =





1 if S2
i + T 2

i < 1,

0 else

are independent and identically distributed random variables with expectation EXi = π/4.

• Furthermore, the SLLN (see Theorem WR-5.15) implies

– that the arithmetic mean

Yn = n−1
n∑

i=1

Xi

converges to π/4 almost surely.
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– Thus, Yn is an unbiased and (strongly) consistent estimator for π/4,
– i.e., the probability of 4Yn to be a good approximation for π is very high if n is large.

• For the implementation of this simulation algorithm one can proceed as follows

– Use a random number generator to generate 2n pseudo–random numbers u1, . . . , u2n that are
realizations of random variables being uniformly distributed on (0, 1].

– Put si = 2ui − 1 and ti = 2un+i − 1 for i = 1, . . . , n.
– Define

xi =





1 if s2
i + t2i < 1,

0 else

– Compute 4(x1 + . . . + xn)/n.

2. Monte Carlo Integration

• Let ϕ : [0, 1] → [0, 1] be a continuous function.

– Our goal is to find an estimator for the value of the integral
∫ 1

0
ϕ(x) dx that can be determined by

Monte–Carlo simulation.
– We consider the following stochastic model.

• Let the random variables X1, X2, . . . : Ω → R be independent and uniformly distributed on (0, 1], with
probability density fX given by

fX(x) =





1 if x ∈ [0, 1],

0 else.

– Let Zk = ϕ(Xk) for all k = 1, 2, . . ..
– By the transformation theorem for independent and identically distributed random variables (see

Theorem WR-3.18) the random variables Z1, Z2, . . . are independent and identically distributed
– with

EZ1 =
∫ 1

0

ϕ(x)fX(x) dx =
∫ 1

0

ϕ(x) dx .

• Furthermore the SSLN (see Theorem WR-5.15) implies that for n →∞

1
n

n∑

k=1

Zk
a.s.−→

∫ 1

0

ϕ(x) dx .

– Hence 1
n

∑n
k=1 Zk is an unbiased and (strongly) consistent estimator for

∫ 1

0
ϕ(x) dx,

– i.e., the probability for 1
n

∑n
k=1 Zk to be a good approximation of the integral

∫ 1

0
ϕ(x) dx is high

for sufficiently large n.

• For the implementation of this simulation algorithm one can proceed similarly to Example 1:

– Use a random number generator to generate n pseudo-random numbers x1, . . . , xn that are reali-
zations of random variables being uniformly distributed in (0, 1].

– Define zk = ϕ(xk) for k = 1, . . . , n.
– Compute 1

n

∑n
k=1 zk.
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3.1.2 Linear Congruential Generators

• Most simulation algorithms are based on standard random number generators,

– whose goal is to generate sequences u1, . . . , un of numbers in the unit interval (0, 1]. These are the
so-called standard pseudo–random numbers,

– which can be regarded as realizations of independent and on (0, 1] uniformly distributed random
variables U1, . . . , Un.

• A commonly established procedure to generate standard pseudo-random numbers is the following linear
congruential method,

– where first of all the numbers z1, . . . , zn are generated according to a recursion formula

zk = (azk−1 + c) mod (m) , ∀ k = 1, . . . , n (1)

.
– The initial value z0 ∈ {0, 1, . . . ,m − 1} the algorithm is starting from is called germ of the linear

congruential generator.
– m ∈ N, a ∈ {0, 1, . . . , m − 1} and c ∈ {0, 1, . . . , m − 1} are further parameters called modulus, factor

and increment of the congruential generator.
– The scaling

uk =
zk

m
(2)

yields the standard pseudo–random numbers u1, . . . , un.

As a next step we will solve the recursion equation (1), i.e., we will show how the number zk that has been
recursively defined in (1) can be expressed directly by the initial value z0 and the parameters m, a and c.

Theorem 3.1 For all k ∈ {1, . . . , n}

zk =
(
akz0 + c

ak − 1
a− 1

)
mod (m) . (3)

Proof

• We show the assertion by mathematical induction. For k = 1 the claim (3) coincides with the recursion
equation (1).

• Let (3) be true for a certain k ≥ 1, i.e., there is an integer j ≥ 0 such that

zk = akz0 + c
ak − 1
a− 1

− jm . (4)

• We show that this implies that (3) also holds for k + 1.
• By the recursion equation (1) and by induction hypothesis (4) we get that

zk+1 = (azk + c) mod (m)

=

(
a
(
akz0 + c

ak − 1
a− 1

− jm
)

+ c

)
mod (m)

=
(
ak+1z0 + c

a(ak − 1) + a− 1
a− 1

− ajm
)

mod (m)

=
(
ak+1z0 + c

ak+1 − 1
a− 1

)
mod (m) ,

i.e., (3) also holds for k + 1. ¤
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Remarks

• Obviously, the linear congruential generator defined in (1) can generate no more than m different
numbers z1, . . . , zn.

– As soon as a number zk is repeated for the first time, i.e., there is some m0 > 0 such that
zk = zk−m0 ,

– the same period of length m0, which has already been completely generated, is started again, i.e.

zk+j = zk−m0+j for all j ≥ 1.

• An unfavorable choice of the parameters m, a, c and z0, respectively, may result in a very short length
m0 of the period.

– For example we have
m0 = 2 for a = c = z0 = 5 and m = 10,

where the sequence 5, 0, 5, 0, . . . is generated.
– A desirable feature for the period length m0 of linear congruence generators is to be as close as

possible to the maximum length m.

We will now mention some (sufficient and necessary) conditions for the parameters m, a, c and z0, respectively,
ensuring that the maximal possible period m is obtained.

Theorem 3.2

1. If c > 0, then for every initial value z0 ∈ {0, 1, . . . ,m − 1} the linear congruential generator defined in
(1) generates a sequence z1, . . . , zn of numbers with maximal possible period m if and only if the following
conditions are satisfied:

(a1) The parameters c and m are relatively prime.

(a2) For every prime number r dividing m, a− 1 is a multiple of r.

(a3) If m is a multiple of 4 then also a− 1 is multiple of 4.

2. If c = 0 then m0 = m− 1 for all z0 ∈ {1, . . . , m− 1} if and only if

(b1) m is prime and

(b2) for any prime r dividing m− 1 the number a(m−1)/r − 1 is not divisible by m.

3. If c = 0 and if there is k ∈ N such that m = 2k ≥ 16 then m0 = m/4 if and only if z0 is an odd number and
a mod (8) = 5 or = 3.

A proof of Theorem 3.2 using results from number theory (one of them being Fermat’s little theorem) can be
found e.g.

• in Section 2.7 of B.D. Ripley Stochastic Simulation, J. Wiley & Sons, New York (1987) or

• in Section 3.2 of D.E. Knuth (1997) The Art of Computer Programming, Vol. II, Addison-Wesley, Reading
MA.

• We also refer to these two texts for the discussion

– of other generators for standard pseudo–random numbers like nonlinear congruential generators, shift–
register generators and lagged Fibonacci generators as well as their combinations,

– alternative conditions for the parameters m, a, c and z0 of the linear congruential generator defined in
(1),
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– ensuring the generation of sequences z1, . . . , zn whose period m0 is as large as possible and also exhi-
biting other desirable properties.

• One of those properties is

– that the points (u1, u2), . . . , (un−1, un) formed by pairs of consecutive pseudo–random numbers ui−1,
ui are uniformly spread over the unit square [0, 1]2.

– The following numerical examples illustrate that relatively small changes of the parameters a and c
can result in completely different point patterns (u1, u2), . . . (un−1, un).

• Further details can be found in the text by Ripley (1987) that has been already mentioned and in the lecture
notes by H. Künsch (ftp://stat.ethz.ch/U/Kuensch/skript-sim.ps) that also contains the following figures.

Figure 3: Point patterns for pairs (ui−1, ui) of consecutive pseudo-random numbers for m = 256

3.1.3 Statistical Tests

• In literature numerous statistical significance tests are discussed in order to investigate characteristics of ran-
dom number generators; see e.g. G.S. Fishman (1996)Monte Carlo: Concepts, Algorithms and Applications,
Springer, New York.

• We only recall two such tests which are important for investigating characteristics of linear congruential
generators (and other random number generators).

• Pearson’s χ2–goodness of fit test is used to check

– if the generated pseudo–random numbers can be regarded as realizations of uniformly distributed
random variables

– and if we may assume the independence of these random variables.
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Figure 4: Point patterns for pairs (ui−1, ui) of consecutive pseudo–random numbers for m = 256

• Another method for the generation of sequences u1, u2, . . . of numbers having desirable characteristics

– is based on minimizing the Kolmogorov distance

Dn(u1, . . . , un) = sup
x∈(0,1]

∣∣∣ 1
n

#
{
i : 1 ≤ i ≤ n, 0 < ui ≤ x

}− x
∣∣∣

between the empirical distribution function of the „sample” u1, . . . , un and the distribution function of
the uniform distribution on (0, 1] for every natural number n.

– In literature this procedure is referred to as Quasi-Monte-Carlo-Method; see e.g. H. Niederreiter (1992)
Random Number Generation and Quasi-Monte-Carlo Methods, SIAM, Philadelphia.

1. χ2–goodness of fit test of uniform distribution

The following test is considered in order to check if the pseudo-random numbers u1, . . . , un

• can be regarded as realizations of independent sampling variables U1, . . . , Un that are uniformly dis-
tributed on the interval (0, 1].

• The interval (0, 1] is divided in r subintervals of equal length (0, 1/r], . . . , ((r − 1)/r, 1] and

– we consider the (r − 1)–dimensional (hypothetical) vector of parameters p0 = (1/r, . . . , 1/r) and
– the test statistic Tn : Rn → [0,∞) where

Tn(u1, . . . , un) =
r∑

j=1

(Zj(u1, . . . , un)− n/r)2

n/r
,

and Zj(u1, . . . , un) = #{i : 1 ≤ i ≤ n, j − 1 < rui ≤ j} denotes the number of pseudo–random
numbers u1, . . . , un in the interval ((j − 1)/r, j/r].
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Figure 5: Point patterns for pairs (ui−1, ui) of consecutive pseudo–random numbers for m = 2048

• If the sampling variables U1, . . . , Un are independent and uniformly distributed on the interval (0, 1],
the test statistic Tn is asymptotically χ2

r−1 distributed.
• Thus, for sufficiently large n the hypothesis H0 : p = p0 is rejected if

Tn(u1, . . . , un) > χ2
r−1,1−α ,

where χ2
r−1,1−α denotes the (1− α)-quantile of the χ2 distribution with r − 1 degrees of freedom.

• We will illustrate this test by the following numerical example. For α = 0.05, n = 100 000 and r = 10
we want to check if
– the hypothesis that the sampling variables are uniformly distributed is conformable with a sample

(u1, . . . , u100 000) of pseudo–random numbers. The sample has the following vector (z1, . . . , z10) of
class frequencies:

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

9 995 10 045 10 127 9 816 10 130 10 040 9 890 9 858 10 083 10 016
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– In this case we obtain T100 000(u1, . . . , u100 000) = 10.99 and hence

T100 000(u1, . . . , u100 000) = 10.99 < χ2
9,0.95 = 16.92 .

– Thus, the hypothesis of a uniform distribution on (0, 1] is not rejected.

Remarks

• As a generalization of the χ2–goodness of fit test for checking the uniform distribution of some
sample variables one can also check
– if for a given natural number d ≥ 1 (e.g. d = 2 or d = 3) the pseudo–random vectors

(u1, . . . , ud), . . . , (u(n−1)d+1, . . . , und) can be regarded
– as realizations of independent random vectors (U1, . . . , Ud), . . . , (U(n−1)d+1, . . . , Und) that are

uniformly distributed on (0, 1]d.
• For this purpose the unit cube (0, 1]d is divided into rd smaller cubes Bj of equal size,

– which are of the form ((i1 − 1)/r, i1/r]× . . .× ((id − 1)/r, id/r].
– Furthermore, we consider the (rd−1)–dimensional (hypothetical) vector p0 = (1/rd, . . . , 1/rd)

of parameters and
– the test statistic Tn : Rnd → [0,∞) where

Tn(u1, . . . ,un) =
rd∑

j=1

(Zj(u1, . . . ,un)− n/rd)2

n/rd
,

ui = (u(i−1)d+1, . . . , uid) and Zj(u1, . . . ,un) = #{i : 1 ≤ i ≤ n, ui ∈ Bj}. Notice that
Zj(u1, . . . ,un) denotes the number of pseudo-random vectors in Wj .

2. Run Test

There are a number of other significance tests allowing to evaluate the quality of random number generators.
In particular it can be verified

• if the generated pseudo-random numbers u1, . . . , un can be regarded as realizations of independent
random variables U1, . . . , Un having a certain distribution. In our case we consider the hypothesis of a
uniform distribution on (0, 1].

• The following run test checks in particular

– if the independence assumption for the sampling variables U1, . . . , Un is reflected sufficiently well
by the pseudo–random numbers u1, . . . , un.

– This is done by analyzing the lengths of monotonically increasing subsequences, also called runs,
within the sequence u1, u2, . . . of pseudo-random numbers.

• For this purpose we define the random variables V1, V2, . . . by the recursion formula

Vj+1 = min{i : i > Vj + 1, Ui > Ui+1} , ∀ j = 1, 2, . . . , (5)

where V1 = min{i : i ≥ 1, Ui > Ui+1}.
• The random variables W1,W2, . . . where

W1 = V1 and Wj+1 = Vj+1 − (Vj + 1) for j = 1, 2, . . . (6)

are called the runs of the sequence U1, U2, . . ..

The significance test that will be constructed is based on the following property of the runs W1,W2, . . ..
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Theorem 3.3 The random variables W1,W2, . . . introduced in (6) are independent and identically distri-
buted such that

P (Wj = k) =
k

(k + 1)!
, ∀ k = 1, 2, . . . , (7)

if the random variables U1, U2, . . . are independent and uniformly distributed on (0, 1].

Proof
• Let U1, U2, . . . be independent and uniformly distributed on (0, 1].

– Then for all n ≥ 1 and for arbitrary natural numbers k1, . . . , kn ≥ 1, we get that

P (W1 = k1, . . . ,Wn = kn) = P (V1 = k1, V2 − V1 − 1 = k2, . . . , Vn − Vn−1 − 1 = kn)

= P
(
V1 = k1, V2 = k2 + k1 + 1, . . . , Vn = kn + . . . + k1 + n− 1

)

= P
(
Ui ≤ Ui+1, ∀ i = 1, . . . , k1 − 1, Uk1 > Uk1+1,

Ui ≤ Ui+1, ∀ i = k1 + 2, . . . , k1 + 1 + k2 − 1, Uk1+1+k2 > Uk1+1+k2+1, . . . ,

Ui ≤ Ui+1, ∀ i = k1 + 1 + . . . + kn−1 + 2, . . . , k1 + 1 + . . . + kn−1 + 1 + kn − 1,

Uk1+1+...+kn−1+1+kn > Uk1+1+...+kn−1+1+kn+1

)

= P
(
Ui ≤ Ui+1, ∀ i = 1, . . . , k1 − 1, Uk1 > Uk1+1

)

P
(
Ui ≤ Ui+1, ∀ i = k1 + 2, . . . , k1 + 1 + k2 − 1, Uk1+1+k2 > Uk1+1+k2+1

)

. . . P
(
Ui ≤ Ui+1, ∀ i = k1 + 1 + . . . + kn−1 + 2, . . . , k1 + 1 + . . . + kn−1 + 1 + kn − 1,

Uk1+1+...+kn−1+1+kn > Uk1+1+...+kn−1+1+kn+1

)

= P
(
Ui ≤ Ui+1, ∀ i = 1, . . . , k1 − 1, Uk1 > Uk1+1

)

. . . P
(
Ui ≤ Ui+1, ∀ i = 1, . . . , kn − 1, Ukn > Ukn+1

)
.

– This implies that the runs W1,W2, . . . are independent and identically distributed.
• Furthermore, an induction argument shows that for arbitrary k ∈ R and t ∈ (0, 1]

P (U1 ≤ . . . ≤ Uk ≤ t) =
tk

k!
. (8)

– For k = 1, equation (8) obviously holds. By the formula of total probability we obtain

P (U1 ≤ . . . ≤ Uk+1 ≤ t) =
∫ 1

0

P (U1 ≤ . . . ≤ Uk ≤ Uk+1 ≤ t | Uk+1 = x)P (Uk+1 ∈ dx)

=
∫ 1

0

P (U1 ≤ . . . ≤ Uk ≤ x ≤ t | Uk+1 = x) P (Uk+1 ∈ dx)

=
∫ 1

0

P (U1 ≤ . . . ≤ Uk ≤ x ≤ t) dx ,

where the last equality is a consequence of the independence and (0, 1]-uniform distribution of
U1, U2, . . ..

– Assume now that (8) is true for some k ≥ 1. Then

P (U1 ≤ . . . ≤ Uk+1 ≤ t) =
∫ t

0

P (U1 ≤ . . . ≤ Uk ≤ x) dx

=
∫ t

0

xk

k!
dx =

tk+1

(k + 1)!
,

where the second but one equality uses the induction hypothesis.
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– This shows (8) for any k ≥ 1.
• Moreover, by (8) we can conclude that for any k ∈ N

P (U1 ≤ . . . ≤ Uk, Uk > Uk+1) =
∫ 1

0

P (U1 ≤ . . . ≤ Uk, Uk > x) dx

=
∫ 1

0

(
P (U1 ≤ . . . ≤ Uk ≤ 1)− P (U1 ≤ . . . ≤ Uk ≤ x)

)
dx

=
∫ 1

0

( 1
k!

− xk

k!

)
dx

=
1
k!

− 1
(k + 1)!

=
k

(k + 1)!
. ¤

Remarks
• Let us assume that sufficiently many pseudo-random numbers u1, u2 . . . have been generated that

are resulting in the n runs w1, . . . , wn according to (5) and (6).
• We choose r pairwise disjoint intervals (a1, b1], . . . , (ar, br] on the positive real axis such that

– the probabilities

p0,j =
∑

k∈N∩(aj ,bj ]

k

(k + 1)!
, j = 1, . . . , r

are almost equal.
– For these probabilities we consider the (r − 1)–dimensional (hypothetical) vector

p0 = (p0,1, . . . , p0,r−1) and
– the test statistic Tn : Rn → [0,∞) where

Tn(w1, . . . , wn) =
r∑

j=1

(Yj(w1, . . . , wn)− np0,j)2

np0,j
,

and Yj(w1, . . . , wn) = #{i : 1 ≤ i ≤ n, aj < wi ≤ bj} denotes the number of run lengths
w1, . . . , wn belonging to class j.

• According to Theorem 3.3 for large n the hypothesis H0 : p = p0 will be rejected if T (w1, . . . , wn) >
χ2

r−1,1−α. Note that this requires the generation of a sufficiently large number of pseudo–random
numbers u1, u2, . . ..

3.2 Transformation of Uniformly Distributed Random Numbers

• Based on standard pseudo–random numbers u1, u2 . . . that can be generated by methods like the linear
congruential generator

– it is possible to generate pseudo–random numbers x1, x2 . . . that can be regarded as realizations of
random variables X1, X2 . . . having other than uniform distributions.

– Examples are realizations x1, x2, . . . of exponentially, Poisson, binomially or normally distributed ran-
dom variables X1, X2, . . ..

• For this purpose one can apply algorithms like the so-called inversion method and rejection–sampling, whose
basic ideas will be explained by some examples.

• A much more comprehensive discussion of these algorithms can be found e.g. in

– L. Devroye (1986) Nonuniform Random Variate Generation. Springer, New York,
– G.S. Fishman (1996) Monte Carlo: Concepts, Algorithms and Applications. Springer, New York,
– C.P. Robert and G. Casella (1999) Monte Carlo Statistical Methods. Springer, New York.
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3.2.1 Inversion Method

• The following property of the generalized inverse can be used as a basis for the generation of pseudo–random
numbers x1, x2 . . . that can be regarded as realizations of random variables X1, X2 . . . whose distribution
function F : R→ [0, 1] is an arbitrary monotonically nondecreasing and right–continuous function such that
limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

• Recall the following auxiliary result.

– Let F : R → [0, 1] be an arbitrary distribution function. Then the function F−1 : (0, 1] → R ∪ {∞}
where

F−1(y) = inf{x : F (x) ≥ y} (9)

is called the generalized inverse of the distribution function F .

– For arbitrary x ∈ R and y ∈ (0, 1)

y ≤ F (x) if and only if F−1(y) ≤ x , (10)

see Lemma WR-4.1.

Theorem 3.4

• Let U1, U2, . . . be a sequence of independent and uniformly distributed random variables on (0, 1] and let
F : R→ [0, 1] be a distribution function.

• Then the random variables X1, X2, . . . where Xi = F−1(Ui) for i = 1, 2, . . . are independent and their
distribution function is given by F .

Proof

• The independence of X1, X2, . . . is an immediate consequence of the transformation theorem for inde-
pendent random variables; see Theorem WR-3.18.

• Furthermore, (10) implies for arbitrary x ∈ R and i ∈ N

P (Xi ≤ x) = P
(
F−1(Ui) ≤ x

) (10)
= P

(
Ui ≤ F (x)

)
= F (x) . ¤

Examples

• In the following we discuss some examples illustrating

– how Theorem 3.4 can be used in order to generate pseudo-random numbers x1, x2 . . .

– that can be regarded as realizations of independent random variables X1, X2 . . . with a given
distribution function F : R→ [0, 1].

• These numbers are also referred to as F–distributed pseudo–random numbers x1, x2 . . .,

– in spite of the fact that the empirical distribution function F̂n of the sample x1, . . . , xn

– is only an approximation of F for large n.

• Note that Theorem 3.4 can only be applied directly if

– the generalized inverse F−1 of F is given explicitly (i.e. by an analytical formula).
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– Unfortunately, this situation is merely an exception.

1. Exponential distribution

• Let λ > 0 and F : R→ [0, 1] be the distribution function of the Exp(λ)–distribution, i.e.

F (x) =





1− e−λx if x ≥ 0,

0 if x < 0.

• Then F−1(u) = −λ−1 log(1− u) for all u ∈ (0, 1].

• By Theorem 3.4,

– we have X = −λ−1 log U ∼ Exp(λ) if U and hence also 1− U are uniformly distributed on (0, 1]
– and the pseudo-random numbers x1, . . . , xn where

xi = − log ui

λ
for i = 1, . . . , n

can be regarded as realizations of Exp(λ)–distributed random variables
– if u1, . . . , un are realizations of independent and uniformly on (0, 1] distributed random variables

U1, . . . , Un.

2. Erlang distribution

• Let λ > 0, r ∈ N and let F : R→ [0, 1] be the distribution function of the Erlang distribution, i.e., of
the Γ(λ, r)–distribution where

F (x) =





∫ x

0

λe−λv(λv)r−1

(r − 1)!
dv if x ≥ 0,

0 if x < 0.
(11)

• Then the generalized inverse F−1 of F cannot be determined explicitly and therefore Theorem 3.4
cannot be applied directly.

• However, one can show that X1+. . .+Xr ∼ Γ(λ, r) if the random variables X1, . . . , Xr are independent
and Exp(λ)–distributed.

• By Theorem 3.4

– the pseudo–random numbers y1, . . . , yn where

yi = xr(i−1)+1 + . . . + xri = − log
(
ur(i−1)+1 · . . . · uri

)

λ
for i = 1, . . . , n

can be regarded as realizations of independent Γ(λ, r)–distributed random variables,
– if u1, . . . , urn are realizations of independent and uniformly distributed random variables on (0, 1].
– In particular, for λ = 1/2 the pseudo–random numbers y1, . . . , yn can be regarded as realizations

of a χ2
2r–distributed random variable.
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3. Normal distribution

• In order to generate normally distributed pseudo–random numbers one can apply the so–called Box–
Muller algorithm, which also requires exponentially distributed pseudo–random numbers.

• Assume the random numbers U1, U2 to be independent and uniformly distributed on (0, 1].

– By Theorem 3.4, we get that X = −2 log U1 is an Exp(1/2)–distributed random variable and
– the random vector (Y1, Y2) where

Y1 =
√

X cos(2πU2) , Y2 =
√

X sin(2πU2)

turns out to be N(o, I)–distributed, i.e., Y1, Y2 are independent and N(0, 1)–distributed random
variables

– as for arbitrary y1, y2 ∈ R

P (Y1 ≤ y1, Y2 ≤ y2) = P
(√

−2 log U1 cos(2πU2) ≤ y1,
√
−2 log U1 sin(2πU2) ≤ y2

)

=
1
2

∫ 1

0

∫ ∞

0

1I
(√

x cos(2πu) ≤ y1,
√

x sin(2πu) ≤ y2

)
e−x/2 dx du

=
1
2π

∫ y2

−∞

∫ y1

−∞
e−(v2+w2)/2 dv dw

=
1√
2π

∫ y1

−∞
e−v2/2 dv

1√
2π

∫ y2

−∞
e−w2/2 dw ,

where the last but one equality follows from the substitution

v =
√

x cos(2πu) , w =
√

x sin(2πu)

whose functional determinant is π.

• The pseudo–random numbers y1, . . . , y2n where

y2k−1 =
√
−2 log u2k−1 cos(2πu2k) , y2k =

√
−2 log u2k−1 sin(2πu2k) (12)

– can thus be regarded as realizations of independent and N(0, 1)–distributed random variables ,
– if u1, . . . , u2n are realizations of independent and uniformly on (0, 1] distributed random variables

U1, . . . , U2n.

• For arbitrary µ ∈ R and σ2 > 0 the pseudo-random numbers y′1, . . . , y
′
2n where y′i = σ(yi + µ) can be

regarded as realizations of independent and N(µ, σ2)–distributed random variables.

• Remarks

– A faster algorithm for the generation of normally distributed pseudo-random numbers is obtained
if additionally a method of rejection sampling is applied that will be introduced in Section 3.2.3.

– This method avoids the relatively time-consuming computation of the trigonometric functions in
(12).

3.2.2 Transformation Algorithms for Discrete Distributions

• If pseudo–random numbers x1, x2 . . . need to be generated

– that can be regarded as realizations of discrete random variables X1, X2 . . .

– taking the values a0, a1 . . . ∈ R with probabilities pj = P (Xi = aj) ≥ 0 for j = 0, 1, . . .,
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• then it is sometimes advisable to proceed as follows:

– Let U be a (0, 1]–uniformly distributed random variable and let the random variable X be given by

X =





a0 if U < p0,

a1 if p0 ≤ U < p0 + p1,
...

aj if p0 + . . . + pj−1 ≤ U < p0 + . . . + pj ,
...

(13)

– Then P (X = aj) = pj for all j = 0, 1, . . ..

• The pseudo–random numbers x1, . . . , xn where

xi =





a0 if ui < p0,

a1 if p0 ≤ ui < p0 + p1,
...

aj if p0 + . . . + pj−1 ≤ ui < p0 + . . . + pj ,
...

– can thus be regarded as realizations of independent and p-distributed random variables where
p = (p0, p1, . . .)>,

– if u1, . . . , un are realizations of independent and uniformly distributed random variables on (0, 1].

Example (Geometric distribution)

• We consider the following values for aj and the corresponding probabilities pj .
– Let aj = j for j = 0, 1, . . ., and for 0 < p < 1 , q = 1− p let

pj =





0 if j = 0,

p qj−1 if j ≥ 1.

– Then, for all j ≥ 1,

1− (p1 + . . . + pj) = pj+1 + pj+2 + . . . = p

∞∑

i=j

qi = qj (14)

and pj = qj−1 − qj .

• Furthermore, we consider the random variable

X =
⌊

log U

log q

⌋
+ 1 , (15)

where U is a (0, 1]–uniformly distributed random variable and bzc denotes the integer part of z.

• Then P (X = j) = p qj−1 for all j = 1, 2, . . ., i.e. X ∼ Geo(p),
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– as (14) and (15) imply

X
(15)
= min

{
j ≥ 1 : j >

log U

log q

}

= min
{

j ≥ 1 : j log q < log U
}

= min
{

j ≥ 1 : qj < U
}

=
∞∑

j=1

j 1I
(
qj < U ≤ qj−1

)

(14)
=

∞∑

j=1

j 1I
(
p1 + . . . + pj−1 ≤ 1− U < p1 + . . . + pj

)
,

– where the random variable 1− U is also uniformly distributed on (0, 1].

• The pseudo–random numbers x1, . . . , xn where

xi =
⌊

log ui

log q

⌋
+ 1

– can thus be regarded as realizations of independent and geometrically distributed random variables
X1, . . . , Xn ∼ Geo(p)

– if u1, . . . , un are realizations of independent random variables U1, . . . , Un that are uniformly dis-
tributed on the interval (0, 1].

For some discrete distributions there are specific transformation algorithms allowing the generation of pseudo–
random numbers having this distribution.

Examples

1. Poisson distribution (with small expectation λ)

• If λ > 0 is a small number, then the following procedure is appropriate to generate Poisson–
distributed pseudo–random numbers
– by transformation of exponentially distributed pseudo–random numbers (as in Section 3.2.1)
– or directly based on (0, 1]–uniformly distributed pseudo–random numbers.

• Let the random variables X1, X2, . . . be independent and Exp(λ)–distributed.
– If we consider the random variable Y = max{k ≥ 0 : X1 + . . . + Xk ≤ 1}, formula (11) for the

distribution function of the Erlang–distribution yields for all j ≥ 0

P (Y = j) = P (Y ≥ j)− P (Y ≥ j + 1)
= P (X1 + . . . + Xj ≤ 1)− P (X1 + . . . + Xj+1 ≤ 1)

=
∫ 1

0

λe−λv(λv)j−1

(j − 1)!
dv −

∫ 1

0

λe−λv(λv)j

j!
dv

=
∫ 1

0

d

dv

( e−λv(λv)j

j!

)
dv

=
e−λλj

j!
.

– In other words we obtained Y ∼ Poi(λ).
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• The pseudo–random numbers y1, . . . , yn where

yi = max{k ≥ 0 : x1 + . . . + xk ≤ i} − yi−1 , ∀ i = 1, . . . , n , (16)

and
yi = max{k ≥ 0 : u1 · . . . · uk ≥ e−iλ} − yi−1 , ∀ i = 1, . . . , n , (17)

where y0 = 0 and xj = −λ−1 log uj for j = 1, 2, . . .,
– can thus be regarded as realizations of independent and Poi(λ)–distributed random variables,
– if x1, x2 . . . are realizations of Exp(λ)–distributed random variables X1, X2 . . . and
– if u1, . . . , un are realizations of independent random variables U1, . . . , Un that are uniformly

distributed on the interval (0, 1], respectively.
• Remarks

– As the expectation of the Poi(λ)–distribution is given by λ, the mean number of uniformly
distributed pseudo–random numbers necessary in order to generate a new Poi(λ)–distributed
pseudo-random number is also λ.

– For large λ this effort can be reduced if one proceeds as follows.

2. Poisson distribution (with large expectation λ)
• If λ > 0 is large, aj = j and pj = e−λλj/j! for j = 0, 1, . . .,

– then the procedure based directly on the transformation formula (13) is more appropriate to
generate Poi(λ)–distributed pseudo–random numbers,

– The validity of the inequalities

U < p0 , p0 ≤ U < p0 + p1, . . . , p0 + . . . + pj−1 ≤ U < p0 + . . . + pj , . . . (18)

needs to be checked in the order defined below.
– Note that the recursion formula

pj+1 =
λ

j + 1
pj , ∀ j ≥ 0 ,

is applied to calculate the sums Pj =
∑j

k=0 pk for j ≥ 0.
• Let bλc > 0 be the integer part of λ. Then it is firstly checked if U < Pbλc.

– If this inequality holds it is checked if U < Pbλc−1, U < Pbλc−2, . . . where we define X =
min{k : U < Pk}.

– If the inequality U < Pbλc does not hold then it is checked if U < Pbλc+1, U < Pbλc+2, . . . and
we also define X = min{k : U < Pk}.

• For the expectation EV of the necessary number V of checking steps we obtain the approximation

EV ≈ 1 + E |X − λ|
= 1 +

√
λE

( |X − λ|√
λ

)

≈ 1 + 0.798
√

λ ,

– where the last approximation uses the fact that the random variable (X − λ)/
√

λ is approxi-
mately N(0, 1)-distributed for large λ for the following reasons.

– As the Poisson distribution is stable under convolutions, i.e.,

Poi(λ1) ∗ . . . ∗ Poi(λn) = Poi
( n∑

k=1

λi

)
,

the random variable X ∼ Poi(λ) can be viewed as the sum
∑n

i=1 Xi of n independent and
Poi(λ/n)–distributed random variables Xi. The last approximation then follows from the
central limit theorem for sums of independent and identically distributed random variables;
see Theorem WR-5.16.
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• We observe that
– for increasing λ the mean number of checking steps only grows with rate

√
λ if this simulation

procedure is applied,
– whereas for the formerly discussed method generating Poi(λ)–distributed pseudo–random num-

bers the necessary number of standard pseudo–random numbers grows linearly in λ.

3. Binomial distribution

• For the generation of binomially distributed pseudo–random numbers one can proceed similarly
to the Poisson case.
– For arbitrary but fixed numbers n ∈ N and p ∈ (0, 1) where q = 1− p let

aj = j and pj =
n!

j! (n− j)!
pj qn−j , ∀ j = 0, 1, . . . , n .

– For j = 0, 1, . . . , n the sums Pj =
∑j

k=0 pk are calculated via the recursion formula

pj+1 =
n− j

j + 1
p

q
pj , ∀ j = 0, 1, . . . , n− 1

• If np > 0 is small, then
– the validity of the inequalities (18) is checked in the natural order
– starting at U < p0 and defining X = min{k : U < Pk}.

• If np is large,
– then it is more efficient to check the validity of the inequalities (18) in the following order. It

is firstly checked if U < Pbnpc.
– If this inequality holds it is checked if U < Pbnpc−1, U < Pbnpc−2, . . . where we also define

X = min{k : U < Pk}.
– If the inequality U < Pbnpc does not hold it is checked if U < Pbnpc+1, U < Pbnpc+2, . . . where

we again define X = min{k : U < Pk}.

3.2.3 Acceptance-Rejection Method

• In this section we discuss another method for the generation of pseudo–random numbers y1, y2, . . .

– that can be regarded as realizations of independent and identically distributed random variables
Y1, Y2 . . .. Their distribution function is assumed to be given; it is denoted by G.

– This method also requires a sequence of independent and identically distributed pseudo–random num-
bers x1, x2, . . ., but we abandon the condition that they need to be uniformly distributed on (0, 1].

– The only condition we impose on their distribution function F is that G needs to be absolutely conti-
nuous with respect to F with bounded density g(x) = dG(x)/dF (x),

– i.e., for some constant c > 0, we have

g(x) ≤ c and G(y) =
∫ y

−∞
g(x) dF (x) , ∀x, y ∈ R . (19)

• First of all we consider the discrete case.

– Let aj = j for all j = 0, 1, . . ., and let p = (p0, p1, . . .)> and q = (q0, q1, . . .)> be two arbitrary
probability functions such that for all j = 0, 1, . . . pj = 0 implies qj = 0.

– Let X : Ω → {0, 1, . . .} be a random variable P (X = j) = pj for all j = 0, 1, . . .,
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– and let c > 0 be a positive number
(

g(j) =
) qj

pj
≤ c for all j ≥ 0 such that pj > 0. (20)

Theorem 3.5

• Let (U1, X1), (U2, X2), . . . be a sequence of independent and identically distributed random vectors whose
components are independent. Furthermore, let Ui be a (0, 1]–uniformly distributed random variable and Xi

be distributed according to p.

• Then

– the random variable
I = min

{
k ≥ 1 : Uk <

qXk

c pXk

}
(21)

is geometrically distributed with expectation c, i.e., I ∼ Geo(c−1),
– and the random variable Y = XI is distributed according to q.

Proof

• By the definition of I given in (21), we obtain for all j ≥ 1

P (I = j) = P
(
U1 ≥ qX1

c pX1

, . . . , Uj−1 ≥
qXj−1

c pXj−1

, Uj <
qXj

c pXj

)

= P
(
U1 ≥ qX1

c pX1

)
. . . P

(
Uj−1 ≥

qXj−1

c pXj−1

)
P

(
Uj <

qXj

c pXj

)

= p qj−1 ,

– where q = 1− p and

p = P
(
U1 <

qX1

c pX1

)

=
∑

k: pk>0

P
(
U1 <

qX1

c pX1

| X1 = k
)

P (X1 = k)

=
∑

k: pk>0

P
(
U1 <

qk

c pk

)
pk

=
∑

k: pk>0

qk

c pk
pk =

1
c

.

– This shows I ∼ Geo(c−1).
• Furthermore, for any j ≥ 1 such that pj > 0, we get that

P (Y = j) = P (XI = j) =
∞∑

k=1

P (XI = j, I = k)

=
∞∑

k=1

P (Xk = j, I = k) =
∞∑

k=1

P (Xk = j) qk−1 P
(
Uk ≤ qj

cpj

)

=
∞∑

k=1

pj qk−1 qj

cpj
=

qj

c

∞∑

k=1

qk−1

=
qj

c

1
1− q

= qj ,
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and for all j ≥ 1 such that pj = 0

P (Y = j) =
∞∑

k=1

P (Xk = j, I = k) ≤
∞∑

k=1

P (Xk = j) = 0 . ¤

Remarks

• Theorem 3.5 implies that the mean number of F–distributed pseudo-random numbers necessary to
obtain a G–distributed random number is c.

• In case there are several alternatives for the choice of the the distribution function F ,
– possessing equally nice properties with respect to the generation of F–distributed pseudo–random

numbers,
– then one should choose the distribution function with the smallest c.

• Furthermore, as a consequence of Theorem 3.5,
– the values g(x) and g(j) of the density in (19) and (20), respectively need only be known up to a

constant factor.

In the general (i.e. not necessarily discrete) case one can proceed in a similar way. The following result will serve
as foundation for constructing acceptance–rejection algorithms.

Theorem 3.6

• Let F, G : R→ [0, 1] be two arbitrary distribution functions such that (19) holds.

• Let (U1, X1), (U2, X2), . . . be a sequence of independent and identically distributed random vectors whose
components are independent. Furthermore, let Ui be a (0, 1]–uniformly distributed random variable and Xi

be distributed according to F .

• Then the random variable
I = min

{
k ≥ 1 : Uk <

g(Xk)
c

}
(22)

is geometrically distributed with expectation c, i.e., I ∼ Geo(c−1) and the random variable Y = XI is
distributed according to G.

Proof

• Similarly to the proof of Theorem 3.5 we obtain P (I = j) = p qj−1 for any j ≥ 1 where

p = P
(
U1 <

g(X1)
c

)
=

∫

R
P

(
U1 <

g(X1)
c

| X1 = x
)

dF (x)

=
∫

R
P

(
U1 <

g(x)
c

)
dF (x) =

∫

R

g(x)
c

dF (x) =
1
c

.

• Furthermore, for all y ∈ R we have

P (Y ≤ y) = P (XI ≤ y) =
∞∑

k=1

P (XI ≤ y, I = k) =
∞∑

k=1

P (Xk ≤ y, I = k)

=
∞∑

k=1

∫ y

−∞
P (I = k | Xk = v) dF (v) =

∞∑

k=1

qk−1

∫ y

−∞
P

(
Uk <

g(v)
c

)
dF (v)

=
1

1− q

∫ y

−∞

g(v)
c

dF (v) =
∫ y

−∞
g(v)dF (v) = G(y) ,

where 1− q = p = c−1. ¤
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In the same way we obtain the following vectorial version of Theorem 3.6.

Theorem 3.7

• Let m ≥ 1 be an arbitrary but fixed natural number and let F, G : Rm → [0, 1] be two arbitrary distribution
functions (of m–dimensional random vectors) and let c > 0 be a constant such that

g(x) ≤ c and G(y) =
∫

(−∞,y]

g(x) dF (x) , ∀x,y ∈ Rm . (23)

• Let (U1,X1), (U2,X2), . . . be a sequence of independent and identically distributed random vectors whose
components are also independent. Furthermore, let Ui be a (0, 1]–uniformly distributed random variable and
Xi be distributed according to F .

• Then the random variable
I = min

{
k ≥ 1 : Uk <

g(Xk)
c

}
(24)

is geometrically distributed with expectation c, i.e., I ∼ Geo(c−1) and the random vector Y = XI is
distributed according to G.

Examples

1. Uniform distribution on bounded Borel sets

• Let the random vector X : Ω → Rm (with distribution function F ) be uniformly distributed on
the square (−1, 1]m and let B ∈ B((−1, 1]m be an arbitrary Borel subset of (−1, 1]m of positive
Lebesgue measure |B|.

• Then the distribution function G : Rm → [0, 1] given by

G(y) =
∫

(−∞,y]

1I(x ∈ B)
|B| dF (x) , ∀y ∈ Rm

is absolutely continuous with respect to F and we obtain for the (Radon–Nikodym) density
g : Rm → [0,∞) that

g(x) =
1I(x ∈ B)
|B| ≤ c = |B|−1 and

g(x)
c

= 1I(x ∈ B) , ∀x ∈ Rm .

• By Theorem 3.7 we can now in the following way generate pseudo–random vectors y1,y2, . . . that
are uniformly distributed on B.
1. Generate m pseudo–random numbers u1, . . . , um that are uniformly distributed on the interval

(0, 1].
2. If (2u1 − 1, . . . , 2um − 1)> 6∈ B, then return to step 1.
3. Otherwise put y = (2u1 − 1, . . . , 2um − 1)>.

2. Normal distribution

• As an alternative to the Box-Muller algorithm discussed in Section 3.2.1 we will now introduce
another method to generate normally distributed pseudo–random numbers,
– which is often called the polar method.
– Notice that the polar method avoids calculating the trigonometric functions in (12).

• Let the random vector (V1, V2) be uniformly distributed on the unit circle B, where
B = {(x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 1}.
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• Then, the random vector (Y1, Y2) where

Y1 =
√
−2 log(V 2

1 + V 2
2 )

V1√
V 2

1 + V 2
2

, Y2 =
√
−2 log(V 2

1 + V 2
2 )

V2√
V 2

1 + V 2
2

is N(o, I)-distributed, i.e., Y1, Y2 are independent and N(0, 1)-distributed random variables. This
can be seen as follows.
– By the substitution

v1 = r cos θ , v2 = r sin θ ,

– i.e. by a transformation into polar coordinates we obtain for arbitrary y1, y2 ∈ R

P (Y1 ≤ y1, Y2 ≤ y2)

=
1
π

∫

B

1I
(v1

√
−2 log(v2

1 + v2
2)√

v2
1 + v2

2

≤ y1 ,
v2

√
−2 log(v2

1 + v2
2)√

v2
1 + v2

2

≤ y2

)
d(v1, v2)

=
1
π

∫ 2π

0

∫ 1

0

r 1I
(√

−2 log(r2) cos θ ≤ y1 ,
√
−2 log(r2) sin θ ≤ y2

)
dr dθ

=
1
2

1
2π

∫ 2π

0

∫ ∞

0

1I
(√

x cos θ ≤ y1,
√

x sin θ ≤ y2

)
e−x/2 dx dθ ,

– where the last equality results from the following substitution:

x = −2 log(r2) bzw. − 1
2

e−x/2 dx = 2r dr .

– By the same argument that was used to verify formula (12) in Section 3.2.1 one can check that
the last term can be written as the product F (y1)F (y2) of two N(0, 1)–distribution functions.

• The pseudo–random numbers y1, . . . , y2n with

y2k−1 =
√
−2 log(v2

2k−1 + v2
2k)

v2k−1√
v2
2k−1 + v2

2k

, y2k =
√
−2 log(v2

2k−1 + v2
2k)

v2k√
v2
2k−1 + v2

2k

– can thus be regarded as realizations of independent and N(0, 1)–distributed random variables,
– if (v1, v2), . . . , (v2n−1, v2n) are realizations of the random variables (V1, V2), . . . , (V2n−1, V2n)

that are independent and uniformly distributed on the unit circle

B = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1} .

– Those can be generated via acceptance–rejection sampling as explained in the last example.

3.2.4 Quotients of Uniformly Distributed Random Variables

In many cases random variables having absolutely continuous distributions can be represented as quotients of
uniformly distributed random variables.

• Combined with acceptance–rejection sampling (see Section 3.2.3) this yields another type of simulation
algorithm.

• The mathematical foundation for this type of algorithm is the following transformation theorem for the
density of absolutely continuous random vectors.
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Theorem 3.8

• Let X = (X1, . . . , Xn)> : Ω → Rn be an absolutely continuous random vector with joint density fX :
Rn → [0,∞) and let ϕ = (ϕ1, . . . , ϕn) : Rn → Rn be a Borel-measurable function with continuous partial
derivatives ∂ϕi/∂xj(x1, . . . , xn).

• Let now the Borel-set C ∈ B(Rn) be picked in a way such that

{x ∈ Rn : fX(x) 6= 0} ⊂ C

and
det

(∂ϕi

∂xj
(x1, . . . , xn)

)
6= 0 , ∀x = (x1, . . . , xn) ∈ C ,

which ensures that the restriction ϕ : C → D of ϕ to the set C is a bijection where D = {ϕ(x) : x ∈ C}
denotes the image of ϕ.

• Let ϕ−1 = (ϕ−1
1 , . . . , ϕ−1

n ) : D → C be the inverse of ϕ : C → D.

• Then the random vector Y = ϕ(X) is also absolutely continuous and the density fY(y) of Y is given by

fY(y) =





fX(ϕ−1
1 (y), . . . , ϕ−1

n (y))
∣∣∣ det

(∂ϕ−1
i

∂yj
(y1, . . . , yn)

)∣∣∣ if y = (y1, . . . , yn) ∈ D,

0 if y 6∈ D.

(25)

which is the same as

fY(y) =





fX(ϕ−1
1 (y), . . . , ϕ−1

n (y))
∣∣∣ det

(∂ϕi

∂xj
(ϕ−1(y1, . . . , yn))

)∣∣∣
−1

if y = (y1, . . . , yn) ∈ D,

0 if y 6∈ D.
(26)

From Theorem 3.8 we obtain the following result concerning the representation of absolutely continuous random
variables as quotients of uniformly distributed random variables.

Theorem 3.9

• Let f ′ : R→ [0,∞) be Borel measurable and bounded such that

0 <

∫

R
f ′(x) dx < ∞ and sup

x∈R
|x|

√
f ′(x) < ∞ . (27)

• Let the random vector (V1, V2) be uniformly distributed on the (bounded) Borel set

B = {(x1, x2) ∈ R2 : 0 < x1 <
√

f ′(x2/x1)} . (28)

• Then the quotient V2/V1 is an absolutely continuous random variable with density f : R→ [0,∞) where

f(x) =
f ′(x)∫

R f ′(y) dy
, ∀x ∈ R .

Proof

• Notice that (27) implies that the Borel set B defined in (28) is bounded, i.e. 0 < |B| < ∞. This is due
to the following reasons.

– For x2 > 0 the inequality x1 <
√

f ′(x2/x1) is equivalent to x2 < x2/x1

√
f ′(x2/x1).
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– If on the other hand x2 < 0 it is equivalent to x2 > x2/x1

√
f ′(x2/x1).

– Therefore
B ⊂ [0, sup

x∈R

√
f ′(x)]× [ inf

x<0
x

√
f ′(x), sup

x>0
x

√
f ′(x)] (29)

and
B ⊂ [0, sup

x∈R

√
f ′(x)]× [− sup

x∈R
|x|

√
f ′(x), sup

x∈R
|x|

√
f ′(x)] .

• The following joint density f(V1,V2)(v1, v2) of the random vector (V1, V2) is thus well defined

f(V1,V2)(v1, v2) = |B|−11I
(
0 < v1 <

√
f ′(v2/v1)

)
.

• The function ϕ : C → C where C = (0,∞)× R and ϕ(x1, x2) = (x1, x2/x1)

– is a bijection of C onto itself
– and its functional determinant is given by

det
(∂ϕi

∂xj
(x1, x2)

)
= det

(
1 0

− x2

x2
1

1
x1

)
=

1
x1

, ∀ (x1, x2) ∈ C .

• Theorem 3.8 therefore implies

– that the density f(V1,V2/V1)(y1, y2) of the random vector (V1, V2/V1)> has the following form:

f(V1,V2/V1)(y1, y2) = |B|−1y11I
(
0 < y1 <

√
f ′(y2)

)

– Moreover, the marginal density fV2/V1(y2) of the second component V2/V1 of (V1, V2/V1)> is given
by

fV2/V1(y2) = |B|−1

√
f ′(y2)∫

0

y1 dy1 =
f ′(y2)
2 |B| . ¤

Example (Normal distribution)

• Theorem 3.9 yields a third method to generate N(0, 1)–distributed pseudo-random numbers (as an
alternative to the Box–Muller algorithm from Section 3.2.1 and the polar method explained in Sec-
tion 3.2.3).

• Consider the function f ′ : R→ [0,∞) where f ′(x) = exp(−x2/2) for all x ∈ R. For the bounds in (29)
we obtain:

sup
x∈R

√
f ′(x) = 1 , inf

x<0
x

√
f ′(x) = −

√
2/e , sup

x>0
x

√
f ′(x) =

√
2/e .

• According to Theorem 3.9 a sequence x1, x2, . . . of N(0, 1)–distributed pseudo–random numbers can
now be generated as follows.

1. Generate a (0, 1]–uniformly distributed pseudo-random number u and a (−
√

2/e,
√

2/e]–uniformly
distributed pseudo–random number v.

2. If u ≥
√

exp(−v2/(2u2)) , i.e., if log u ≥ −v2/(4u2) ⇔ v2 ≥ −4u2 log u, then return to step 1.
3. Otherwise put x = v/u.
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3.3 Simulation Methods Based on Markov Chains

• Let E be an arbitrary finite set, e.g. a family of possible digital binary or greyscale images x = (x(v), v ∈ V ),

– where V is a finite set of pixels
– and every pixel v ∈ V in the observation window V gets mapped to a greyscale value x(v) ≥ 0,

– resulting in a „matrix” (x(v), v ∈ V ) that has certain properties.

• Let π : E → (0, 1) be an arbitrary probability function, i.e.

∑

x∈E

πx = 1 and πx > 0 , ∀x ∈ E .

• If the number |E| of elements in E is large,

– the inversion method discussed in Section 3.2 as well as acceptance-rejection sampling are inefficient
algorithms

– for the generation of pseudo–random numbers x1,x2, . . . in E that are distributed according to π.

Remarks

• An alternative simulation method is based on

– constructing a Markov chain X0,X1, . . . with state space E

– and an (appropriately chosen) irreducible and aperiodic transition matrix P,
– such that π is the ergodic limit distribution of the Markov chain.

• For sufficiently large n

– Xn is approximately π–distributed
– and can thus serve as an efficient tool for the generation of (approximately) π–distributed pseudo–

random elements in E.

• Therefore one also uses the term Markov–Chain–Monte–Carlo Simulation (MCMC).

3.3.1 Example: Hard–Core Model

(see O. Häggström (2002) Finite Markov Chains and Algorithmic Applications. CU Press, Cambridge)

• We consider a connected graph G = (V,K)

– with finitely many vertices V = {v1, . . . , v|V |}
– and a certain set K ⊂ V 2 of edges, each of them connecting two vertices.

• Each vertex in V gets either mapped to 0 or 1,

– where we consider the following set E ⊂ {0, 1}|V | of admissible configurations,

– characterized by the property that pairs of connected vertices are not allowed to obtain the value 1 on
both vertices; see also Figure 6.

• As we want to pick one of the admissible configurations x ∈ E „at random” we consider the (discrete)
uniform distribution π on E, i.e.

πx =
1
`

, ∀x ∈ E , (30)

where ` = |E| denotes the number of all admissible configurations.
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Figure 6: Lattice G of size 8× 8, black pixels are corresponding to value 1

• If the numbers |V | and |K| of vertices and edges, respectively, of the connected graph G = (V, K) are large,

– the explicit description of the admissible configurations E will cause difficulties.

– Therefore, the number ` of all admissible configurations is typically unknown.

– Consequently, formula (30) cannot be applied directly for the simulation of „randomly” picked admis-
sible configurations.

MCMC Simulation Algorithm

• Alternatively, a Markov chain X0,X1, . . . can be constructed

– that has the state space E and an (appropriately chosen) irreducible and aperiodic transition
matrix P,

– such that the ergodic limit distribution π is given by (30).

• Then we generate a path x0,x1, . . . of the Markov chain using the recursive construction of Markov
chains that has been discussed in Section 2.1.3:

1. Pick an admissible initial configuration x0 ∈ E.
2. Pick an arbitrary vertex v ∈ V „at random” and toss a fair coin.
3. If the event „head” occurs and if xn(w) = 0 for all vertices w ∈ V connected to v ∈ V , then set

xn+1(v) = 1; else set xn+1(v) = 0.
4. The values of all edges w 6= v are not changed, i.e., xn+1(w) = xn(w) for all w 6= v.

Remarks

• In order to implement steps 2 – 4 of this algorithm, the update function ϕ : E × [0, 1] → E considered
in (2.19) needs to be specified.

• For this purpose the unit interval (0, 1] is divided into 2|V | parts of equal length 1/2|V |
– that correspond to the events (v1, head), (v1, tail), . . ., (v|V |, head), (v|V |, tail).
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– Then x′ = ϕ(x, z) where

x′(vi) =





1 if z ∈
(2i− 2

2|V | ,
2i− 1
2|V |

]
and x(w) = 0 for all vertices w ∈ V

connected to v ∈ V ,

0 if z ∈
(2i− 1

2|V | ,
2i

2|V |
]
or z ∈

(2i− 2
2|V | ,

2i− 1
2|V |

]
and x(w) = 0

not for all vertices w ∈ V connected to v ∈ V ,

x(vi) if z 6∈
(2i− 2

2|V | ,
2i

2|V |
]
.

(31)

• The following theorem implies that for sufficiently large n the return xn = (xn(v), v ∈ V ) of the
algorithm can be regarded as a configuration that has been approximately picked according to the
distribution π.

Theorem 3.10

• Let P = (pxx′) be the transition matrix of the MCMC algorithm simulating the hard core model in (31) and
let π be the probability function given in (30).

• Then P is irreducible and aperiodic and the pair (P, π) is reversible.

Proof

• In order to show that P = (pxx′) is aperiodic it suffices to note that all diagonal elements pxx of P are
positive.

• The following considerations show that P is also irreducible.
– Let x,x′ ∈ E be two admissible configurations and let m(x) and m(x′) denote the number of

vertices set to 1 in x and x′, respectively.
– First we observe that the transition x −→ x0 to the „zero configuration” x0 ∈ E is possible in

m(x) steps with positive probability, where x0(v) = 0 for all v ∈ V .
– For this transition all vertices that were originally set to 1 are subsequently set to 0. Each of these

steps happens with positive probability.
– Afterwards, in a similar way the chain can transfer from the „zero state” x0 to state x′ taking

m(x′) steps where each of them happens again with positive probability.
– Thus the transition x −→ x′ in a finite number of steps is possible with positive probability.

• It is left to check that the detailed balance equation (2.85) holds, i.e.

πx pxx′ = πx′ px′x , ∀x,x′ ∈ E . (32)

– If the configurations x,x′ ∈ E coincide then (32) obviously holds.
– If x(v) 6= x′(v) for more than one vertex v ∈ V then pxx′ = px′x = 0 and thus (32) also holds for

this case.
– Let now x(v) 6= x′(v) for exactly one v ∈ V (and hence x(w) = x′(w) for all w 6= v).
– Then x(w) = x′(w) = 0 for all vertices w 6= v connected to v and consequently

πx pxx′ =
1
`

1
2|V | = πx′ px′x . ¤
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Remarks

• For all x ∈ E let m(x) be the number of vertices set to 1 of the admissible configuration x.

• If the admissible configuration is picked „at random” then the expectation EY of the random number
Y of vertices set to 1 is given as

EY =
1
`

∑

x∈E

m(x) . (33)

• If ` is large the direct calculation of the expectation EY via formula (33) is in general not possible
because it is difficult to determine the numbers m(x) analytically.

• A method to approximate the expectation EY is based on generating k „randomly picked” admissible
configurations x(1)

n ,x(2)
n , . . . ,x(k)

n ∈ E by k runs of the MCMC simulation algorithm described above.

• As a consequence of the strong law of large numbers the arithmetic mean
(
m(x(1)

n ) + m(x(2)
n ) + . . . +

m(x(k)
n )

)
/k is close to EY with high probability if the run length n and the sample size k are sufficiently

large.

3.3.2 Gibbs Sampler

The MCMC algorithm for the generation of „randomly picked” admissible configurations of the hard core model
(see Section 3.3.1) is a special case of a so–called Gibbs sampler for the simulation of discrete (high–dimensional)
random vectors.

• Let V be a finite (nonempty) index set and let X = (X(v), v ∈ V ) be a discrete random vector

– taking values in the finite state space E ⊂ R|V | with probability 1 where we assume

– that for every pair x,x′ ∈ E there is a finite sequence of states y0,y1, . . . ,yn ∈ E such that

y0 = x , yn = x′ and #{v ∈ V : yi(v) 6= yi+1(v)} = 1 , ∀ i = 0, . . . , n− 1 . (34)

• Let π = (πx, x ∈ E) be the probability function of the random vector X with πx > 0 for all x ∈ E, and for
all v ∈ V let

πx(v)|x(−v) = P
(
X(v) = x(v) | X(−v) = x(−v)

)
(35)

– denote the conditional probability that the component X(v) of X has the value x(v)

– given that the vector X(−v) = (X(w), w ∈ V \ {v}) of the other components equals x(−v) where we
assume (x(v),x(−v)) ∈ E.

MCMC Simulation Algorithm

• Similar to Section 3.3.1 we construct a Markov chain X0,X1, . . .

– with state space E and an (appropriately chosen) irreducible and aperiodic transition matrix P,
– such that π is the ergodic limit distribution of X0,X1, . . ..

• Then we generate a „path” x0,x1, . . . of the Markov chain by the recursive construction discussed in
Section 2.1.3:

1. Pick an initial state x0 ∈ E.
2. Pick a component v ∈ V according to a given probability function q = (qv, v ∈ V ) such that

qv > 0 for all v ∈ V .
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3. Generate the update xn+1(v) of the vth component according to the (conditional) probability
function

π· |xn(−v) =
(
πx(v)|xn(−v), ∀x(v) such that (x(v),xn(−v)) ∈ E

)
.

4. The values of all components w 6= v are not changed, i.e. xn+1(w) = xn(w) for all w 6= v.

Theorem 3.11 Let the transition matrix P = (pxx′) be given as

pxx′ =
∑

v∈V

qvπx′(v)|x(−v) 1I
(
x(−v) = x′(−v)

)
, ∀x,x′ ∈ E , (36)

where the conditional probabilities πx′(v)|x(−v) are defined in (35). Then P is irreducible and aperiodic and the
pair (P, π) is reversible.

Proof The assertion can be proved similarly to the proof of Theorem 3.10.

• In order to see that P = (pxx′) is aperiodic it suffices to notice

– that for all x ∈ E

px,x =
∑

v∈V

qvπx(v)|x(−v) =
∑

v∈V

qv
πx∑

z∈E: z(−v)=x(−v)

πz
> 0

– and hence all diagonal elements px,x of P are positive.

• The following considerations show that P is irreducible.

– For arbitrary but fixed x,x′ ∈ E let k ≤ |V | be the number of components v ∈ V such that
x(v) 6= x′(v).

– For k = 0, i.e. x = x′, we already showed while proving the aperiodicity that pxx > 0.
– Let now k > 0. Without loss of generality we may assume that the components are linearly ordered

and that the first k components of x and x′ differ.
– By hypothesis (34) the state space E contains a sequence y0, . . . ,yk ∈ E such that y0 = x and

y1 =
(
x′(v1), x(v2), . . . , x(v|V |)

)
, . . . , yk =

(
x′(v1), . . . , x′(vk), x(vk+1), . . . , x(v|V |)

)
= x′ .

– Moreover, for each i = 0, . . . , k − 1

pyiyi+1 = qviπyi+1(vi)|yi(−vi) = qvi

πyi+1∑
z∈E: z(−vi)=yi(−vi)

πz
> 0 (37)

and thus p
(k)
xx′ ≥

∏k−1
i=0 pyiyi+1 > 0.

• It is left to show that the detailed balance equation (2.85) holds, i.e.

πx pxx′ = πx′ px′x , ∀x,x′ ∈ E . (38)

– If x = x′, then (38) obviously holds.
– If x(v) 6= x′(v) for more than one component v ∈ V , then pxx′ = px′x = 0 and hence (38) holds.
– Let now x(v) 6= x′(v) for exactly one v ∈ V (and hence x(w) = x′(w) for all w 6= v). Then (37)

implies
πx pxx′ = πx

qvπx′∑
z∈E: z(−v)=x(−v)

πz
= πx′

qvπx∑
z∈E: z(−v)=x′(−v)

πz
= πx′ px′x .

¤
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Let X0,X1, . . . be a Markov chain with state space E and the transition matrix P = (pxx′) given by (36). As a
consequence of Theorem 3.11 we get that in this case

lim
n→∞

dTV(αn,π) = 0 (39)

for any initial concentration α0 where αn denotes the distribution of Xn. Furthermore, the Gibbs sampler shows
the following monotonic behavior.

Theorem 3.12 For all n = 0, 1, . . .,

dTV(αn, π) ≥ dTV(αn+1, π) . (40)

Proof

• For arbitrary v ∈ V and x′ ∈ E, formula (35) implies

∑

x∈E:x(−v)=x′(−v)

πx′(v)|x(−v) πx
(35)
=

∑

x∈E:x(−v)=x′(−v)

πx′πx(v)|x′(−v)

= πx′
∑

x∈E:x(−v)=x′(−v)

πx(v)|x′(−v)

︸ ︷︷ ︸
=1

= πx′ . (41)

• Using this and the definition (36) of the transition matrix P = (pxx′) we obtain

2 dTV(αn+1, π) =
∑

x′∈E

∣∣ αn+1, x′ − πx′
∣∣

=
∑

x′∈E

∣∣∣
∑

x∈E

αn, x pxx′ − πx′

∣∣∣

(36)
=

∑

x′∈E

∣∣∣
∑

x∈E

αn, x

∑

v∈V

qvπx′(v)|x(−v) 1I
(
x(−v) = x′(−v)

)− πx′

∣∣∣

=
∑

x′∈E

∣∣∣
∑

v∈V

qv

∑

x∈E:x(−v)=x′(−v)

πx′(v)|x(−v)αn, x − πx′

∣∣∣

(41)
=

∑

x′∈E

∣∣∣
∑

v∈V

qv

∑

x∈E:x(−v)=x′(−v)

πx′(v)|x(−v)

(
αn, x − πx

)∣∣∣

≤
∑

x′∈E

∑

v∈V

qv

∑

x∈E:x(−v)=x′(−v)

πx′(v)|x(−v)

∣∣ αn, x − πx

∣∣

=
∑

x∈E

∑

v∈V

qv

∑

x′∈E:x′(−v)=x(−v)

πx′(v)|x(−v)

︸ ︷︷ ︸
(36)
=

∑
x′∈E

pxx′=1

∣∣ αn, x − πx

∣∣

=
∑

x∈E

∣∣ αn, x − πx

∣∣ = 2 dTV(αn, π) .
¤

Remarks

• A modified version of the Gibbs sampler that was considered in this section is the so-called cyclic Gibbs
sampler, which uses a different procedure for picking the component v ∈ V that will be updated.
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– Namely, it is not chosen according to a (given) probability function q = (qv, v ∈ V ), where qv > 0
for all v ∈ V ,

– but the components v ∈ V are sorted linearly and chosen one after another according to this order.
The selection of the update candidates thus becomes a deterministic procedure.

• If k = n|V |+ i for some numbers n = 0, 1, . . . and i = 1, . . . , |V |, then the matrix P(k) =
(
pxx′(k)

)
of

the transition probabilities pxx′(k) in step k is given as

pxx′(k) = πx′(vi)|x(−vi) 1I
(
x(−vi) = x′(−vi)

)
, ∀x,x′ ∈ E . (42)

• For an entire (scan) cycle, updating each component exactly once, one obtains the following transition
matrix

P = P(1) · . . . ·P(|V |) . (43)

• It is easy to show that the matrix P = (pxx′) given by (42) and (43)

– is irreducible and aperiodic
– and that π is the stationary (limit) distribution of P as
– for all i = 1, . . . , |V | and for all x′ ∈ E formulae (41) and (42) imply that

∑

x∈E

πxpxx′(i)
(42)
=

∑

x∈E

πxπx′(vi)|x(−vi) 1I
(
x(−vi) = x′(−vi)

) (41)
= πx′

– and hence also ∑

x∈E

πxpxx′ = πx′ .

• The pair (P,π) is in general not reversible. However, in Section 2.3.4 we showed that the pair (M, π)
is reversible where

M = PP̃ for P̃ = diag(π−1
x )P> diag(πx) (44)

denotes the multiplicative reversible version of P.

Theorem 3.13 The matrix M has the following representation

M = P(1) · . . . ·P(|V |) ·P(|V |) · . . . ·P(1) , (45)

i.e., the multiplicative reversible version M of the „forward–scan matrix” P coincides with the „forward–backward
scan matrix”.

Proof

• It suffices to show that P̃ = P(|V |) · . . . ·P(1) for the matrix P̃ = (p̃xx′) defined by (44).

• Formulae (42)–(44) imply for arbitrary x,x′ ∈ E

p̃xx′ =

(
diag(π−1

x )P> diag(πx)

)

xx′

=

(
diag(π−1

x )P>(|V |) · . . . ·P>(1) diag(πx)

)

xx′

=
∑

y1,...,y|V |−1∈E

1
πx

πx(v|V |)|y1(−v|V |) 1I
(
x(−v|V |) = y1(−v|V |)

)
πy1(v|V |−1)|y2(−v|V |−1)

× 1I
(
y1(−v|V |−1) = y2(−v|V |−1)

)
. . . πy|V |−1(v1)|x′(−v1) 1I

(
y|V |−1(−v1) = x′(−v1)

)
πx′ .
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• This and (35) yield (similar to the proof of (38))

p̃xx′ =
∑

y1,...,y|V |−1∈E

πy1(v|V |)|x(−v|V |) 1I
(
x(−v|V |) = y1(−v|V |)

)
πy2(v|V |−1)|y1(−v|V |−1)

× 1I
(
y1(−v|V |−1) = y2(−v|V |−1)

)
. . . πx′(v1)|y|V |−1(−v1) 1I

(
y|V |−1(−v1) = x′(−v1)

)

=
(
P(|V |) · . . . ·P(1)

)
xx′

. ¤

Remarks

• If Gibbs samplers are used in practice it is always assumed

– that the conditional probabilities considered in (36) and (42)

πx(v)|x(−v) = P
(
X(v) = x(v) | X(−v) = x(−v)

)

only depend on the vector
(
x(w), w ∈ N (v)

)
of the values

– obtained by the random vector X = (X(w), w ∈ V ) in a certain small neighborhood N (v) ⊂ V of
v ∈ V .

• The family N = {N (v), v ∈ V } of subsets of V is called a system of neighborhoods if for arbitrary
v, w ∈ V

(a) v 6∈ N (v),
(b) w ∈ N (v) implies v ∈ N (w).

• For the hard–core model from Section 3.3.1, N (v) is the set of those vertices w 6= v that are directly
connected to v by an edge.

3.3.3 Metropolis–Hastings Algorithm

• We will now show that the Gibbs sampler discussed in Section 3.3.2 is a special case of a class of MCMC
algorithms that are of the so–called Metropolis–Hastings type. This class generalizes two aspects of the
Gibbs sampler.

1. The transition matrix P = (pxx′) can be of a more general form than the one defined by

pxx′ =
∑

v∈V

qvπx′(v)|x(−v) 1I
(
x(−v) = x′(−v)

)
, ∀x,x′ ∈ E. (46)

2. Besides this, a procedure for acceptance or rejection of the updates x −→ x′ is integrated into the
algorithm. It is based on a similar idea as the acceptance-rejection sampling discussed in Section 3.2.3;
see in particular Theorem 3.5.

• Let V be a finite nonempty index set and let X = (X(v), v ∈ V ) be a discrete random vector,

– taking values in the finite state space E ⊂ R|V | with probability 1.

– As usual we assume πx > 0 for all x ∈ E where π = (πx, x ∈ E) is the probability function of the
random vector X.

• We construct a Markov chain X0,X1, . . . with ergodic limit distribution π whose transition matrix P =(
pxx′

)
is given by

pxx′ = qxx′axx′ , ∀x,x′ ∈ E with x 6= x′, (47)
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– where Q =
(
qxx′

)
is an arbitrary stochastic matrix that is irreducible and aperiodic, i.e. in particular

qxx′ = 0 if and only if qx′x = 0.

– Moreover, the matrix A =
(
axx′

)
is defined as

axx′ =
sxx′

1 + txx′
, (48)

where

txx′ =





πxqxx′

πx′qx′x
if qxx′ > 0,

0 if qxx′ = 0,
(49)

– and S =
(
sxx′

)
is an arbitrary symmetric matrix such that

0 < sxx′ ≤ 1 + min
{
txx′ , tx′x

}
. (50)

Remarks

• The structure given by (47) of the transition matrix P =
(
pxx′

)
can be interpreted as follows.

– At first a candidate x′ ∈ E for the update x −→ x′ is selected according to Q =
(
qxx′

)
.

– If x′ 6= x, then x′ is accepted with probability axx′ ,
– i.e., with probability 1 − axx′ the update x −→ x′ is rejected (and the current state is thus not

changed).

• In order to apply the Metropolis–Hastings algorithm defined by (47)–(50), for a given „potential”
transition matrix Q =

(
qxx′

)
only the quotients πx/πx′ need to be known for all pairs x, x′ ∈ E of

states such that qxx′ > 0.

• The special case of the Gibbs sampler (see Section 3.3.2) is obtained

– if the „potential” transition probabilities qxx′ are defined by (46).
– Then for arbitrary x, x′ ∈ E such that #{v ∈ V : x(v) 6= x′(v)} ≤ 1

πxqxx′ = πx′qx′x and thus txx′ = 1 .

– By defining sxx′ = 1 + min
{
txx′ , tx′x

}
we obtain axx′ = 1 for arbitrary x, x′ ∈ E such that

#{v ∈ V : x(v) 6= x′(v)} ≤ 1.

Theorem 3.14 The transition matrix P = (pxx′) defined by (47)–(50) is irreducible and aperiodic and the pair
(P, π) is reversible.

Proof

• As the acceptance probabilities axx′ given by (48)–(50) are positive for arbitrary x ,x′ ∈ E the irredu-
cibility and aperiodicity of P = (pxx′) are inherited from the corresponding properties of Q = (qxx′).

• In order to check the detailed balance equation (2.85), i.e.

πx pxx′ = πx′ px′x , ∀x,x′ ∈ E , (51)

we consider two cases.

– If qxx′ = qx′x = 0, then pxx′ = px′x = 0 and (51) holds.
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– If qxx′ > 0, then also qx′x > 0 and (47)–(50) imply

πxpxx′ = πxqxx′axx′

= πxqxx′
sxx′πx′qx′x

πx′qx′x + πxqxx′

= πx′px′x ,

where the last equality follows by the symmetry of the matrix S =
(
sxx′

)
. ¤

Examples

1. Metropolis Algorithm

• The classic Metropolis algorithm is obtained if we consider equality in (50), i.e. if

sxx′ = 1 + min
{
txx′ , tx′x

}
, ∀x, x′ ∈ E .

• In this case the acceptance probabilities axx′ for arbitrary x, x′ ∈ E such that qxx′ > 0 are of the
following form:

axx′ =
1 + min

{
txx′ , tx′x

}

1 + tx′x

=
min

{
1 + txx′ , 1 + tx′x

}

1 + txx′
= min

{
1,

1 + tx′x
1 + txx′

}

= min

{
1,

πx′qx′x
πxqxx′

}
,

i.e.

axx′ = min

{
1,

πx′qx′x
πxqxx′

}
, ∀x, x′ ∈ E such that qxx′ > 0. (52)

• If the matrix Q = (qxx′) of the „potential” transition probabilities is symmetric, then (52) implies

axx′ = min
{

1,
πx′

πx

}
, ∀x, x′ ∈ E such that qxx′ > 0. (53)

• In particular, if the „potential” updates x −→ x′ are chosen „randomly”, i.e. if

qxx′ =
1
|E| , ∀x, x′ ∈ E ,

then the acceptance probabilities axx′ are also given by (53).

2. Barker Algorithm

• The so–called Barker algorithm is obtained if we consider the matrix S =
(
sxx′

)
where sxx′ = 1

for arbitrary x, x′ ∈ E.
• The acceptance probabilities axx′ are then given by

axx′ =
πx′qx′x

πx′qx′x + πxqxx′
, ∀x, x′ ∈ E such that qxx′ > 0. (54)

• If the matrix Q = (qxx′) of „potential” transition probabilities is symmetric, then

axx′ =
πx′

πx′ + πx
, ∀x, x′ ∈ E such that qxx′ > 0. (55)
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MCMC Simulation Algorithm

• As it was done for the Gibbs sampler (see Section 3.3.2) we construct a Markov chain X0,X1, . . .

– with state space E and with the (irreducible and aperiodic) transition matrix P = (pxx′) defined
by (47)–(50)

– such that π is the ergodic limit distribution of X0,X1, . . ..

• For sufficiently large n the distribution αn on Xn coincides approximately with π.

• In estimating the approximation error for MCMC simulation algorithms it is useful

– to know the variational distance dTV(αn, π) between the distributions αn and π

– as well as its upper bounds; see Section 3.4.1.

3.4 Error Analysis for MCMC Simulation

3.4.1 Estimate for the Rate of Convergence

• We will now show how the upper bounds for the variational distance dTV(αn, π) and the second largest
absolute value |θ2| = max{λ2, |λ`|} of the eigenvalues λ1, . . . , λ` of the transition matrix P derived in
Section 2.3 can be used

– in order to determine upper bounds for the distance dTV(αn, π) occurring in the nth step of the
MCMC simulation via the Metropolis algorithm,

– if the simulated distribution π satisfies the following conditions.

• Namely we assume

– that πx 6= πx′ for arbitrary x, x′ ∈ E such that x 6= x′,

– and that the states x1, . . . ,x` ∈ E are ordered such that πx1 > . . . > πx`
.

• We may thus (w.l.o.g.) return to the notation used in Section 2.3 and identify the states x1, . . . ,x` ∈ E
and the first ` natural numbers, i.e. E = {1, . . . , `}.

• The probabilities πi (= πxi) can thus be written in the following way:

πi =
bh(i)

z(b)
, ∀ i = 1, . . . , ` , (56)

– where h : {1, . . . , `} → (1,∞) is a monotonically increasing function,

– and b ∈ (0, 1) is chosen such that for a certain constant c ≥ 1

h(i + 1)− h(i) ≥ c , ∀ i = 1, . . . , `− 1 (57)

– and z(b) =
∑`

i=1 bh(i) is an (in general unknown) factor.

• Furthermore, the definition of a Metropolis algorithm for the MCMC simulation of π = (π1, . . . , π`)>

requires

– that the basis b and the differences h(i + 1)− h(i) are known for all i = 1, . . . , `− 1,

– i.e. in particular that the quotients πi+1/πi are known for all i = 1, . . . , `− 1.
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• Let the matrix Q = (qij) of the „potential” transitions i → j be given by

qij =





1
2

if i = 1, j = 1, 2 or i = `, j = `, `− 1,

1
2

if i = 2, . . . , `− 1 and j = i− 1, i + 1,

0 , else.

(58)

– Let the acceptance probability aij be defined as in (53), i.e.

aij = min
{

1,
πj qji

πiqij

}
= min

{
1, bh(j)−h(i)

}
, ∀ i, j ∈ {1, . . . , `} where qij = qji > 0.

– By (56) and (58) the entries pij = qijaij of the transition matrix P = (pij) for the MCMC simulation
are thus be given as

p11 = 1− bh(2)−h(1)

2
, p12 =

bh(2)−h(1)

2
, p`,`−1 = p`` =

1
2

(59)

and for i = 2, . . . , `− 1

pi,i−1 =
1
2

, pi,i+1 =
bh(i+1)−h(i)

2
, pii = 1− pi,i−1 − pi,i+1 . (60)

Theorem 3.15 The second largest eigenvalue λ2 of the transition matrix P = (pij) defined by (59)–(60) has
the following upper bound

λ2 ≤ 1− (1− bc/2)2

2
. (61)

Proof

• By Theorem 3.14 the pair (P, π) is reversible.
• Hence, Rayleigh’s theorem (see Theorem 2.17) yields the following representation formula

λ2 = 1− inf
x∈R`

6=

D(P,π)(x,x)
Var π(x)

, (62)

– where R`
6= =

{
x = (x1, . . . , x`)> ∈ R` : xi 6= xj for somer i, j ∈ E

}
denotes the subset of vectors

in R` whose components are not all equal,
– Var π(x) = ‖x‖2π − (x)2π is the variance of the components of x with respect to π

– and D(P,π)(x,x) =
(
(I−P)x,x

)
π
denotes the Dirichlet form of the reversible pair (P,π).

• Due to (62) it is sufficient to show that

Var π(x) ≤ aD(P,π)(x,x) , ∀x ∈ R` (63)

for some constant a such that
0 < a ≤ 2

(1− bc/2)2
. (64)

– Similar to the proof of Theorem 2.18 we obtain by copying the notation that for all θ ∈ (0, 1)

2 Var π(x) =
∑

i,j∈E

(xi − xj)2πiπj

=
∑

i,j∈E

( ∑
e∈γij

1
Q(e)θ

Q(e)θ(xe− − xe+)
)2

πiπj

≤
∑

i,j∈E

( ∑
e∈γij

Q(e)2θ(xe− − xe+)2
)( ∑

e∈γij

1
Q(e)2θ

)
πiπj ,



3 MONTE–CARLO SIMULATION 94

where the „edge probability” Q(e) = πe− pe−e+ is assigned to the „directed” edge e = (e−, e+) and
γij denotes the „path” from i to j.

– Using the notation |γij |θ =
∑

e∈γij
Q(e)−2θ we thus obtain

2Var π(x) ≤
∑

i,j∈E

|γij |θ
∑

e∈γij

Q(e)2θ(xe− − xe+)2 πiπj

=
∑

e∈E
(xe− − xe+)2Q(e)Q(e)2θ−1

∑
γij3e

πiπj |γij |θ .

– This shows (63) for
a = max

e∈E

{
Q(e)2θ−1

∑
γij3e

πiπj |γij |θ
}

, (65)

as we showed in Lemma 2.8 that

2 D(P,π)(x,x) =
∑

e∈E
(xe− − xe+)2Q(e) .

• It is left to show that the constant a considered in (65) satisfies the inequality (64).
– For this purpose we choose the path γij = (i, i + 1, . . . , j − 1, j) for each pair i, j ∈ E such that

i < j.
– Then (56) and (59)–(60) imply

Q(i, i + 1) = πipi,i+1 =
bh(i)

z(b)
bh(i+1)−h(i)

2
=

πi+1

2
.

– Thus, the reversibility of the pair (P, π) shown in Theorem 3.14 yields

Q(i + 1, i) = Q(i, i + 1) =
πi+1

2
.

– Because of (56) and (57) we obtain for arbitrary i, j ∈ E such that i < j

|γij |θ =

((πi+1

πj

)−2θ

+ . . . +
(πj

πj

)−2θ
)(πj

2

)−2θ

≤
(
b2(j−i−1)cθ + . . . + b2cθ + 1

)(πj

2

)−2θ

≤ 22θπ−2θ
j

1− b2cθ
.

– Moreover, all edges e ∈ E are of the form e = (i, i + 1) or e = (i, i− 1), as for the entries pij of the
transition matrix P = (pij) defined by (58)–(60) we have pij = 0 if |i− j| > 1.

• Thus, for θ < 1/2,

a = max
e∈E

{
Q(e)2θ−1

∑
γij3e

πiπj |γij |θ
}

≤ max
k=1,...,`−1

{
Q(k, k + 1)2θ−1

∑

1≤i≤k,k+1≤j≤`

22θ
πiπ

1−2θ
j

1− b2cθ

}

≤ 2
(1− b2cθ)(1− bc(1−2θ))

,

as Q(k, k + 1)2θ−1 =
(
πk+1/2

)2θ−1 and
∑

1≤i≤k πi ≤ 1 and hence

∑

k+1≤j≤`

π1−2θ
j =

((πk+1

πk+1

)1−2θ

+ . . . +
( π`

πk+1

)1−2θ
)

π1−2θ
k+1 ≤ π1−2θ

k+1

1− bc(1−2θ)
.
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• For θ = 1/4 we obtain the estimate (64). ¤

The following lemma will turn out to be useful in order to derive a lower bound for the smallest eigenvalue λ` of
the transition matrix P = (pij) defined by (59)–(60).

Lemma 3.1

• Let A = (aij) be an arbitrary `× `–matrix and for all i = 1, . . . , ` let ri =
∑

j: 1≤j≤`, j 6=i |aij |.
• Let λ be an arbitrary eigenvalue of A, let φ = (φ1, . . . , φ`)> 6= o be a left eigenvector corresponding to λ
and let k be the number of the component φk where

|φk| = max
i=1,...,`

|φi| > 0 .

• Then,
|λ− akk| ≤ rk . (66)

Proof

• By definition of λ and φ we have Aφ = λφ. In particular

∑̀

j=1

akjφj = λφk and (λ− akk)φk =
∑

j: 1≤j≤`, j 6=k

akjφj .

• This implies

|λ− akk||φk| ≤
∑

j: 1≤j≤`, j 6=k

|akj ||φj | ≤ rk|φk| and |λ− akk| ≤ rk . ¤

Theorem 3.16 The smallest eigenvalue λ` of the transition matrix P = (pij) defined by (59)–(60) has the
following lower bound

λ` ≥ −bc . (67)

Proof

• By Lemma 3.1 applied to A = P (and to the index k determined for λ`)

|λ` − pkk| ≤
∑

j: 1≤j≤`, j 6=k

pkj = 1− pkk ⇒ λ` ≥ −1 + 2pkk .

• Thus, taking into account (59)–(60) we derive

λ` ≥ −1 + 2 min
i=1,...,`

pii ≥ −1 + 2
(
1− 1

2
− bc

2

)
= −bc . ¤

Remark Summarizing the results of Theorems 3.15 and 3.16 we have shown that

|θ2| = max{λ2, |λ`|} ≤ max
{

1− (1− bc/2)2

2
, bc

}
= 1− (1− bc/2)2

2
. (68)
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3.4.2 MCMC Estimators; Bias and Fundamental Matrix

In this section we will investigate the characteristics of Monte–Carlo estimators for expectations.

• Examples for similar problems were already discussed in Section 3.1.1,

– when we estimated π by statistical means
– and the value of integrals via Monte–Carlo simulation.

• However, for these purposes we assumed

– that the pseudo–random numbers can be regarded as realizations of independent and identically dis-
tributed sampling variables.

– In the present section we assume that the sample variables form an (appropriately chosen) Markov
chain.

• This is the reason why these estimators are called Markov–Chain–Monte–Carlo estimators (MCMC estima-
tors).

Statistical Model

• Let V be a finite (nonempty) index set and let X = (X(v), v ∈ V ) be a discrete random vector,
– taking values in the finite state space E ⊂ R|V | with probability 1,
– where E is identified with the set E = {1, . . . , `} of the first ` = |E| natural numbers.
– Furthermore, we assume πi > 0 for all i ∈ E where π = (πi, i ∈ E) denotes the probability

function of the random vector X.
• Our goal

– is to estimate the expectation θ = Eϕ(X) via MCMC simulation where

θ = π>ϕ (69)

– and ϕ = (ϕ1, . . . , ϕ`)> : E → R is an arbitrary but fixed function.
• As an estimator for θ we consider the random variable

θ̂n =
1
n

n−1∑

k=0

ϕ(Xk) , ∀n ≥ 1 , (70)

– where X0,X1, . . . is a Markov chain with state space E, arbitrary but fixed initial distribution α
and

– an irreducible and aperiodic transition matrix P =
(
pij

)
, such that π is the ergodic limit distri-

bution with respect to P.

Remarks

• Typically, the initial distribution α does not coincide with the simulated distribution π.
– Consequently, the MCMC estimator θ̂n defined by (70) is not unbiased for fixed (finite) sample

size,
– i.e. in general E θ̂n 6= θ for all n ≥ 1.

• For determining the bias E θ̂n − θ the following representation formula will be helpful.

Theorem 3.17 For all n ≥ 1,

E θ̂n =
1
n

α>
n−1∑

k=0

Pkϕ . (71)
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Proof

• In Theorem 2.3 we proved that for all k ≥ 1 the distribution αk of Xk is given by α>k = α>Pk.

• Thus, by definition (70) of the MCMC estimator θ̂n, we get that

E θ̂n =
1
n

n−1∑

k=0

Eϕ(Xk) =
1
n

n−1∑

k=0

α>k ϕ =
1
n

n−1∑

k=0

α>Pkϕ =
1
n

α>
n−1∑

k=0

Pkϕ . ¤

Remarks

• As an immediate consequence of Theorem 3.17, the ergodicity of the transition matrix P, and (69),
one obtains

lim
n→∞

E θ̂n = θ ,

• i.e., the MCMC estimator θ̂n for θ defined in (70) is asymptotically unbiased.

Apart from this, the asymptotic behavior of n
(
E θ̂n−θ

)
for n →∞ can be determined. For this purpose we need

the following two lemmata.

Lemma 3.2 Let Π be the `× ` matrix consisting of the ` identical row vectors π>. Then

(P−Π)n = Pn −Π (72)

for all n ≥ 1 and in particular
lim

n→∞
(P−Π)n = 0 . (73)

Proof

• Evidently, (72) holds for n = 1.
– If we assume that (72) holds for some n− 1 ≥ 1, then

(P−Π)n = (P−Π)n−1(P−Π) = (Pn−1 −Π)(P−Π)
= Pn −ΠP−Pn−1Π + Π2 = Pn −Π ,

where the last equality follows from the fact that

π>P = π> and thus ΠP = PΠ = Π = Π2 .

– This proves (72) for all n ≥ 1.
• As P is assumed to be irreducible and aperiodic,

– by Theorems 2.4 and 2.9 we get that Pn −Π → 0 if n →∞.
– Thus, by (72), also (P−Π)n → 0 if n →∞. ¤

Remarks

• By the zero convergence (P−Π)n → 0 for n →∞ in Lemma 3.2 and Lemma 2.4, the matrix I−(P−Π)
is invertible.

• In order to show this it suffices to consider the matrix A = P−Π in Lemma 2.4.
• The inverse matrix

Z = (I− (P−Π))−1 (74)

is hence well defined. It is called the fundamental matrix of P.
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Lemma 3.3 The fundamental matrix Z = (I − (P −Π))−1 of the irreducible and aperiodic transition matrix
P has the representation formulae

Z = I +
∞∑

k=1

(Pk −Π) (75)

and

Z = I + lim
n→∞

n−1∑

k=1

n− k

n
(Pk −Π) . (76)

Proof

• Formula (75) follows from Lemmas 2.4 and 3.2 as for A = P−Π

Z = (I−A)−1

= (I−A)−1 lim
n→∞

(I−An)

= lim
n→∞

(
(I−A)−1(I−An)

)

(2.79)
= lim

n→∞

(
I + A + . . . + An−1

)

= I +
∞∑

k=1

Ak

(
= I +

∞∑

k=1

(P−Π)k

)

(72)
= I +

∞∑

k=1

(Pk −Π) .

• In order to show (76) it suffices to notice that

n∑

k=1

(Pk −Π)−
n−1∑

k=1

n− k

n
(Pk −Π) =

n∑

k=1

k

n
(Pk −Π) =

1
n

n∑

k=1

k(P−Π)k

and that the last expression converges to 0 for n →∞.
• The zero convergence is due to the fact that for every `× ` matrix A

(I−A)
n∑

k=1

kAk =
n∑

k=1

Ak − nAn+1

and thus for A = P−Π

lim
n→∞

1
n

n∑

k=1

k(P−Π)k = lim
n→∞

(
1
n

Z
n∑

k=1

(P−Π)k − Z(P−Π)n+1

)

(72)
= Z

(
lim

n→∞
1
n

n∑

k=1

(Pk −Π)

︸ ︷︷ ︸
(75)−→Z−I

− lim
n→∞

(P−Π)n+1

︸ ︷︷ ︸
(73)−→ 0

)

= 0 . ¤

Theorem 3.17 and Lemma 3.3 enable us to give a more detailed description of the asymptotic behavior of the
bias E θ̂n − θ.
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Theorem 3.18

• Let a =
(
α>Z− π>

)
ϕ where Z denotes the fundamental matrix of P that was introduced by (74).

• Then, for all n ≥ 1,
n
(
E θ̂n − θ

)
= a + en , (77)

where en is a remainder such that en → 0 for n →∞.

Proof

• The representation formula (75) in Lemma 3.3 yields

α>Zϕ = α>ϕ + α> lim
n→∞

n−1∑

k=1

(Pk −Π)ϕ

= α>ϕ + lim
n→∞

(
α>

(n−1∑

k=1

Pk
)
ϕ− (n− 1)α>Π︸ ︷︷ ︸

=π>

ϕ
)

= lim
n→∞

(
α>

(n−1∑

k=0

Pk
)
ϕ− (n− 1)π>ϕ

)
.

• Hence by taking into account Theorem 3.17 we obtain the following for a certain sequence {en} such
that en → 0:

a =
(
α>Z− π>

)
ϕ

= α>
(n−1∑

k=0

Pk
)
ϕ− nπ>ϕ− en

(71)
= nE θ̂n − nπ>ϕ− en

(69)
= n

(
E θ̂n − θ

)− en . ¤

3.4.3 Asymptotic Variance of Estimation; Mean Squared Error

For the statistical model introduced in Section 3.4.2 we now investigate the asymptotic behavior of the variance
Var θ̂n if n →∞.

Theorem 3.19 Define σ2 =
∑`

i=1 πi(ϕi − θ)2 and let Z = (I − (P −Π))−1 be the fundamental matrix of P
defined by (74). Then

lim
n→∞

n Var θ̂n = σ2 + 2π> diag(ϕ)(Z− I)ϕ . (78)

Proof

• Clearly,

n2 Var θ̂n = E
(n−1∑

k=0

ϕ(Xk)
)2

−
(n−1∑

k=0

Eϕ(Xk)
)2

(79)

and thus

n2 Var θ̂n =
n−1∑

k=0

Eϕ2(Xk) + 2
∑

0≤k<k′≤n−1

E
(
ϕ(Xk)ϕ(Xk′)

)
−

(n−1∑

k=0

Eϕ(Xk)
)2

.
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• This representation will now be used to show (78) for the case α0 = π.
– In this case we observe

(n−1∑

k=0

Eϕ(Xk)
)2

= (nθ)2 and
n−1∑

k=0

Eϕ2(Xk) = n
∑̀

i=1

πiϕ
2
i .

– Furthermore, by the stationarity of the Markov chain {Xn},

∑

0≤k<k′≤n−1

E
(
ϕ(Xk)ϕ(Xk′)

)
=

n−1∑

k=1

(n− k)E
(
ϕ(X0)ϕ(Xk)

)
,

where

E
(
ϕ(X0)ϕ(Xk)

)
=

∑̀

i=1

∑̀

j=1

πiϕip
(k)
ij ϕj = π> diag(ϕ)Pkϕ

and Pk = P(k) = (p(k)
ij ) denotes the matrix of the k-step transition probabilities.

– A combination of the results above yields

1
n

Var
(n−1∑

k=0

ϕ(Xk)
)

=
∑̀

i=1

πiϕ
2
i + 2π> diag(ϕ)

n−1∑

k=1

n− k

n
Pkϕ− nθ2

= σ2 + 2π> diag(ϕ)

(
n−1∑

k=1

n− k

n
Pkϕ− n− 1

2
Πϕ

)

= σ2 + 2π> diag(ϕ)

(
n−1∑

k=1

n− k

n

(
Pk −Π

)
)

ϕ ,

– where the second equality is due to the identity

θ2 = π> diag(ϕ)Πϕ .

– Taking into account the representation formula (76) for Z− I this implies (78).
• It is left to show that (78) is also true for an arbitrary initial distribution α.

– At this point we will use a more precise notation: We will write X(α)
0 ,X(α)

1 , . . . instead of X0,X1, . . .

and θ̂
(α)
n instead of θ̂n.

– It suffices to show that
lim

n→∞
n

(
Var θ̂(π)

n −Var θ̂(α)
n

)
= 0 . (80)

– For this purpose we introduce the following notation: For 0 < r < n− 1 let

Y (·)
r =

r−1∑

k=0

ϕ(X(·)
k ) und Z(·)

rn =
n−1∑

k=r

ϕ(X(·)
k ) .

– Then, by (79),

n2
(
Var θ̂(π)

n −Var θ̂(α)
n

)

=
(
E

(
Y (π)

r + Z(π)
rn

)2 − E (
Y (α)

r + Z(α)
rn

)2
)
−

((
EY (π)

r + EZ(π)
rn

)2 − (
EY (α)

r + EZ(α)
rn

)2
)

=
(
E

(
Y (π)

r

)2 − (
EY (π)

r

)2 − E (
Y (α)

r

)2 +
(
EY (α)

r

)2
)

+2E
((

Y (π)
r − E (

Y (π)
r

))(
Z(π)

rn − E (
Z(π)

rn

)))− 2E
((

Y (α)
r − E (

Y (α)
r

))(
Z(α)

rn − E (
Z(α)

rn

)))

+
(
E

(
Z(π)

rn

)2 − (
EZ(π)

rn

)2
)
−

(
E

(
Z(α)

rn

)2 − (
EZ(α)

rn

)2
)

,

where we denote the three summands in the last expression by Ir, IIrn and IIIrn, respectively.
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– Ir does not depend on n and hence limn→∞ n−1Ir = 0.
– As the state space E is finite we obtain for c = maxi∈E |ϕ(i)| < ∞ that

1
n

IIrn ≤ 4rcE
( 1

n

∣∣Z(π)
rn − E (

Z(π)
rn

)∣∣
)

+ 4rcE
( 1

n

∣∣Z(α)
rn − E (

Z(α)
rn

)∣∣
)

.

– This implies limn→∞ n−1IIrn = 0 for any r > 0, as

1
n

∣∣Z(·)
rn − E

(
Z(·)

rn

)∣∣ ≤ 2c

with probability 1 for all n > r and

lim
n→∞

1
n

∣∣Z(π)
rn − E (

Z(π)
rn

)∣∣ = lim
n→∞

1
n

∣∣Z(α)
rn − E (

Z(α)
rn

)∣∣ = 0 .

– Furthermore, for n > r > 0 we have the following estimate

1
n

IIIrn ≤ 1
n

∑̀

i=1

(
E

(
Z

(δi)
0,n−r

)2 − (
EZ

(δi)
0,n−r

)2
)
|πi − αri|

≤ sup
n>0

max
j∈{1,...,`}

1
n + r

E
(
Z

(δj)
0n − EZ

(δj)
0n

)2

︸ ︷︷ ︸
<∞

∑̀

i=1

|πi − αri| ,

where it is easy to see that the supremum is finite.
– Due to the ergodicity of the Markov chain X(α)

0 ,X(α)
1 , . . ., the last summand will become arbitrarily

small for sufficiently large r. This completes the proof of (80). ¤

Remarks

• Note that
– for the mean squared error E (

(
θ̂n−θ

)2) of the MCMC estimator θ̂n = θ̂(X1, . . . ,Xn) for θ defined
in (70) it holds that

E (
(
θ̂n − θ

)2) =
(
E θ̂n − θ

)2 + Var θ̂n , (81)

– i.e., the mean squared error of the MCMC estimator θ̂n is equal to the sum of the squared bias
(E θ̂n − θ)2 and the variance Var θ̂n of the estimator θ̂n.

• Both summands on the right hand side of (81) converge to 0 if n → ∞ but with different rates of
convergence.
– In Theorem 3.19 we showed that Var θ̂n = O(n−1).
– On the other hand, by Theorem 3.18 we get that (E θ̂n − θ)2 = O(n−2).

• Consequently, the asymptotic behavior of the mean squared error E (
(
θ̂n − θ

)2) of θ̂n is crucially
influenced by the asymptotic variance Var θ̂n of the estimator, whereas the bias plays a minor role.

• In other words: It can make sense to choose the simulation matrix P such that
– the asymptotic variance limn→∞ nVar θ̂n is as small as possible,
– even if this results in a certain increase of the asymptotic bias limn→∞ n

(
E θ̂n − θ

)
.

In order to investigate this problem more deeply we introduce the following notation: Let

V (ϕ,P, π) = lim
n→∞

nVar θ̂n ,

where ϕ : E → R is an arbitrary function and (P, π) is an arbitrary reversible pair.
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Theorem 3.20

• Let P1 = (p1,ij) and P2 = (p2,ij) be two transition matrices on E such that (P1,π) and (P2, π) are
reversible.

– For arbitrary i, j ∈ E such that i 6= j let p1,ij ≥ p2,ij,

– i.e., outside the diagonal all entries of the transition matrix P1 are greater or equal than the corres-
ponding entries of the transition matrix P2.

• Then, for any function ϕ : E → R,
V (ϕ,P1,π) ≤ V (ϕ,P2,π) . (82)

Proof

• Let P = (pij) be a transition matrix such that the pair (P, π) is reversible. It suffices to show that

∂

∂pij
V (ϕ,P,π) ≤ 0 , ∀ i, j ∈ E with i 6= j. (83)

• By Theorem 3.19,
∂

∂pij
V (ϕ,P,π) = 2π> diag(ϕ)

∂Z
∂pij

ϕ , (84)

where Z denotes the fundamental matrix of P introduced by (74).

– On the other hand, as ZZ−1 = I, we get that

( ∂Z
∂pij

)
Z−1 + Z

(∂Z−1

∂pij

)
= 0

and thus
∂Z
∂pij

= −Z
∂Z−1

∂pij
Z .

– Taking into account (84) this implies

∂

∂pij
V (ϕ,P, π) = −2π> diag(ϕ)Z

∂Z−1

∂pij
Zϕ . (85)

• As the pair (P,π) is reversible, by the representation formula (75) for the fundamental matrix Z = (zij)
that was derived in Lemma 3.3 we obtain for arbitrary i, j ∈ E

πizij = πiδij +
∞∑

k=1

(
πip

(k)
ij − πiπj

)
= πjδji +

∞∑

k=1

(
πjp

(k)
ji − πjπi

)
= πjzji .

– This implies

π> diag(ϕ)Z =
(∑̀

i=1

πiϕizi1, . . . ,
∑̀

i=1

πiϕizi`

)

=
(
π1

∑̀

i=1

z1iϕi, . . . , π`

∑̀

i=1

z`iϕi

)

=
(
Zϕ

)> diag(π) .
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– Thus, by (85),

∂

∂pij
V (ϕ,P, π) = −2

(
Zϕ

)> diag(π)
∂Z−1

∂pij
Zϕ = 2

(
Zϕ

)> diag(π)
∂P
∂pij

Zϕ , (86)

where the last equality is due to the fact that

∂Z−1

∂pij
= − ∂P

∂pij

which is an immediate consequence of the definition (74) of Z.
• As P = (pij) is a stochastic matrix and (P, π) is reversible

– only the entries pij where i < j (or alternatively the entries pij where i > j) can be chosen
arbitrarily. This can be seen as follows.

– For every pair i, j ∈ E such that i 6= j the entries pji, pii and pjj can be expressed via pij in the
following way:

pji =
πi

πj
pij , pii = c− pij , pjj = c′ − πi

πj
pij ,

where c and c′ are constants that do not depend on pij .
– For arbitrary i′, j′ ∈ E the entry

(
diag(π)(∂P/∂pij)

)
i′,j′ of the matrix product diag(π)(∂P/∂pij)

is given by

(
diag(π)

∂P
∂pij

)
i′,j′

=





−πi if (i′, j′) = (i, i) or (i′, j′) = (j, j),

πi if (i′, j′) = (i, j) or (i′, j′) = (j, i),

0 , else

– This implies that the matrix diag(π)(∂P/∂pij) is non-negative definite, i.e., for all x ∈ R`

x> diag(π)
∂P
∂pij

x ≤ 0 .

– By (86) this yields for arbitrary i, j ∈ E such that i 6= j

∂

∂pij
V (ϕ,P,π) = 2

(
Zϕ

)> diag(π)
∂P
∂pij

Zϕ ≤ 0 .

• This completes the proof of (83). ¤

Remarks As a particular consequence of Theorem 3.20 we get that

• the simulation matrix P of the Metropolis algorithm (i.e. if we consider equality in (50) ) minimizes
the asymptotic variance V (ϕ,P, π)

• within the class of all Metropolis–Hastings algorithms having an arbitrary but fixed „potential transition
matrix” Q =

(
qij

)
.

3.5 Coupling Algorithms; Perfect MCMC Simulation

• In this section we will discuss algorithms

– that are also based on Markov chains,
– but this new class of algorithms simulates a given discrete distribution π not only approximately but

in a certain sense exactly.

• Therefore, these techniques are referred to as methods of „perfect” MCMC simulation.



3 MONTE–CARLO SIMULATION 104

3.5.1 Coupling to the Future; Counterexample

• First of all we consider a method for „coupling” the paths of Markov chains where the „time”

– is running forward, i.e. in a way that is perceived as natural.
– Therefore, one also refers to this method as coupling to the future.

• For all i ∈ {1, . . . , `} let X(i) =
(
X(i)

0 ,X(i)
1 , . . .

)
be a homogenous Markov chain with finite state space

E = {x1, . . . ,x`}
– with deterministic initial state X(i)

0 = xi and with an irreducible and aperiodic transition matrix
P = (pxx′),

– such that π = (πx, x ∈ E) is the ergodic limit distribution of the Markov chain X(i).

Definitions

• For all k ∈ {1, . . . , `} we consider

– a sequence U(k) =
(
U

(k)
1 , U

(k)
2 , . . .

)
of independent and (0, 1]–uniformly distributed random va-

riables U
(k)
n ,

– called innovations in step n for the current state xk ∈ E.
• We consider two different cases:

– Either we assume the sequences U(1), . . . ,U(`) to be independent
– or we merely consider a single sequence U =

(
U1, U2, . . .

)
and define U(1) = . . . = U(`) = U.

• Let the Markov chain X(i) be defined recursively by

X(i)
n = ϕ

(
xk, U (k)

n

)
if X

(i)
n−1 = xk, (87)

where ϕ : E × (0, 1] → E is a so–called valid update function, i.e.
– ϕ(x, ·) : (0, 1] → E is piecewise constant for all x ∈ E

– and for arbitrary x,x′ ∈ E such that pxx′ > 0 the total length of the set {u ∈ (0, 1] : ϕ(x, u) = x′}
equals pxx′ .

• The random variable τ = min
{
n ≥ 1 : X(1)

n = . . . = X(`)
n

}
is called coupling time where we define

τ = ∞ if there is no natural number n such that X(1)
n = . . . = X(`)

n .

Theorem 3.21 If the sequences of innovations U(1), . . . ,U(`) are independent, then τ < ∞ with probability 1
and X(1)

n = . . . = X(`)
n for all n > τ .

Proof

• The recursive definition (87) of the Markov chains X(1), . . . ,X(`) immediately implies X(1)
n = . . . = X(`)

n

for all n > τ .
• It is left to show that P (τ < ∞) = 1. We notice that it suffices to show that for arbitrary i 6= i′

lim
r→∞

P
(
max

{
n : X(i)

n 6= X(i′)
n

} ≤ r
)
= 1 .

– As

P
(
max

{
n : X(i)

n 6= X(i′)
n

} ≤ r
)

= 1− P
(
max

{
n : X(i)

n 6= X(i′)
n

}
> r

)

= 1− P
(
X(i)

r 6= X(i′)
r

)

this is equivalent to
lim

r→∞
P

(
X(i)

r 6= X(i′)
r

)
= 0 .
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– Let now n0 ≥ 1 be a natural number such that

min
x,x′∈E

p
(n0)
xx′ = c > 0 ,

and consider the decomposition r = m(r)n0 + k for some m(r) ∈ {0, 1, . . .} and
k ∈ {0, 1, . . . , n0 − 1}.

– The independence of the innovation sequences U(1), . . . ,U(`) yields for r →∞

P
(
X(i)

r 6= X(i′)
r

)
= P

(
X(i)

n0
6= X(i′)

n0
, X(i)

r 6= X(i′)
r

)

=
∑̀

j=1

∑

j′ 6=j

P
(
X(i)

n0
= xj , X(i′)

n0
= xj′

)
P

(
X(i)

r 6= X(i′)
r | X(i)

n0
= xj , X(i′)

n0
= xj′

)

=
∑̀

j=1

∑

j′ 6=j

P
(
X(i)

n0
= xj

)
P

(
X(i′)

n0
= xj′

)
P

(
X(j)

r−n0
6= X(j′)

r−n0

)

=
∑̀

j=1

p(n0)
xixj

∑

j′ 6=j

p(n0)
xi′xj′

︸ ︷︷ ︸
≤ 1−c

P
(
X(j)

r−n0
6= X(j′)

r−n0

)

≤ (1− c) max
j 6=j

P
(
X(j)

r−n0
6= X(j′)

r−n0

)

...
≤ (1− c)m(r) −→ 0 . ¤

Remarks

• Under additional assumptions about the irreducible and periodic transition matrix P = (pxx′) it can
be shown that the coupling time τ is finite even if

– only a single sequence U =
(
U1, U2, . . .

)
innovations is considered, i.e. U = U(1) = . . . = U(`),

– and if for all x ∈ E the update function ϕ : E × (0, 1] → E is given by

ϕ(x, u) = xj , if
j−1∑
r=1

pxxr < u ≤
j∑

r=1
pxxr . (88)

• Such an additional condition imposed on P will be discussed in the following theorem, see also the
monotonicity condition in Section 3.5.3.

Theorem 3.22

• Let U(1) = . . . = U(`) = U and let the update function ϕ : E × (0, 1] → E be given by (88). Furthermore,
for some xi0 ∈ E, let

max
x∈E

i0−1∑
r=1

pxxr < min
x∈E

i0∑
r=1

pxxr . (89)

• Then τ < ∞ with probability 1 and for all n > τ X(1)
n = . . . = X(`)

n .
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Proof

• Similar to the proof of Theorem 3.21 it suffices to show that for arbitrary i 6= i′

lim
r→∞

P
(
X(i)

r 6= X(i′)
r

)
= 0 .

Observe that

•

P
(
X(i)

r 6= X(i′)
r

)
= P

(
X(i)

1 6= X(i′)
1 , X(i)

r 6= X(i′)
r

)

=
∑̀

j=1

∑

j′ 6=j

P
(
X(i)

1 = xj , X(i′)
1 = xj′

)
P

(
X(i)

r 6= X(i′)
r | X(i)

1 = xj , X(i′)
1 = xj′

)

=
∑̀

j=1

∑

j′ 6=j

P
(
X(i)

1 = xj , X(i′)
1 = xj′

)
P

(
X(j)

r−1 6= X(j′)
r−1

)

≤
(
1− P

(
X(i)

1 = X(i′)
1

)

︸ ︷︷ ︸
≥d>0

)
max
j′ 6=j

P
(
X(j)

r−1 6= X(j′)
r−1

)

...
≤ (1− d)r −→ 0 ,

where we use that (87) – (89) imply

0 < d = max
x∈E

i0−1∑
r=1

pxxr −min
x∈E

i0∑
r=1

pxxr ≤ P
(
X(i)

1 = X(i′)
1 = xi0

)
≤ P

(
X(i)

1 = X(i′)
1

)
. ¤

Remarks

• In general P (τ < ∞) = 1 does not imply X(i)
τ ∼ π,

– i.e., at the coupling time τ the distribution of the Markov chain X(i) does in general not coincide
with the stationary limit distribution π although this could be a conjecture.

• The following counterexample illustrates this paradox.

– Consider the state space E = {1, 2} and the irreducible and aperiodic transition matrix

P =


 0.5 0.5

1 0




whose stationary limit distribution is π = (2/3, 1/3)>.

– If X(1)
τ−1 6= X(2)

τ−1 we necessarily obtain X(1)
τ−1 = 2 or X(2)

τ−1 = 2 and therefore X(1)
τ = X(2)

τ = 1.

3.5.2 Propp–Wilson Algorithm; Coupling from the Past

• Recall that

– the procedure of coupling to the future discussed in Section 3.5.1 starts at a deterministic time 0
whereas the final state, i.e. the coupling time τ of the simulation is random.

– Moreover, the state distribution of the Markov chain X(i) at the coupling time τ is in general not equal
to the stationary limit distribution π.
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• Therefore, we will now consider a different coupling method,

– which is called Coupling from the Past (CFTP).

– It was developed in the mid 90s by Propp and Wilson at the Massachusetts Institute of Technology
(MIT).

• The procedure is similar to coupling to the future (see Section 3.5.1) but now the initial „time” of the
simulation will be chosen randomly whereas the final „time” is deterministic.

– In other words, the Markov chains X(1), . . . ,X(`) are not started at „time” 0,

– but sufficiently far away in the „past” such that by time 0 at the latest all paths will have merged.

For the precise mathematical modelling of this procedure we need the following notation.

• For each potential „initial time” m ∈ {−1,−2, . . .} and for all i ∈ {1, . . . , `} let

X(m,i) =
(
X(m,i)

m ,X(m,i)
m+1 , . . .

)

– be a homogenous Markov chain with finite state space E = {x1, . . . ,x`},
– with the (deterministic) initial state X(m,i)

m = xi and with the irreducible and aperiodic transition
matrix P = (pxx′),

– such that π = (πx, x ∈ E) is the ergodic limit distribution of X(m,i).

• For every k ∈ {1, . . . , `} we consider

– a sequence U(k) =
(
U

(k)
0 , U

(k)
−1 , . . .

)
of independent and (0, 1]–uniformly distributed random variables.

– Like in Section 3.5.1 we call U
(k)
−n an innovation in step −n if the current state is xk ∈ E.

• We consider two cases:

– The innovation sequences U(1), . . . ,U(`) are either independent

– or U(1) = . . . = U(`) = U.

• Let the Markov chain X(m,i) be defined recursively via the update function ϕ : E × (0, 1] → E, i.e.

X(m,i)
n = ϕ

(
xk, U (k)

n

)
if X

(m,i)
n−1 = xk. (90)

Definition The random variable ζ = min
{−m ≥ 1 : X(m,1)

0 = . . . = X(m,`)
0

}
is called CFTP coupling time

where we define ζ = ∞ if there is no integer −m such that X(m,1)
0 = . . . = X(m,`)

0 .

Theorem 3.23 Let P (ζ < ∞) = 1. Then, for all m ≤ −ζ,

X(m,1)
0 = . . . = X(m,`)

0 .

Moreover, for arbitrary m ≤ −ζ and i, j ∈ {1, . . . , `},

X(m,i)
0 = X(−ζ,j)

0 ∼ π .
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Proof

• Directly by the recursive definition (90) of the Markov chains X(m,1), . . . ,X(m,`), we get that X(m,1)
0 =

. . . = X(m,`)
0 and X(m,i)

0 = X(−ζ,j)
0 for arbitrary m ≤ −ζ and i, j ∈ {1, . . . , `}.

• As by hypothesis P (ζ < ∞) = 1, we obtain for arbitrary k ∈ {1, . . . , `} that

P
(
X(−ζ,i)

0 = xk

)
= lim

m→−∞
P

(
X(−ζ,i)

0 = xk, ζ ≤ −m
)

= lim
m→−∞

P
(
X(m,i)

0 = xk, ζ ≤ −m
)

= lim
m→−∞

P
(
X(m,i)

0 = xk

)
− lim

m→−∞
P

(
X(m,i)

0 = xk, ζ > −m
)

︸ ︷︷ ︸
=0

= lim
m→−∞

P
(
X(m,i)

0 = xk

)

= lim
m→−∞

P
(
X(0,i)
−m = xk

)
= πxk

,

where the last but one equality is a consequence of the homogeneity of the Markov chain X(m,i). ¤

Remarks

• If the number ` of elements in the state space E = {x1, . . . ,x`} is large,

– the MCMC simulation of π based on the CFTP algorithm by Propp and Wilson can be computa-
tionally inefficient

– as for every initial state x1, . . . ,x` a complete path needs to be generated.

• However, in some cases the computational complexity can be reduced. Examples will be discussed in
Sections 3.5.3 and 3.5.4.

– In these special situations the state space E = {x1, . . . ,x`} and the update function ϕ : E×(0, 1] →
E possess certain monotonicity properties.

– As a consequence it suffices to consider a single sequence U =
(
U0, U−1, . . .

)
of independent and

(0, 1]–uniformly distributed innovations.
– Moreover, only two different paths need to be generated.

3.5.3 Monotone Coupling Algorithms

• We additionally assume that the state space E = {x1, . . . ,x`} is partially ordered and has a maximal
element 1 ∈ E and a minimal element 0 ∈ E, i.e., there is a relation ¹ on E such that

(a) x ¹ x , ∀x ∈ E ,

(b) x ¹ y and y ¹ z ⇒ x ¹ z , ∀x,y, z ∈ E ,

(c) x ¹ y and y ¹ x ⇒ x = y , ∀x,y ∈ E ,

(d) 0 ¹ x ¹ 1 , ∀x ∈ E .

• Furthermore, we impose the condition

– that the update function ϕ : E × (0, 1] → E is monotonously nondecreasing with respect to the partial
order ¹, i.e., for arbitrary x,y ∈ E such that x ¹ y we have

ϕ(x, u) ¹ ϕ(y, u) , ∀u ∈ (0, 1] . (91)
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• Let the innovations U(1), . . . ,U(`) be identical with probability 1,

– i.e., we merely consider a single sequence U =
(
U0, U−1, . . .

)
of independent and (0, 1]–uniformly

distributed random variables and define U(1) = . . . = U(`) = U.

– For arbitrary m ∈ {−1,−2, . . .} and i ∈ {1, . . . , `} the Markov chain X(m,i) is recursively defined by

X(m,i)
n = ϕ

(
X(m,i)

n−1 , Un

)
, ∀n = m + 1,m + 2, . . . . (92)

Remarks

• If xi ¹ xj , then by (91) and (92) we get that for all n ≥ m

X(m,i)
n ¹ X(m,j)

n . (93)

• In particular, for arbitrary n ≥ m and i ∈ {1, . . . , `},

X(m,min)
n ¹ X(m,i)

n ¹ X(m,max)
n , (94)

– where X(m,min) and X(m,max) denote the Markov chains

X(m,min) = (X(m,min)
m ,X(m,min)

m+1 , . . .) and X(m,max) = (X(m,max)
m ,X(m,max)

m+1 , . . .)

– that are recursively defined by (92) with X(m,min)
m = 0 and X(m,max)

m = 1.

• Due to (94) it suffices to choose an initial „time” that lies far enough in the past

– such that the paths of X(m,min) and X(m,max) will have merged by „time” 0,
– i.e., we consider the CFTP coupling time

ζ = min
{−m ≥ 1 : X(m,min)

0 = X(m,max)
0

}
. (95)

Theorem 3.24 Let the update function ϕ : E × (0, 1] → E satisfy the monotonicity condition (91).

• Then, for the CFTP coupling time defined by (95), it holds that ζ < ∞ with probability 1.

• Moreover, for arbitrary m ≤ −ζ and i, j ∈ {1, . . . , `}, X(m,i)
0 = X(−ζ,j)

0 ∼ π.

Proof

• As the argument showing that X(m,i)
0 = X(−ζ,j)

0 ∼ π for arbitrary m ≤ −ζ and i, j ∈ {1, . . . , `} if
P (ζ < ∞) = 1, is similar to the proof of Theorem 3.23 this part of the proof is omitted.

• We merely show that P (ζ < ∞) = 1.

– First of all, we observe that for all r ≥ 1

{ζ > r} ⊂
{
X(−r,min)
−r+1 6= 1, . . . , X(−r,min)

0 6= 1
}

, (96)

as (94) implies

{ζ > r} =
{
X(−r,min)

0 6= X(−r,max)
0

}

=
{
X(−r,min)
−r+1 6= X(−r,max)

−r+1 , . . . , X(−r,min)
0 6= X(−r,max)

0

}

(94)⊂
{
X(−r,min)
−r+1 6= 1, . . . , X(−r,min)

0 6= 1
}

.
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– As in the proof of Theorem 3.21 let n0 ≥ 1 be a natural number such that

min
x,x′∈E

p
(n0)
xx′ = c > 0 , (97)

and decompose r such that r = m(r)n0 + k for some m(r) ∈ {0, 1, . . .} and k ∈ {0, 1, . . . , n0 − 1}.
– By (96) and (97) we obtain

P
(
ζ = ∞)

= lim
r→∞

P
(
ζ > r

)

(96)

≤ lim
r→∞

P
(
X(−r,min)
−r+1 6= 1, . . . , X(−r,min)

0 6= 1
)

≤ lim
r→∞

∑

x1,...,xm(r) 6= 1

p
(n0)
0x1

p(n0)
x1x2

· . . . · p(n0)
xm(r)−1xm(r)

(97)

≤ lim
r→∞

(1− c)m(r) = 0 . ¤

Remarks

• Sometimes the update function ϕ : E×(0, 1] → E is not monotonously nondecreasing but nonincreasing
with respect to the partial order ¹, i.e., for arbitrary x,y ∈ E such that x ¹ y we have

ϕ(x, u) º ϕ(y, u) , ∀u ∈ (0, 1] . (98)

• In this case the following cross-over technique turns out to be useful.

– Based on the update function ϕ : E×(0, 1] → E we construct a new nondecreasing update function
ϕ′ : E × (0, 1]2 → E which is given as

ϕ′(x; u1, u2) = ϕ(ϕ(x, u1), u2) , ∀x ∈ E; u1, u2 ∈ (0, 1] . (99)

– This function has the desired property as by (98) and (99) we obtain for arbitrary x,y ∈ E such
that x ¹ y

ϕ′(x; u1, u2) = ϕ(ϕ(x, u1), u2) ¹ ϕ(ϕ(y, u1), u2) = ϕ′(y; u1, u2) , ∀u1, u2 ∈ (0, 1] ,

i.e., ϕ′ : E × (0, 1]2 → E is nondecreasing if ϕ : E × (0, 1] → E is nonincreasing.

• Let now ϕ : E × (0, 1] → E be an update function with respect to the irreducible and aperiodic
transition matrix P = (pxx′) with ergodic limit distribution π = (πx, x ∈ E).

– Then the map ϕ′ : E × (0, 1]2 → E defined by (99) is a valid update function with respect to the
irreducible and aperiodic two–step transition matrix P(2) = (p(2)

xx′) and it has the same ergodic
limit distribution π = (πx, x ∈ E).

– In the same way that was used to prove Theorem 3.24 one can show that the coupling time
ζ ′ = min

{−m ≥ 1 : X(2m,min)
0 = X(2m,max)

0

}
is finite with probability 1, i.e., ζ ′ < ∞ and

X(−2ζ′,i)
0 ∼ π for all i ∈ {1, . . . , `} if ϕ : E × (0, 1] → E is nonincreasing.

3.5.4 Examples: Birth–and–Death Processes; Ising Model

1. Birth–and–Death Processes

• The update function ϕ : E × (0, 1] → E defined in (88) satisfies the monotonicity condition (91)
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– if the state space can identified with the set E = {1, . . . , `} equipped with the natural order ≤ of
the numbers 1, . . . , `

– and if the simulation matrix P = (pij) is monotonously nondecreasing with respect to the order
≤, i.e., for arbitrary i, j ∈ E such that i ≤ j we have

∑̀

r=k

pir ≤
∑̀

r=k

pjr , ∀ k = 1, . . . , ` . (100)

• A whole class of transition matrices P = (pij) satisfying the monotonicity condition (100) is given by
the tridiagonal matrices of birth–and–death processes which are of the type

P =




1− p12 p12 0 . . . 0

p21 1− p21 − p23 p23 . . . 0

0 p32 1− p32 − p34 . . . 0
...

...
...

...

0 0 0 . . . p`−1,`

0 0 0 . . . 1− p`,`−1




,

where 0 < pi,i+1 ≤ 1/2 for all i = 1, . . . , `− 1 and 0 < pi,i−1 ≤ 1/2 for all i = 2, . . . , `.

Zeit
0−1−2−4 −3

−1−2 0
Zeit

0−1
Zeit

Figure 7: Monotonic coupling to the past for monotonously nondecreasing death–and–birth processes

• On the other hand, the update function ϕ : E × (0, 1] → E defined in (88) is monotonously nonincrea-
sing, see (98),
– if P = (pij) is monotonously nonincreasing with respect to ≤,
– i.e., if for arbitrary i, j ∈ E such that i ≤ j we have

∑̀

r=k

pir ≥
∑̀

r=k

pjr , ∀ k = 1, . . . , ` . (101)
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• It is easy to show that there is no tridiagonal transition matrix P = (pij) satisfying the condition
(101), i.e., birth–and–death processes are never monotonously nonincreasing.

• However, condition (101) holds for example for the following matrix:

P =




0 . . . 0 0 1

0 . . . 0 1/2 1/2

0 . . . 1/3 1/3 1/3
...

...
...

...

0 . . . 1/(`− 1) 1/(`− 1) 1/(`− 1)

1/` . . . 1/` 1/` 1/`




2. Ising Model

• Like for the hard–core model discussed in Section 3.3.1

– we consider a connected graph G = (V,K) with finitely many vertices V = {v1, . . . , v|V |}
– and a certain set K ⊂ V 2 of edges e = (vi, vj), each of them connecting two vertices vi, vj .

• One of the values −1 and 1 is assigned to each vertex,

– and we consider the state space E = {−1, 1}|V | of all configurations x = (x(v), v ∈ V ), i.e. for
each v ∈ V either x(v) = −1 or x(v) = 1.

– If this is interpreted as an image, x(v) = −1 is regarded as a white pixel and x(v) = 1 as a black
pixel.

• For each x ∈ E let the probability πx of the configuration x be given by

πx =
1

zG,J
exp

(
J

∑

e=(vi,vj)∈K

x(vi)x(vj)

)
(102)

for a certain parameter J ≥ 0, which is interpreted as „inverse temperature” in physics:

– For J = 0 (infinite temperature) the distribution π = (πx, x ∈ E) given by (102) is the discrete
uniform distribution.

– For J À 0 (low temperature) those configurations possess a large probability that have a small
number of connected pairs of vertices being differently colored.

– For J →∞ (zero temperature) the distribution π = (πx, x ∈ E) given by (102) converges to the
„two point uniform distribution”

(
δ 0 + δ 1

)
/2,

– where 0 and 1 denote the (extreme) configurations consisting either only of white or only of black
pixels, i.e. either 0(v) = −1 or 1(v) = 1 for all v ∈ V .

• Notice that zG,J > 0 is an (in general unknown) normalizing constant where

zG,J =
∑

x∈E

exp

(
−J

∑

e=(vi,vj)∈K

x(vi)x(vj)

)
.

• The following figure was taken from O. Häggström (2002) Finite Markov Chains and Algorithmic
Applications, CU Press, Cambridge.
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Figure 8: Typical configuration of the Ising model for J = 0 (upper left corner), J = 0.15 (upper right corner),
J = 0.3 (lower left corner) and J = 0.5 (lower right corner)

– It illustrates the role of the parameter J ,
– i.e., an increase of J results in a more pronounced clumping tendency of identically colored pixels.

• Let the simulation matrix P = (pxx′) be given by the Gibbs sampler, i.e., assume that (36) holds,
namely

pxx′ =
∑

v∈V

qvπx′(v)|x(−v) 1I
(
x(−v) = x′(−v)

)
, ∀x,x′ ∈ E .

– where for arbitrary x,x′ ∈ E such that x(−v) = x′(−v)

πx′(v)|x(−v) =





πx+

πx+ + πx−
if x′(v) = 1,

πx−

πx+ + πx−
if x′(v) = −1,

using the notation x−(v) = −1 and x−(−v) = x(−v) and similarly x+(v) = 1 and x+(−v) =
x(−v).

– By (102) we obtain for x′(v) = 1 that

πx′(v)|x(−v) =
exp

(
J
(
k+(x(−v))− k−(x(−v))

))

exp
(
J
(
k−(x(−v))− k+(x(−v))

))
+ exp

(
J
(
k+(x(−v))− k−(x(−v))

))
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and in the same way for x′(v) = −1 that

πx′(v)|x(−v) =
exp

(
J
(
k−(x(−v))− k+(x(−v))

))

exp
(
J
(
k+(x(−v))− k−(x(−v))

))
+ exp

(
J
(
k−(x(−v))− k+(x(−v))

))

Thus, we can summarize

πx′(v)|x(−v) =





1

1 + exp
(
−2 J

(
k+(x(−v))− k−(x(−v))

)) if x′(v) = 1,

1

1 + exp
(
−2 J

(
k−(x(−v))− k+(x(−v))

)) if x′(v) = −1,
(103)

where k+(x(−v)) and k−(x(−v)) denote the number of vertices connected to v having the values
1 and −1, respectively.

• For the state space E = {−1, 1}|V | we define the partial order ¹
– by x ¹ y if x(v) ≤ y(v) for all v ∈ V such that 0 ¹ x ¹ 1 for all x ∈ E,
– where we assume the elements of the state space E = {x1, . . . ,x`} to be indexed in a way ensuring

i ≤ j if xi ¹ xj (this is e.g. the case if E is ordered lexicographically).

• Then (103) implies for arbitrary x,y ∈ E such that x ¹ y

π1|x(−v) ≤ π1|y(−v) and π−1|x(−v) ≥ π−1|y(−v) , (104)

because 1/(1 + e−a) ≤ 1/(1 + e−b) for arbitrary a, b ∈ R such that a ≤ b.

• Let the update function ϕ : E × (0, 1]2 → E be given by ϕ(x; u1, u2) = x′, where x′ =
(
x′(v), v ∈ V

)
and for all i = 1, . . . , |V |

x′(vi) =





1 if
∑i−1

j=1 q(vj) < u1 ≤
∑i

j=1 q(vj) and u2 < π1|x(−vi),

−1 if
∑i−1

j=1 q(vj) < u1 ≤
∑i

j=1 q(vj) and u2 ≥ π1|x(−vi),

x(vi) , else.

– By (104), for arbitrary x,y ∈ E such that x ¹ y we have

ϕ(x; u1, u2) ¹ ϕ(y; u1, u2) , ∀u1, u2 ∈ (0, 1] ,

– i.e., condition (91) with respect to ¹ is satisfied.

3.5.5 Read–Once Modification of the CFTP Algorithm

• A problem of the „monotone” CFTP algorithm discussed in Sections 3.5.3 and 3.5.4 is

– the necessity to save all innovations U0, U−1, . . . , U−ζ where ζ denotes the coupling time defined in
(95), i.e.

ζ = min
{−m ≥ 1 : X(m,min)

0 = X(m,max)
0

}
.

– Therefore, in the year 2000, David Wilson suggested the following modifications of the CFTP algorithm
aiming at a reduction of the necessary memory allocation.

• The main idea of the modification is to realize coupling to the past (see Sections 3.5.2 – 3.5.4)
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– based on a sequence of independent and identically distributed blocks of „forward simulation”, where

– the (potential) „initial times” m ∈ {−1,−2, . . .} of the Markov chain X(m,i) =
(
X(m,i)

m ,X(m,i)
m+1 , . . .

)
can

be picked at random.

• The innovation sequences U(1), . . . ,U(`) are chosen identical with probability 1,

– i.e., we merely consider a single sequence U =
(
. . . , U−1, U0, U1, . . .

)
of independent and uniformly

distributed random variables and define U(1) = . . . = U(`) = U.
– Furthermore, we assume that the Markov chains X(1), . . . ,X(`) and X(m,1), . . . ,X(m,`) defined by (87)

and (90) have finite forward and backward coupling times

τ = min
{
n ≥ 1 : X(1)

n = . . . = X(`)
n

}
bzw. ζ = min

{−m ≥ 1 : X(m,1)
0 = . . . = X(m,`)

0

}

with probability 1.

• Now we consider blocks of forward simulation of (at first deterministic) length T for some T ≥ 1.

– For arbitrary k ≥ 0 and i = 1, ..., `, let X(kT,i)
kT = xi and

X(kT,i)
n = ϕ(X(kT,i)

n−1 , Un) , ∀n = kT + 1, kT + 2, ... .

– Furthermore, for each k ≥ 0 we consider the event

CkT =
{
X(kT,i)

(k+1)T = X(kT,j)
(k+1)T , ∀ i 6= j ∈ {1, ..., l}

}
,

where the length T of the blocks is chosen such that

0 < P (CT )
(
= P (CkT ) , ∀ k ≥ 0

)
. (105)

• Starting at k = 0 the read–once modification of the CFTP algorithm is given as follows.

1. Simulate X(kT,i)
n via ϕ and U for n = kT + 1, ..., (k + 1)T .

2. Set m = k and k = k + 1. If the event CmT has occurred proceed with step 3, otherwise return to step
1.

3. Repeat steps 1 and 2 until the event Cm′T occurs for some m′ > m and return the value of X(mT,i)
m′T for

an arbitrary i ∈ {1, ..., l} as a realization of π.

Example

• For ` = 3 states we consider the irreducible and aperiodic transition matrix

P =




1/2 0 1/2

1/3 1/3 1/3

0 1 0


 .

• For block length T = 2 and the (0, 1]–uniformly distributes pseudo–random numbers

u = (0.01, 0.60, 0.82, 0.47, 0.36, 0.59, 0.34, 0.89, ...)

we obtain the simulation run shown in Fig. 9.
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Figure 9: Read once algorithm

Remarks

• As the simulation blocks and hence the events CT , C2T , . . . are independent and as P (CT ) = P (C2T ) =
. . .,
– the first m′ blocks of forward simulation of the algorithm described above in particular yield the

coupling from the past discussed in Section 3.5.2 if they are considered in reversed order.
– Therefore, X(mT,i)

m′T ∼ π for all i ∈ {1, ..., l}.
– The last, i.e. the (m′ + 1)st block of forward simulation serves only to define a stopping rule.

• The read–once modification of the CFTP algorithm terminates with probability 1
– if condition (105) is satisfied, i.e. if P (CT ) > 0.
– For monotonously nondecreasing update functions this holds if T ≥ n0 where n0 ≥ 1 is a natural

number such that
min

x,x′∈E
p
(n0)
xx′ = c > 0 ,

see the proof of Theorem 3.24.

• If T is a random variable
– having the same distribution as the forward coupling time τ and which is independent of the

innovation sequence U =
(
U0, U−1, . . .

)
,

– then by the following elementary but useful properties of the coupling times τ and ζ we obtain
P (CT ) ≥ 1/2.

Theorem 3.25 The random variables τ and ζ have the same distribution, i.e. τ
d= ζ. Moreover, if the coupling

times τ and ζ are independent and almost surely finite, then

P (ζ ≤ τ) ≥ 1
2

. (106)

Proof

• By the homogeneity of the Markov chains X(1), . . . ,X(`) and X(m,1), . . . ,X(m,`), for any natural number
k ≥ 1 we have

P (τ = k) = P
(
min

{
n ≥ 1 : X(1)

n = . . . = X(`)
n

}
= k

)

= P
(
min

{−m ≥ 1 : X(m,1)
0 = . . . = X(m,`)

0

}
= k

)

= P (ζ = k) .
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• Let now the coupling times τ and ζ be independent and finite with probability 1.

– This implies

P (ζ ≤ τ) =
∞∑

k=1

P (ζ ≤ τ | τ = k)P (τ = k) =
∞∑

k=1

P (ζ ≤ k | τ = k)P (τ = k)

=
∞∑

k=1

P (ζ ≤ k)P (τ = k) =
∞∑

k=1

P (τ ≤ k)P (ζ = k)

...
= P (ζ ≥ τ) ,

– where the last equality follows from τ
d= ζ which has been shown in the first part of the proof.

• Thus,

2 P (ζ ≤ τ) = P (ζ ≤ τ) + P (ζ ≥ τ)
= 1− P (ζ > τ) + 1− P (ζ < τ)
= 2− P (ζ 6= τ)
≥ 2− 1 = 1 . ¤


