
Methods of Monte Carlo Simulation

Ulm University
Institute of Stochastics

Lecture Notes
Dr. Tim Brereton

Winter Term 2013/2014

Ulm, February 2014

2

Contents

1 Introduction 7

1.1 Monte Carlo Integration . 7

1.1.1 Expectation, Variance and Central Limit Theorem 8

1.1.2 Higher Dimensional Integration Problems . 9

1.2 Further Reading . 9

2 Pseudo Random Numbers 11

2.1 Requirements for Monte Carlo . 11

2.2 Pseudo Random Numbers . 12

2.2.1 Abstract Setting . 12

2.2.2 Linear Congruential Generators . 12

2.2.3 Extensions of LCGs . 14

2.2.4 The Lattice Structure of Linear Congruential Generators 15

2.2.5 Linear Feedback Shift Register Type Generators 16

2.3 Testing Pseudo Random Number Generators . 16

2.3.1 Testing the Sizes of the Gaps between Hyperplanes 16

2.3.2 The Kolmogorov-Smirnov Test . 17

2.3.3 Chi-Squared Test . 18

2.3.4 Permutation Test . 19

2.4 Quasi Monte Carlo . 19

2.4.1 Numerical Integration and Problems in High Dimensions 19

2.4.2 The Basic Idea of QMC . 20

2.4.3 Van der Corput Sequences . 20

2.4.4 Halton Sequences . 21

2.5 Furter Reading . 21

3

4 CONTENTS

3 Non-Uniform Random Variables 23

3.1 The Inverse Transform Method . 23

3.1.1 The Inverse Transform Method . 23

3.1.2 Integration over Unbounded Domains . 26

3.1.3 Truncated Distributions . 27

3.1.4 The Table Lookup Method . 28

3.1.5 Problems with the Inverse Transform Method 28

3.2 Acceptance-Rejection . 29

3.2.1 Drawing Uniformly from Regions of Space . 31

3.2.2 A Limitation of the Acceptance-Rejection Method 32

3.3 Location-Scale Families . 32

3.4 Generating Normal Random Variables . 33

3.4.1 Box-Muller . 33

3.4.2 Generating Multivariate Normals . 34

3.5 Further Reading . 34

4 Markov Chains 35

4.1 De�nitions . 35

4.2 Simulation . 37

4.3 Calculating Probabilities . 37

4.3.1 Ways to calculate Pn . 38

4.4 Asymptotic behavior of Markov Chains . 39

4.4.1 Class Structure . 39

4.4.2 Invariant Measures . 40

4.4.3 Limiting Distributions . 45

4.4.4 Reversibility and Detailed Balance . 46

5 Markov Chain Monte Carlo 47

5.1 The Metropolis-Hastings Algorithm for Countable State Spaces 47

5.1.1 The Metropolis Algorithm . 47

5.1.2 The Metropolis-Hastings Algorithm . 48

5.1.3 A Classical Setting for the Metropolis-Hastings Algorithm 49

CONTENTS 5

5.1.4 Using the Metropolis-Hastings Sampler . 51

5.1.5 Applications . 52

5.2 Markov Chains with General State Spaces . 52

5.3 Metropolis-Hastings in General State Spaces . 54

5.3.1 Types of Metropolis-Hastings Samplers . 55

5.3.2 An example . 56

5.3.3 Burn-In . 57

5.3.4 The Ideal Acceptance Rate . 58

5.4 The Slice Sampler . 58

5.4.1 The Slice Sampler in Higher Dimensions . 59

5.5 The Gibbs Sampler . 59

5.5.1 Justi�cation of the Gibbs Sampler . 61

5.5.2 Finding the Conditional Densities . 61

5.6 Further Reading . 62

6 Variance Reduction 63

6.1 Antithetic Sampling . 63

6.2 Conditional Monte Carlo . 65

6.3 Control Variates . 67

6.4 Importance Sampling . 68

6.4.1 The Minimum Variance Density . 69

7 Derivative Estimation 73

7.1 Di�erence Estimators . 73

7.1.1 The Variance-Bias Tradeo� . 74

7.2 Interchanging Di�erentiation and Integration . 75

7.3 In�nitesimal Perturbation Analysis (IPA) . 75

7.4 Score Function Method . 76

6 CONTENTS

8 Optimization 79

8.1 Stochastic Approximation . 79

8.1.1 The Unconstrained Case . 80

8.1.2 The Constrained Case . 80

8.1.3 Choice of Parameters . 80

8.1.4 The Two Main Types of Stochastic Approximation Algorithms 81

8.2 Randomized Optimization . 81

8.2.1 Simulated Annealing . 81

8.2.2 Choosing (Tn)n≥1 . 83

8.2.3 Dealing with Constraints . 83

Chapter 1

Introduction

Monte Carlo methods are methods that use random numbers to solve problems or gain insight
into problems. These problems can be `probabilistic' in nature or `deterministic'. Probabilistic
applications of Monte Carlo methods include:

• Estimating probabilities and expectations.

• Estimating the sensitivity of random objects to changes in parameters.

• Getting a sense of what random objects 'look like' and how they behave.

Deterministic problems which can be solved using Monte Carlo methods are, for example:

• Estimating solutions to di�cult integration problems.

• Approximating or �nding solutions to complicated optimization problems.

• Solving mathematical problems by transforming them into `probabilistic' problems (an exam-
ple is probabilistic methods for solving partial di�erential equations).

Monte Carlo techniques are not always the best tools, especially for simple problems. However,
they are the best (or only) solutions for a lot of realistic problems.

1.1 Monte Carlo Integration

A simple problem that can be solved using Monte Carlo methods is to compute an integral of the
form

I =

∫ 1

0

f(x)dx,

7

8 CHAPTER 1. INTRODUCTION

where f is an arbitrary function. This can be written as

I =

∫ 1

0

f(x)dx =

∫ 1

0

1

1
f(x) dx.

Note that 1/1 is the probability density function (pdf) of the uniform distribution on (0, 1). So, we
can write

I =

∫ 1

0

f(x) dx = E f(X),

where X ∼ U(0, 1). Now we can approximate E f(X) by

I ≈ ÎN =
1

N

N∑
i=1

f(Xi),

where X1, X2, . . . , XN are independent and identically distributed (iid) copies of X. Then, under
suitable technical conditions (e.g. E f(x)2 <∞), the strong law of large numbers implies that

lim
N→∞

1

N

N∑
i=1

f(X)→ E f(Xi) almost surely (a.s.) and in L2

We can easily establish some important properties of the estimator ÎN .

1.1.1 Expectation, Variance and Central Limit Theorem

We have

E Î = E

(
1

N

N∑
i=1

f(Xi)

)
=

1

N

N∑
i=1

E f(Xi) =
N

N
E f(x) = I.

Therefore, ÎN is unbiased. Likewise, we have

Var(ÎN) = Var

(
1

N

N∑
i=1

f(Xi)

)
=

1

N2

N∑
i=1

Var(f(Xi)) =
1

N
Var(f(X)).

So the standard deviation is

Std(ÎN) =

√
Var(f(X))√

N
.

Under suitable technical conditions (e.g. Var(f(X)) < ∞), a central limit theorem holds and we
additionally get that (

ÎN − I
)

D−→ N
(

0,
Var(f(X))

N

)
as N →∞.

Example 1.1.1

Estimate
∫ 1

0

e−x
2

dx

1.2. FURTHER READING 9

Listing 1.1: Matlab Code

1 N = 10^5;

2 X = rand(N,1);

3 f_X = exp(-X.^2);

4 I_hat = mean(f_X)

1.1.2 Higher Dimensional Integration Problems

Monte Carlo integration is especially useful for solving higher dimensional integration problems.
For example, we can estimate integrals of the form

I =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xn) dx1 dx2 · · · dxn.

Similarly to the one-dimensional case, observe that I = E f(X), where X is a vector of iid U(0, 1)
random variables. This expected value can be approximated by

ÎN =
1

N

N∑
i=1

f (Xi) ,

where the {Xi}Ni=1 are iid n-dimensional vectors of iid U(0, 1) random variables.

Example 1.1.2

Estimate
∫ 1

0

∫ 1

0

ex1 cos(x2)dx1 dx2.

Listing 1.2: Matlab Code

1 N = 10^6;

2 f_X = zeros(N,1);

3 for i = 1:N

4 X = rand(1,2);

5 f_X(i) = exp(X(1))*cos(X(2));

6 end

7 I_hat = mean(f_X)

1.2 Further Reading

Very good reviews of Monte Carlo methods can be found in [1, 4, 7, 10, 15, 17, 18]. If you are
interested in mathematical tools for studying Monte Carlo methods, a good book is [8].

10 CHAPTER 1. INTRODUCTION

Chapter 2

Pseudo Random Numbers

The important ingredient in everything discussed so far is the ability to generate iid U(0, 1) random
variables. In fact, almost everything we do in Monte Carlo begins with the assumption that we can
generate U(0, 1) random variables. So, how do we generate them?

Computers are not inherently random, so we have two choices:

1. Using a physical device that is `truly random' (e.g. radioactive decay, coin �ipping).

2. Using a sequence of numbers that are not truly random but have properties which make them
seem/act like `random numbers'.

Possible problems with the physical approach are:

1. The phenomenon may not be `truly random' (e.g., coin �ipping may involve bias).

2. Measurement errors.

3. These methods are slow.

4. By their nature, these methods are not reproducible.

A problem with the deterministic approach is, obviously, the numbers are not truly random.

The choice of a suitable random number generation method depends on the application. For
example, the required properties of a random number generator used to generate pseudo random
numbers for Monte Carlo methods are very di�erent from those of a random number generator used
to create pseudo random numbers for gambling or cryptography.

2.1 Requirements for Monte Carlo

In Monte Carlo applications there are many properties we might require of a random number
generator (RNGs). The most import are:

11

12 CHAPTER 2. PSEUDO RANDOM NUMBERS

1. The random numbers it produces should be uniformly distributed.

2. The random numbers it produces should be independent (or at least they should seem to be
independent).

3. It should be fast.

4. It should have a small memory requirement.

5. The random numbers it produces should have a large period. This means that, if we use a
deterministic sequence that will repeat, it should take a long time before it starts repeating.

Ideally, the numbers should be reproducible and the algorithm to generate them should be
portable and should not produce 0 or 1.

2.2 Pseudo Random Numbers

2.2.1 Abstract Setting

S �nite set of states,

f transition function f : S → S,

S0 a seed,

U output space,

g output function g : S → U .

Algorithm 2.2.1 (General Algorithm)

1. Initialize: Set X1 = S0. Set t = 2.

2. Transition: Set Xt = f(Xt−1).

3. Output: Set Ut = g(Xt).

4. Set t = t+ 1. Repeat from 2.

2.2.2 Linear Congruential Generators

The simplest useful pseudo random number generator is a Linear Congruential Generator (LCG).

Algorithm 2.2.2 (Basic LCG)

1. Initialize: Set X1 = S0. Set t = 2.

2. Transition: Set Xt = f(Xt−1) = (aXt−1 + c) mod m.

2.2. PSEUDO RANDOM NUMBERS 13

3. Output: Set Ut = g(Xt) = Xt

m .

4. Set t = t+ 1 and repeat from step 2.

We call a the multiplier and c the increment.

Example 2.2.1
Take a = 6, m = 11, c = 0 and S0 = 1.
Then X1 = 1 U1 = 1/11

X2 = (6 · 1) mod 11 = 6 U2 = 6/11
X3 = (6 · 6) mod 11 = 3 U3 = 3/11
X4 = (6 · 3) mod 11 = 7 U4 = 7/11

Sequence: 1, 6, 3, 7, 9, 10, 5, 8, 4, 2︸ ︷︷ ︸
period = 10 = (m−1)

, 1, 6, . . .

Listing 2.1: Matlab Code

1 N = 10;

2 a = 6; m = 11; c = 0;

3 S_0 = 1;

4 X = zeros(N,1); U = zeros(N,1);

5 X(1) = S_0;

6 for i = 2:N

7 X(i) = mod(a*X(i-1)+c,m);

8 U(i) = X(i)/m;

9 end

What happens if we take m = 11, a = 3, c = 0, S0 = 1?

X1 = 1
X2 = (3 · 1) mod 11 = 3
X3 = (3 · 3) mod 11 = 9
X4 = (3 · 9) mod 11 = 5
X5 = (3 · 5) mod 11 = 4
X6 = (3 · 4) mod 11 = 1

Sequence: 1, 3, 9, 5, 4︸ ︷︷ ︸
period =5

, 1, . . .

When using an LCG, it is important to have as long a period as possible. The following theorems
give conditions for the maximum possible periods to be obtained.

Theorem 2.2.1 An LCG with c = 0 has full period (m− 1) if

1. S0 6= 0.

2. am−1 − 1 is a multiple of m.

14 CHAPTER 2. PSEUDO RANDOM NUMBERS

3. aj−1 is not a multiple of m for j = 1, . . . ,m− 2.

Theorem 2.2.2 An LCG with c 6= 0 has full period (m) if and only if

1. c and m are relatively prime (Their only common divisor is 1).

2. Every prime number that divides m divides a− 1.

3. a− 1 is divisible by 4 if m is.

The conditions are broken for the examples above (with c 6= 0) because 11 divides m = 11 but not
a = 3 or a = 6. However, we know that the Theorem 2.2.2 is satis�ed if c is odd, m is a power of 2
and a = 4n+ 1.

Many LCGs have periods of 231 − 1 ≈ 2.1× 109

Example 2.2.2 Minimal Standard LCG: a = 75 = 16807, c = 0, m = 231

In many modern Monte Carlo applications, samples sizes of N = 1010 or bigger are necessary. A
rough rule of thumb is that the period should be around N2 or N3. Thus, for N ≈ 1010 a period
bigger than 1020 or even 1030 is required.

2.2.3 Extensions of LCGs

Multiple Recursive Generators

Algorithm 2.2.3 (Multiple Recursive Generator (MRG) of order k)

1. Initialize: Set X1 = S1
0 , . . . , Xk = Sk0 . Set t = k + 1.

2. Transition: Xt = (a1Xt−1 + · · ·+ akXt−k) mod m.

3. Output: Ut = Xt

m

4. Set t = t+ 1. Repeat from step 2.

Usually, most of the {ai}ki=1 are 0. Clearly, an LCG (with c = 0) is a special case of an MRG. Note
that the state space is now {0, . . . ,m− 1}k and the maximum period is now mk− 1. It is obtained,
e.g., if:

a) m is prime

b) The polynomial p(z) = zk −
∑k−1
i=1 aiz

k−i is prime using modulo m arithmetic.

Obviously, mk − 1 can be much bigger than m or m− 1.

2.2. PSEUDO RANDOM NUMBERS 15

Combined Generators

An example of a combined random number generator is the Wichmann-Hill pseudo random number
generator.

Algorithm 2.2.4 (Wichmann-Hill)

1. Set X0 = SX0 , Y0 = SY0 , Z0 = SZ0 . Set t = 1.

2. Set Xt = a1Xt−1 mod m1

3. Yt = a2Yt−1 mod m2

4. Zt = a3Zt−1 mod m3

5. Ut =
(
Xt

m1
+ Yt

m2
+ Zt

m3

)
mod 1

6. Set t = t+ 1 and repeat from step 2.

Pierre L'Ecuyer combines multiple recursive generators.

2.2.4 The Lattice Structure of Linear Congruential Generators

LCGs have what is known as a lattice structure.

Figure 2.1: Points generated by LCG with a = 6, c = 0 and m = 11.

16 CHAPTER 2. PSEUDO RANDOM NUMBERS

In higher dimensions, d-tuples � e.g., (X1, X2), (X2, X3), (X3, X4) . . . � lie on hyperplanes. It can
be shown that points created by linear congruential generation with modulus m lie on at most
(d!m)

1
d hyperplanes in the d-dimensional unit cube. For m = 231−1 and d = 2, they lie on at most

≈ 65536 hyperplanes. For d = 10 they lie on at most only ≈ 39 hyperplanes.

One way to asses the quality of a random number generator is to look at the "spectral gap" which
is the maximal distance between two hyperplanes.

2.2.5 Linear Feedback Shift Register Type Generators

Each Xi can take values in {0, 1}. We update the Xi using

Xi = (a1Xi−1 + · · ·+ akXi−k) mod 2,

where the ai take values in {0, 1}. We output

Ui =

L∑
j=1

Xiν+j−12−j ,

where ν is the step size and L ≤ k is the word length (usually 32 or 64). Often ν = L. Using this
approach, we get a period of 2k − 1. The Mersenne Twister does a few additional things but is
roughly of this form.

2.3 Testing Pseudo Random Number Generators

It is not enough for a random number generator to have a large period. It is even more important
that the resulting numbers appear to be independent and identically distributed. Of course, we
know that the numbers are not really random. However, a good random number generator should
be able to fool as many statistical (and other) tests as possible into thinking that the numbers it
produces are iid uniforms.

2.3.1 Testing the Sizes of the Gaps between Hyperplanes

This is the only non-statistical test we will discuss. Remember, that many random number gener-
ators have a lattice structure.

2.3. TESTING PSEUDO RANDOM NUMBER GENERATORS 17

1 Ui

1

Ui+1

Figure 2.2: Lattice Structure of a Random Number Generator

In general, a lattice structure is bad, because it means numbers are not su�ciently independent
of one another. We cannot avoid having a lattice structure, but we would like to have as many
hyperplanes as possible (this means that patterns of association between random variables are less
strong). `Spectral' tests measure the gaps between hyperplanes. The mathematics involved in these
tests is quite complicated.

2.3.2 The Kolmogorov-Smirnov Test

This test checks if the output of a RNG is close enough to the uniform distribution. The idea of
the Kolmogorov-Smirnov test is to compare the estimated cumulative distribution function (cdf)
of the output of a random number generator against the cdf of the uniform (0,1) distribution. If
the two cdfs are too di�erent from one another, we say that the RNG does not produce uniform
random variables. The test statistic is

Dn := sup
u∈(0,1)

|Fn(u)− F (u)| ,

where Fn is an estimate of the cdf given the data (often called the empirical cdf). This statistic
shouldn't be too big.

18 CHAPTER 2. PSEUDO RANDOM NUMBERS

Example 2.3.1 (The Kolmogov-Smirnov statistic)

1 u

1

F (u)

max gap

2.3.3 Chi-Squared Test

The Chi-Squared test is another test to check that the output of a random number generator has
a uniform (0, 1) distribution. We can test if a given sample {Un}Nn=1 is uniform by dividing it into
equally spaced intervals.

Example 2.3.2 (An example subdivision)

Q1 = number of points in {Un}Nn=1 between 0 and 0.1

Q2 = number of points in {Un}Nn=1 between 0.1 and 0.2

...

Q10 = number of points in {Un}Nn=1 between 0.9 and 1

If the given sample is uniformly distributed, the expected number of points in the ith interval (Ei)
is the length times the number of points in the sample (|Qi|N). In the example, E1 = E2 = · · · =
E10 = N

10 .

2.4. QUASI MONTE CARLO 19

The Chi-Squared Test statistic is

χ2
stat =

L∑
i=1

(Qi − Ei)2

Ei
,

where L is the number of segments (in the example, L = 10). If χ2
stat is too big, the random number

generator does not appear to be producing uniform random variables.

2.3.4 Permutation Test

For iid random variables, all orderings should be equally likely.

For example, if X1, X2, X3 are iid R.V.s, then

P (X1 ≤ X2 ≤ X3) = P (X2 ≤ X1 ≤ X3) = P (X3 ≤ X2 ≤ X1) = . . .

Let Πd be the indices of an ordering of d iid uniformly distributed random variables. For example,
if X1 ≤ X2 ≤ X3, Π3 = {1, 2, 3}.
It's not hard to see that

P (Π = π) =
1

d!
. (2.1)

This suggests we can test a random number generator by generating N runs of d random variables
and then doing a Chi-Squared test on them to check whether their ordering indices are distributed
according to (2.1).

2.4 Quasi Monte Carlo

So far we have considered too much structure in a random number generator as a negative thing
(that is, we have wanted things to be as random as possible). However, another approach to Monte
Carlo � called Quasi-Monte Carlo (QMC) � tries to use structure / non-independence to improve
the performance of Monte Carlo methods.

2.4.1 Numerical Integration and Problems in High Dimensions

Monte Carlo integration is not very e�cient in low dimensions. Instead of Monte Carlo integration,
one can use Newton Cotes methods. These methods evaluate the function at equally spaced points.
There are also fancier numerical methods like Gaussian quadrature.

Using Newton Cotes methods like the rectangle method or the trapezoidal method, one needs

in 2 D n× n points

in 3 D n3 points
...

in d D nd points.

20 CHAPTER 2. PSEUDO RANDOM NUMBERS

An exponential growth of points is required. This is an example of the �curse of dimensionality�.

For most numerical integration methods, the error of the approximated integral is roughly propor-
tional to n−c/d for some constant c. As d gets larger, the error decays more slowly. In comparison,
the error of Monte Carlo integration (measured by standard deviation) is proportional to n−1/2. In
high enough dimensions, this will be smaller than the error of numerical integration.

2.4.2 The Basic Idea of QMC

Quasi Monte Carlo methods generate deterministic sequences that get rates of error decay close to
n−1 (as compared to n−1/2 for standard Monte Carlo methods). They perform best in reasonably
low dimensions (say about 5 to 50). One disadvantage is that they need a �xed dimension (some
Monte Carlo methods do not work in a �xed dimension). This means it is not always possible to
use them.

A grid is a bad way to evaluate high dimensional integrals. The idea of QMC is that the points
should be spread out more e�ciently. A good spread means here a low `discrepancy'.

De�nition 2.4.1
Given a collection A of (Lebesgue measurable) subsets of [0, 1)d, the discrepancy relative to A is

D(x1, . . . , xn;A) = sup
A∈A

∣∣∣∣#{xi ∈ A}n
− vol(A)

∣∣∣∣ .
Basically, discrepancy measures the di�erence between the number of points that should be in each
of the sets if the points are evenly spaced, and the number of points that are actually in these sets.

Example 2.4.1 `Ordinary discrepancyÂ�, is based on sets of the form

d∏
j=1

[uj , vj) 0 ≤ uj < vj ≤ 1.

2.4.3 Van der Corput Sequences

A number of QMC methods are based on the Van der Corput sequences (which have low discrep-
ancy). The idea is to write numbers 1, 2, . . . in base b and then `�ip them' and re�ect them over
decimal points.

2.5. FURTER READING 21

Example 2.4.2 The van der Corput sequence with b = 2

1 = 001.0 ⇒ 0.100

(
=

1

2

)
2 = 010.0 ⇒ 0.010

(
=

1

4

)
3 = 011.0 ⇒ 0.110

(
=

3

4

)
4 = 100.0 ⇒ 0.001

(
=

1

8

)
...

Example 2.4.3 The van der Corput sequence with b = 3

1 = 001.0 ⇒ 0.100

(
=

1

3

)
2 = 002.0 ⇒ 0.020

(
=

2

3

)
3 = 010.0 ⇒ 0.010

(
=

1

9

)
4 = 011.0 ⇒ 0.110

(
=

4

9

)

2.4.4 Halton Sequences

Probably the simplest QMC method is called the Halton sequence. It �lls a d dimension cube with
points whose coordinates follow Van Der Corput sequences. For example, we can sample points
(x1, y1), (x2, y2), . . ., where the x coordinates follow a Van der Corput sequence with base b1 and
the y coordinates follow a Van der Corput sequence with base b2. The bi are chosen to be relatively
prime, which means that they have no common divisors.

2.5 Furter Reading

Important books on random number generation and QMC include [6, 11, 13]

22 CHAPTER 2. PSEUDO RANDOM NUMBERS

Chapter 3

Non-Uniform Random Variables

3.1 The Inverse Transform Method

3.1.1 The Inverse Transform Method

The distribution of a random variable is determined by its cumulative distribution function (cdf),
F (x) = P(X ≤ x).

Theorem 3.1.1 F is a cdf if and only if

1. F (x) is non-decreasing,

2. F (x) is right-continuous,

3. lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

De�nition 3.1.1 We de�ne the inverse of F (x) as,

F−1(y) = inf{x : F (x) ≥ y}.

F−1 is sometimes called the generalized inverse or quantile function.

23

24 CHAPTER 3. NON-UNIFORM RANDOM VARIABLES

1 x

1

F (x)

Discontinuity

Figure 3.1: A cdf with a discontinuity at x = 0.2.

Theorem 3.1.2 If F (x) is a cdf with inverse F−1(y) and U ∼ U(0, 1) then, F−1(U) ∼ F .

Proof We have P
(
F−1(U) ≤ x

)
= P (U ≤ F (x)) via the de�nition of the inverse. Now, P (U ≤

u) = u for u ∈ [0, 1]. So, P (U ≤ F (x)) = F (x).

This leads us to the inverse transform algorithm.

Algorithm 3.1.1 (Inverse Transform)

1. Generate U ∼ U(0, 1).

2. Return X = F−1(U).

Example 3.1.1 (Exponential distribution)
Let X ∼ Exp(λ), λ > 0. The cdf of an exponential random variable is F (x) =

(
1− e−λx

)
I(x ≥ 0).

3.1. THE INVERSE TRANSFORM METHOD 25

1 x

1

F (x)

Figure 3.2: cdf of an exponential distributed random variable.

We have to calculate F−1(U).

U = 1− e−λX ⇒ 1− U = e−λX

1− U is also ∼ U(0, 1), so

U = e−λX ⇒ log(U) = −λX ⇒ X = − 1

λ
log(U)

This is easily implemented in Matlab.

Listing 3.1: Matlab Code

1 lambda = 1;

2 X = -1/lambda*log(rand);

Example 3.1.2
Consider the discrete random variable X where

X = 0 with probability 1
2

X = 1 with probability 1
3

X = 2 with probability 1
6

The cdf of X is

F (x) =


0 if x < 0
1
2 if 0 ≤ x < 1
5
6 if 1 ≤ x < 2
1 if x ≥ 2

.

26 CHAPTER 3. NON-UNIFORM RANDOM VARIABLES

The inverse, F−1, is given by

F−1(u) =

 0 if u ≤ 1
2

1 if 1
2 < u ≤ 5

6
2 if u > 5

6

.

1 2 x

3
6

4
6

5
6

1

F (x)

Figure 3.3: The cdf of X

This example can be implemented in Matlab.

Listing 3.2: Matlab Code

1 N = 10^5; X = zeros(N,1);

2

3 for i = 1:N

4 U = rand;

5 if U <= 1/2;

6 X(i) = 0;

7 end

8 if U > 1/2 && U < 5/6

9 X(i) = 1;

10 end

11 if U > 5/6

12 X(i) = 2;

13 end

14 end

3.1.2 Integration over Unbounded Domains

Now that we are able to generate non-uniform random variables, we can use Monte Carlo to integrate
over unbounded domains.

3.1. THE INVERSE TRANSFORM METHOD 27

In 1.1 we discussed how to integrate∫ 1

0

S(x)dx or
∫ b

a

S(x)dx.

In 1.1.2 we did the same for n-dimensional integrals. Now we we want to compute improper integrals
of the form ∫ ∞

0

S(x)dx.

We need to write this as an expectation but that does not work with uniform distributed random
variables. However we can use a random variable whose density f has the support [0,∞) (that is
f(x) > 0 for all x ∈ [0,∞)). An example would be the exponential density. Then we can write∫ ∞

0

S(x) dx =

∫ ∞
0

S(x)

f(x)
f(x)dx = E

S(X)

f(X)
,

where X ∼ f . Actually, we can relax the condition about the support so that we simply need a
density such that f(x) = 0⇒ S(x) = 0.

Remark When calculating an integral in this fashion, we need to think carefully about our choice
of f . A bad choice can give very high (possibly even in�nite) variance.

Example 3.1.3 Estimate ∫ ∞
0

x2e−x
3

dx.

We can use the exponential distribution density with λ = 1 and write∫ ∞
0

x2e−x
3

e−x
· e−x dx =

∫ ∞
0

x2e−(x3−x)e−x dx = E
(
X2e−(X3−X)

)
.

Where X ∼ Exp(1).

3.1.3 Truncated Distributions

Consider the conditional density f(x |X ∈ [a, b]). We can write this as

f(x |X ∈ [a, b]) =
f(x)

P (X ∈ [a, b])
a ≤ x ≤ b

Let Z ∼ fZ(x) = f(x|X ∈ [a, b]). Then

FZ(x) =
F (x)− F (a−)

F (b)− F (a−)
.

Where
F (a−) = lim

x↑a
F (x).

We can use the inverse transform method on this cdf to generate replicates of Z.

28 CHAPTER 3. NON-UNIFORM RANDOM VARIABLES

3.1.4 The Table Lookup Method

As Example 3.1.2 makes clear, sampling from a �nite discrete distribution using the inverse trans-
form method is essentially just checking a lot of `if' statements. One way to make this faster is to
look values up in a table. The table lookup method uses a rule to randomly generate an index in
the table so that the desired random variables are produced with the appropriate probabilities. It
only works if the probabilities of the random variable are all rational.

Algorithm 3.1.2 (Table Lookup Method)

1. Draw U ∼ U(0, 1).

2. Set I = dnUe.

3. Return aI .

Example 3.1.4 Let X be a random variable with the following distribution:

P (X = 0) =
1

4
(= 5

20)

P (X = 1) =
1

5
(= 4

20)

P (X = 2) =
11

20

If we choose the following values, we will generate a random variable with the appropriate values.

n = 20

a1 = a2 = · · · = a5 = 0

a6 = a7 = · · · = a9 = 1

a10 = a11 = · · · = a20 = 2.

3.1.5 Problems with the Inverse Transform Method

The inverse transformation method is not always a good method. For example, cdfs are often not
known in an explicit form. An important example is the cdf of the standard normal distribution

Φ(x) =

∫ x

−∞

1√
2π
e−x

2/2

It can sometimes be very computationally intensive to calculate inverse cdfs numerically. Also, in
the discrete case, lookup tables do not always work (e.g. if the variable can take an in�nite number
of values).

3.2. ACCEPTANCE-REJECTION 29

3.2 Acceptance-Rejection

The other generic method of sampling a non-uniform random variable is the acceptance-rejection
method. This relies on us knowing the density f of the variable we wish to sample. The basic
idea is as follows, if we can sample points (X1, Y1), (X2, Y2), . . . uniformly from the set {(x, y) : x ∈
R, 0 ≤ y ≤ f(x)}, which is known as the hypograph of f , then the {Xi} will be samples from the
density f . We do this using the following algorithm.

Algorithm 3.2.1 (Acceptance-Rejection Algorithm)

1. Generate X ∼ g(x).

2. Generate U ∼ U(0, 1) (independently of X).

3. If U ≤ f(X)
Cg(X) output X. Otherwise, return to step 1.

For this to work, we need Cg(x) ≥ f(x) ∀x ∈ R. The best possible choice of C is therefore
C = maxx∈R f(x)/g(x). If this doesn't exist, we need to �nd another choice of g.

The e�ciency of the acceptance-rejection method is the percantage of proposals we accept. Roughly,
this will be best when g is very close to f . We can calculate the acceptance probability exactly:

P (acceptance) =
area under f(x)

area under Cg(x)
=

1

C
.

x

y

g(x) f(x) Cg(x)

Figure 3.4: The acceptance-rejection method. We sample X from g then accept it with probability
f(X)/Cg(X).

30 CHAPTER 3. NON-UNIFORM RANDOM VARIABLES

Theorem 3.2.1 The acceptance-rejection algorithm results in output with the desired distribution.

Proof We are outputting Y ∼ g(x) conditioned on U ≤ f(Y)
Cg(Y)

P
(
Y ≤ x

∣∣∣∣U ≤ f(Y)

Cg(Y)

)
=

P
(
Y ≤ x, U ≤ f(Y)

Cg(Y)

)
P
(
U ≤ f(Y)

Cg(Y)

) .

The numerator can be written as

P
(
Y ≤ x, U ≤ f(Y)

Cg(Y)

)
=

∫ x

−∞
P
(
U ≤ f(y)

Cg(y)

)
g(y) dy

=

∫ x

−∞

f(y)

Cg(y)
g(y) dy =

1

C

∫ x

−∞
f(y) dy

=
1

C
F (x).

The denominator can be written as

P
(
U ≤ f(Y)

Cg(Y)

)
=

∫ ∞
−∞

P
(
U ≤ f(y)

Cg(y)

)
g(y)dy

=

∫ ∞
−∞

f(y)

Cg(y)
g(y) dy =

1

C

∫ ∞
−∞

f(y)dy

=
1

C
.

So

P
(
Y ≤ x

∣∣∣∣U ≤ f(Y)

Cg(Y)

)
=

1/C F (x)

1/C
= F (x).

Example 3.2.1 (Positive normal distribution)
We wish to draw X ∼ N (0, 1) conditioned on X ≥ 0.

f(x |X ≥ 0) =

1√
2π
e−

x2

2

P (X > 0)
I(x ≥ 0) =

1√
2π
e−

x2

2

1
2

I(x ≥ 0) =

√
2

π
e−

x2

2 I(x ≥ 0).

We need to �nd C.

Cg(x) ≥ f(x)⇒ C exp (−x) ≥
√

2

π
exp

(
−x2

)
⇒ C ≥

√
2

π
exp

(
−x2

2
+ x

)
.

The best choice of C is the maximum of the right-hand side. So we choose x such that

∂

∂x

(
−x2

2
+ x

)
= −x+ 1 = 0⇒ x = 1.

3.2. ACCEPTANCE-REJECTION 31

We check second order conditions to make sure this is a maximum (though it is obvious here).

∂2

∂2x

(
−x2

2
+ x

)
= −1.

So

C =

√
2

π
exp

(
1

2

)
=

√
2e

π

Now

f(x)

Cg(x)
=

f(x)︷ ︸︸ ︷√
2

π
exp

(
−x2

2

)
√

2

π
exp

(
1

2

)
︸ ︷︷ ︸

C

exp(−x)︸ ︷︷ ︸
g(x)

= exp

(
−x

2

2
+ x− 1

2

)
.

Listing 3.3: Matlab Code

1 N = 10^5; X = zeros(N,1);

2 for i = 1:N

3 Y = -log(rand);

4 U = rand;

5 while(U > exp(-Y^2/2+Y-1/2))

6 Y = -log(rand);

7 U = rand;

8 end

9 X(i) = Y;

10 end

We can use this approach to generate standard normals by exploiting the symmetry of the normal
distribution.

1. Generate X as above.

2. Set Z = δX .

Where P (δ = 1) = P (δ = −1) = 1/2. We can generate δ using

δ = 21

(
U ≤ 1

2

)
− 1

3.2.1 Drawing Uniformly from Regions of Space

The acceptance-rejection algorithm can also be used to sample uniformly from regions of space.
Essentially, we draw uniformly from a box containing the object of interest, then only accept the
points inside the object.

32 CHAPTER 3. NON-UNIFORM RANDOM VARIABLES

Example 3.2.2 (Drawing uniform random points from the unit ball)

1. Draw X∗ ∼ U(−1, 1) (X_star = 2*rand-1;) and Y ∗ ∼ U(−1, 1) (Y_star = 2*rand-1;).

2. If (X∗)2 + (Y ∗)2 ≤ 1 return X = X∗ and Y = Y ∗

else, repeat from step 1.

The acceptance probability in this case is P (acceptance) = π
4 .

Example 3.2.3 (Drawing uniform random points from the unit sphere)

1. Draw X∗, Y ∗, Z∗ ∼ U(−1, 1)

2. If (X∗)2 + (Y ∗)2 + (Z∗)2 ≤ 1 return X = X∗, Y = Y ∗, Z = Z∗

else, repeat from step 1.

3.2.2 A Limitation of the Acceptance-Rejection Method

Consider the acceptance probability when drawing a point uniformly from a d-dimensional hyper-
sphere. When d = 3, we have

P (acceptance) =
vol sphere
vol box

=
4
3πr

3

2 · 2 · 2
=

4
3π

8
=
π

6
<
π

4
.

For general d ∈ N:

P (acceptance) =
vol hypersphere

vol box
=

π
d
2

d
2 Γ(d

2)

2d
=

π
d
2

d2d−1Γ
(
d
2

) −→ 0 (quickly) as d→∞.

What this example illustrates is that the acceptance-rejection method often works very badly in
high dimensions.

3.3 Location-Scale Families

De�nition 3.3.1 (Location-scale distributions) A family of continuous densities of the form

f(x;µ, σ) =
1

σ
f̊

(
x− µ
σ

)
is called a location-scale family with base distribution f̊ . It is shifted by µ and scaled by σ.

For a location scale family, if X ∼ f̊ = f(x; 0, 1), then µ+ σX ∼ f(x;µ, σ).

Example 3.3.1 (The normal distribution)
If Z ∼ N (0, 1), then X = µ+ σZ ∼ N (µ, σ2).

There are a lot of location-scale distribution families: e.g., normal, Laplace, logistic, Cauchy. Some
families are scale (but not location). For example, exponential, gamma, Pareto, Weibull.

Location-scale (and location) families are nice to work with, because we only have to worry about
sampling from a base density (rather than from a density with arbitrary parameters).

3.4. GENERATING NORMAL RANDOM VARIABLES 33

3.4 Generating Normal Random Variables

To generate normal distributed random values using the inverse transform method either a good
approximation of the inverse of the standard normal cdf is required or we need to do root-�nding
on the cdf (which requires a good approximation of the cdf). Nevertheless, many sophisticated
modern algorithms do use the inverse transform method with a very accurate approximation of the
inverse cdf. Another way to generate normal random variables is the Box-Muller method.

3.4.1 Box-Muller

The idea of the Box-Muller algorithm is based on the observation that the level sets of the joint
probability density function (pdf) of two (independent) standard normal random variables X,Y ∼
N (0, 1) form circles. It is easy to generate points uniformly on a circle (just draw θ ∼ U [0, 2π]), so
we just need to �nd the right distribution for the radius of the circle.

Transforming to polar coordinates,

X = R cos θ

Y = R sin θ

θ ∼ U(0, 2π)

R =
√
X2 + Y 2

We can calculate the cdf of R2.

P
(
R2 ≤ x2

)
= P (R ≤ x) =

∫ x

0

∫ 2π

0

r

2π
exp

(
−r

2

2

)
dθdr =

∫ x

0

r exp

(
−r

2

2

)
dr = 1− exp

(
−x

2

2

)
It is clear from this that R2 has an exponential distribution with parameter λ = 1

2 . This gives the
following algorithm

Algorithm 3.4.1 (Box-Muller-Algorithm)

1. Generate θ ∼ U(0, 2π).

2. Generate R2 ∼ Exp
(

1
2

)
.

3. Return Z1 =
√
R2 cos θ and Z2 =

√
R2 sin θ.

Listing 3.4: Matlab Code

1 N = 10^5; X = zeros(N,1);

2 for i = 1:N/2

3 theta = 2*pi*rand;

4 r_squared = -2*log(rand);

5 Z1 = sqrt(r_squared)*cos(theta);

6 Z2 = sqrt(r_squared)*sin(theta);

7 X(2*i-1) = Z1;

8 X(2*i) = Z2;

9 end

This algorithm is expensive to use because it involves the special functions sin, cos and log.

34 CHAPTER 3. NON-UNIFORM RANDOM VARIABLES

3.4.2 Generating Multivariate Normals

Consider now the more general problem of generating Z ∼ N (µ,Σ). We can use the location scale
property of the normal density to generate these variables, but only if we are able to calculate the
`squareÂ� of the Variance-Covariance matrix. That is, we need to write Σ = AAᵀ. Writing Σ in
this way is called the Cholesky factorization of Σ (Matlab has a function to compute this). We
can compute the Cholesky factorization of Σ = AAT if Σ is positive de�nite. This leads to the
following algorithm.

Algorithm 3.4.2

1. Generate Z ∼ N (0, 1).

2. Calculate Σ = AAT .

3. Output X = µ+AZ.

This works because a�ne transformations are normal and the resulting mean and variance are
correct (these uniquely describe a multivariate normal distribution). The mean is easy to check.
For the variance,

Var(X) = E (X− µ)(X− µ)ᵀ = E (µ+AZ− µ)(µ+AZ− µ)ᵀ

= E [(AZ)(AZ)ᵀ] = E [AZᵀZAᵀ] = AE [ZᵀZ]Aᵀ

= AAᵀ = Σ

3.5 Further Reading

The classic reference on non-uniform random numbers is [3].

Chapter 4

Markov Chains

So far, we have only considered sequences of independent random variables (with the exception
of the multivariate normal distribution). Dependent random variables are much harder to model
and to simulate. However, some dependency structures are easier to work with than others (but
can still model lots of interesting phenomena). The most important models of dependent random
variables from a simulation perspective are Markov chains.

There are many reasons why Markov chains are useful (from a Monte Carlo perspective).

• It is di�cult to simulate non-Markovian stochastic processes.

• More complicated processes can sometimes be approximated by Markov Processes.

• Markov chains can be used to simulate from complex distributions and build complex random
objects.

• Markov chains can be used to explore the parameter spaces of functions and look for optima
(e.g., stochastic optimization/ genetic algorithms).

This chapter is just a brief description of Markov chains, which only focuses on things we need to
know. It is not intended as a complete introduction. Most of the material in this chapter is based
on the excellent book [14]. The chapter on discrete time chains is available on the internet (see the
course website for a link). Other good books are [12, 2, 19].

4.1 De�nitions

We will focus on Markov chains in discrete time with a countable state space. We will refer to
these objects as Markov chains, without any qualifying terms. People argue about whether the
term `chain' means that time is countable or the state space is countable. Either way, the objects
we are discussing are de�nitely `Markov chains'. A Markov chain is a stochastic process. That is,
a sequence of random variables (Xi)i∈I , whose index set I often represents time (e.g., X1 happens
before X2, which happens before X3 and so on).

35

36 CHAPTER 4. MARKOV CHAINS

De�nition 4.1.1 (Markov chain)
Let (Xn)n∈N be a stochastic process taking values in a countable state space S (i.e., all the (Xn)n∈N
take values in S). We say (Xn)n∈N is a Markov Chain if ∀n > 0 and (i0, . . . , in, j) ∈ Sn+2

P (Xn+1 = j |X0 = i0, . . . , Xn = in) = pin,j .

It's not hard to see that De�nition 4.1.1 implies that

P (Xn+1 = j |X0 = i0, . . . , Xn = in) = P (Xn+1 = j |Xn = in) .

That is, the probability of going from state in to state j does not depend on where the chain has
been before (its history).

Example 4.1.1 (Simple random walk)
Let S = Z. Set X0 = 0 and Xn+1 = Xn + (2Zn − 1) for n ≥ 0, where (Zn)n∈N is a sequence of iid
Bernoulli(1/2) random variables. In this case we have,

P (Xn+1 = j |X0 = i0, . . . , Xn = in) =


1/2 if in = j + 1

1/2 if in = j − 1

0 otherwise

= P (Xn+1 = j |Xn = in) .

Example 4.1.2 (A graphical representation of a Markov chain)

1

2 3

1/4 1/4

1/2

1

1/3

2/3

The transition probabilities of a Markov chain can be thought of as a matrix P = (pi,j), known as
the transition matrix.

Example 4.1.3 (Graphical representation of a Markov chain, continued)
The chain in Example 4.1.2 has the transition matrix

P =

1 2 3

1
2
3

 1
2

1
4

1
4

0 0 1
2
3

1
3 0

 ∑3
i=1 p1,i = 1∑3
i=1 p2,i = 1∑3
i=1 p3,i = 1

In the case of an in�nite state space, this matrix will be in�nite.

4.2. SIMULATION 37

De�nition 4.1.2 (Stochastic matrix)
A matrix with non-negative real values entries and rows that sum to 1 is called a (right) stochastic
matrix.

4.2 Simulation

Algorithm 4.2.1 (Simulating a Markov Chain)

1. Draw X0 from λ (the initial distribution of X0. Set i = 1.

2. Set Xi+1 = j with probability pXi,j .

3. Set i = i+ 1. If i < N repeat from step 2.

Example 4.1.2 can be simulated in Matlab.

Listing 4.1: Matlab Code

1 N = 10^5; X = zeros(N,1);

2 X(1) = ceil(rand*3); i =1;

3 P = [1/2 1/4 1/4; 0 0 1; 2/3 1/3 0];

4 while i<N

5 X(i+1) = min(find(rand<cumsum(P(X(i),:))));

6 i = i+1;

7 end

4.3 Calculating Probabilities

When working with Markov Chains, we represent probability distributions as row vectors. A
probability distribution will usually be denoted λ = (λ1, λ2, . . .), where λi = P (X = i). Two
obvious requirements are λi ≥ 0 for all i and Σiλi = 1.

We can de�ne the probabilities of various paths of a Markov chain. If X0 is drawn from some
distribution λ, then

P (X0 = i0, X1 = i1, · · · , XN = iN)

=P (X0 = i0)P (X1 = i1|X0 = i0)· · · P (XN = iN |X0 = i0, X1 = i1, · · · , XN−1 = iN−1)

=P (X0 = i0)P (X1 = i1|X0 = i0)· · · P (XN = iN |XN−1 = iN−1)

=λi0pi0,i1 · · · piN−1,iN .

We say a Markov chain with initial distribution λ and transition matrix P is a (λ, P) Markov chain.

We can compute in what state we are likely to be after one step.

P (X1 = 1) =P (X0 = 1)P (X1 = 1|X0 = 1) + P (X0 = 2)P (X1 = 1|X0 = 2) + · · ·

=λ1p1,1 + λ2p2,1 + · · · =
∑
i0∈S

λi0pi0,1

38 CHAPTER 4. MARKOV CHAINS

If we do this for P (X1 = 2), P (X1 = 3), and so on, we see that(∑
i0∈S

λi0pi0,1,
∑
i0∈S

λi0pi0,2, . . .

)
= λP

If we take another step with the initial distribution λP the next distribution is λP 2.

Recursively one can see that the distribution after n steps is

λPn with p(n)
i,j = P (Xn = j|X0 = i).

4.3.1 Ways to calculate P n

When S is �nite:

1. Use a computer to �nd Pn (without thinking too hard about it).

2. Diagonalization

3. Recursion.

Diagonalization

If a square matrix has a complete basis of eigenvectors, one can write

P = QDQ−1,

where D is a matrix with the eigenvalues of P on the diagonal and zeros elsewhere and Q is a
matrix with the eigenvectors of P as columns. A nice result is, that

Pn = QDnQ−1

Example 4.3.1 Let

P =

(
1
4

3
4

2
5

3
5

)
So, to �nd the eigenvalues, we need to solve(

1

4
− λ
)(

3

5
− λ
)
−
(

2

5

)(
3

4

)
= 0⇒ λ = 1,− 3

20
.

To get the eigenvectors, we solve Pu = λiu, i = 1, 2

λ1 :
1

4
u1 +

3

4
u2 = u1 ⇒ u1 = u2⇒ u =

(
1, 1
)T

λ2 :
1

4
u1 +

3

4
u2 = − 3

20
u1 ⇒ u1 = − 8

15
u2⇒ u =

(
1,− 8

15

)T
.

4.4. ASYMPTOTIC BEHAVIOR OF MARKOV CHAINS 39

So

Q =

(
1 1
1 − 8

15

)
, D =

(
1 0
0 − 3

20

)
, P = QDQ−1

Pn = Q

(
(1)n 0

0
(
− 3

20

)n)Q−1.

Note that, when the eigenvalues are distinct, the matrix P is of the form

p
(n)
i,j = a1λ

n
1 + · · ·+ amλ

n
m.

This is slightly more complicated with repeating eigenvalues.

Recursion

In general pni,j = p
(n−1)
i,1 p1,j + · · ·+ p

(n−1)
i,k pk,j =

∑
k∈S p

(n−1)
i,k pk,j . It is sometimes possible to solve

this recursion. This is mostly useful for calculating some quantities we will not focus on, such as
absorption probabilities.

Example 4.3.2 (2 states)
We have

p
(n)
1,2 = p

(n−1)
1,2 p2,2 + p

(n−1)
1,1 p1,2.

Now
p

(n−1)
1,1 + p

(n−1)
1,2 = 1⇒ p

(n−1)
1,1 = 1− p(n−1)

1,2 .

So we can write

p
(n)
1,2 = p

(n−1)
1,2 p2,2 +

(
1− p(n−1)

1,2

)
p1,2 = (p2,2 − p1,2)p

(n−1)
1,2 + p1,2

This recursion can be solved.

4.4 Asymptotic behavior of Markov Chains

We are often interested in the behavior of a Markov chain as n → ∞. We will introduce two
important asymptotic quantities, the stationary distribution and the limiting distribution.

4.4.1 Class Structure

The class structure of a Markov chain gives us important information about its asymptotic behavior.

We can break a Markov Chain up into a number of separate components called communicating
classes.

We say i leads to j (i→ j) if P (Xn = j some n ≥ 0 |X0 = i) > 0.

We say i communicates with j, and write i↔ j, if both i→ j and j → i.

A state space S can be partitioned into communicating classes C1, C2, A chain where S is a
single class is called irreducible.

40 CHAPTER 4. MARKOV CHAINS

Example 4.4.1 (A Markov chain with two communicating classes.)

1

23 4 5

1/2
1/2

1/4

1/2

1/4
1 1

1

The state space of this chain can be separated in two communicating classes, C1 = {1, 2, 3} and
C2 = {4, 5}.

We say a communicating class C is closed if i ∈ C, i→ j ⇒ j ∈ C.

A state i is recurrent if P (Xn = i for in�nitely many n |X0 = i) = 1.

A state i is transient if P (Xn = i for in�nitely many n |X0 = i) = 0.

Theorem 4.4.1 Let C be a communicating class, then all states in C are transient or all states
are recurrent.

4.4.2 Invariant Measures

De�nition 4.4.1 (Invariant measure)
We say a measure, ν, by which we mean a non-trivial (that is, not 0) vector with non-negative
components, is invariant if νP = ν.

If ν is a measure and
∑
i∈S νi = 1 then ν is a probability distribution (I will try to denote invariant

probability distributions by π).

Given a measure ν with
∑
i∈S νi < ∞, we can obtain an invariant probability distribution π by

setting πi = νi/
∑
i∈S νi.

Remember that the distribution of Xn for a (λ, P) Markov chain is λPn. Because πP = π, the
distribution of Xn if X0 ∼ π is still π. The distribution does not change. For this reason, π is
called a stationary distribution of the Markov chain.

Two obvious questions are under what circumstances π exists and whether or not π is unique.

For �nite matrices one can always get a non-trivial vector u so that uP = u (however, this vector
is not guaranteed to be non-negative). We can see this by observing that

P

1
1
...

 =

p11 p12 · · ·
p21 p22

...
. . .


1

1
...

 =

p11 + p12 + · · ·
p21 + p22 + · · ·

...

 =

1
1
...

 .

So we get a right eigenvector (1, 1, . . .)T of P with the right eigenvalue 1. A right eigenvalue is also
a left eigenvalue, so there exists a vector u such that ⇒ uP = 1u.

4.4. ASYMPTOTIC BEHAVIOR OF MARKOV CHAINS 41

We still have no guarantee that u is non-negative (and this argument doesn't work for in�nite state
spaces). Even if we can get a non-negative ν such that

∑
i∈S νi = 1, we don't necessarily get a

unique π.

Example 4.4.2 (A non-unique stationary distribution)

Consider the Markov chain

1

23

1/2

1/2

11

The transition matrix of this chain is

P =

0 1
2

1
2

0 1 0
0 0 1

 .

Solving for the eigenvector corresponding to the eigenvalue 1, we get

(
u1 u2 u3

)0 1
2

1
2

0 1 0
0 0 1

 =
(
0 u2 u3

)
=
(
u1 u2 u3

)
.

We see that u2 and u3 are unrestricted. So, we have an in�nite number of πs, e.g., π = (0, 1, 0),
π = (0, 0, 1) or π = (0, 1

2 ,
1
2).

Even if π is unique, it is not necessarily a limiting distribution (by which, we mean lim
n→∞

µPn =

π for all µ).

Example 4.4.3 (No limiting distribution)

Consider the Markov chain

1 2

1

1

which has transition matrix

P =

(
0 1
1 0

)
.

42 CHAPTER 4. MARKOV CHAINS

Solving for the eigenvector corresponding to the eigenvalue 1, we get(
u1 u2

)(0 1
1 0

)
=
(
u2 u1

)
=
(
u1 u2

)
.

⇒ u1 = u2 ⇒ π =
(

1
2

1
2

)
.

However, no limiting distribution exists as

Pn =

(
0 1
1 0

)
if n is odd and Pn =

(
1 0
0 1

)
if n is even .

We can show the existence of an invariant and non-negative measure if P is irreducible and
recurrent. With these conditions, we can also get a uniqueness result. But, for in�nite state
spaces, this doesn't guarantee a probability distribution (we need one more condition to get this).

We will make extensive use of the vector µk, which we de�ne to be

µki = E k

Tk−1∑
n=0

1 {Xn = i},

where E k means the expected value whern X0 = k and Tk = inf{n ≥ 1 : Xn = k}. This is the
average spent in i between trips to k

Theorem 4.4.2 (The `existence' result)
Let P be irreducible and recurrent. Then

(i) µkk = 1

(ii) µkP = µk

(iii) 0 < µki <∞ ∀i ∈ S.

Proof

(i) We can only spend 1 step in k before we visit k again, so µkk = 1.

(ii) Note that E k

∑Tk−1

n=0 1 {Xn = i} = E k

∑Tk

n=1 1 {Xn = i}, so

µkj =E k

Tk∑
n=1

1 {Xn = j} = E k

∞∑
n=1

1 {Xn = j, n ≤ Tk} =
∑
i∈S

∞∑
n=1

P (Xn−1 = i,Xn = j, n ≤ Tk)

=
∑
i∈S

∞∑
n=1

P (Xn−1 = i, n ≤ Tk)P (Xn = j|Xn−1 = i) =
∑
i∈S

pi,j

∞∑
n=1

P (Xn−1 = i, n ≤ Tk)

=
∑
i∈S

pi,jE k

∞∑
n=0

1 {Xn = i, n ≤ Tk−1} =
∑
i∈S

pi,jE k

Tk−1∑
n=0

1 {Xn = i}

=
∑
i∈S

µki pi,j .

4.4. ASYMPTOTIC BEHAVIOR OF MARKOV CHAINS 43

(iii) P is irreducible. So, for each state i, there exist n,m ≥ 0 so that p(n)
i,k , p

(m)
k,i > 0.

By (ii) we know

µki =
∑
j∈S

µkj p
(m)
j,i ≥ µ

k
kp

(m)
k,i > 0

and
1 = µkk =

∑
j∈S

µkj p
(n)
j,i ≥ µ

k
i p

(n)
i,k .

So

0 < µki ≤
1

p
(n)
i,k

<∞.

Theorem 4.4.3 (The `uniqueness' result)
Let P be irreducible and ν an invariant measure for P with νk = 1. Then ν ≥ µk (element wise).
If P is also recurrent, ν = µk.

Proof
For each j ∈ S we have

νj =
∑
i1∈S

νi1pi1,j =
∑
i1 6=k

νi1pi1,j + pk,j

=
∑
i1 6=k

∑
i2 6=k

νi2pi2,i1pi1,j +

pk,j +
∑
i1 6=k

pk,i1pi1,j


...

=
∑
i1 6=k

· · ·
∑
in 6=k

νinpin,in−1 . . . pi1,j +

pk,j +
∑
i1 6=k

pk,i1pi1,j + . . .+
∑
i1 6=k

· · ·
∑

in−1 6=k

pk,in−1 · · · pi2,i1pi1,j

 .

For j 6= k

νj ≥ P k(X1 = j and Tk ≥ 1) + P k(X2 = j, Tk ≥ 2) + · · ·+ P k(Xn = j, Tk ≥ n) −→ µkj as n→∞.

For j = k we already have equality.

For P recurrent (and already irreducible) µk is invariant. De�ne w = ν − µk. w is invariant, as
wP = (ν − µk)P = νP − µkP = ν − µk = w. The result above implies that w ≥ 0.

As P is irreducible, for all i in S we can �nd an n > 0 such that p(n)
i,k > 0 and

0 = wk =
∑
j∈S

wjp
(n)
i,j ≥ wip

(n)
i,k .

Now, w = 0 = ν − µk ⇒ ν = µk

44 CHAPTER 4. MARKOV CHAINS

Remark For in�nite state spaces, Theorem 4.4.3 doesn't guarantee that µk can be turned into a
probability measure as

0 < µki <∞ ∀ i ∈ S 6⇔
∑
i∈S

µki <∞.

(Consider, for example, random walks).

De�nition 4.4.2 Recurrence, which was de�ned as P i(Xn = i for in�nitely many n) = 1, is
equivalent to P i(Ti < ∞) = 1. De�ne mi = E iTi. We say i is positive recurrent if mi < ∞.
Otherwise, i is null recurrent.

Theorem 4.4.4 If P is irreducible, the following are equivalent.

(i) Every state is positive recurrent.

(ii) Some state k is positive recurrent.

(iii) P has an invariant distribution π.

Proof

• (i)→ (ii) is obvious.

• (ii)→ (iii): k is positive recurrent and therefore recurrent. ⇒ P irreducible and recurrent.
By Theorem 4.4.2 we know that an invariant measure µk exists. Now∑

j∈S
µkj = mk <∞,

So (
µk1∑
i∈S µ

k
i

,
µk2∑
i∈S µ

k
i

, . . .

)
=

(
µk1
mk

,
µk2
mk

, . . .

)
⇒ πi =

µki
mk

,

• (iii)→ (i): Take state k. P is irreducible and∑
i∈S

πi = 1⇒ πk =
∑
i∈S

πip
(n)
i,k > 0 for some n.

Set λi = πi

πk
. λ is invariant with λk = 1. By Theorem 4.4.3, we can say λ ≥ µk. So

mk =
∑
i∈S

µki ≤
∑
i∈S

πi
πk

=
1

πk
<∞.

⇒ k is positive recurrent and P is recurrent. So, by Theorem 4.4.3,

λ = µk ⇒ mk =
∑
i∈S

µki =
∑
i∈S

πi
πk

=
1

πk
.

4.4. ASYMPTOTIC BEHAVIOR OF MARKOV CHAINS 45

Example 4.4.4 An in�nite state space Markov chain that is positive recurrent for p ∈ (0, 1)

P =


1− p p 0 0 0 · · ·
1− p 0 p 0 0 · · ·
1− p 0 0 p 0
1− p 0 0 0 p
...

...
. . .

. . .



4.4.3 Limiting Distributions

In order to determine whether a chain has a limiting distribution or not (does it converge to the
stationary distribution?), we need to determine the period of its states.

De�nition 4.4.3
De�ne

T (i) =
{
n ≥ 0 : p

(n)
ii > 0

}
.

The period of state i is the greatest common divisor of T (i).

Lemma 4.4.1 In an irreducible chain, all states have the same period.

Proof Take i, j ∈ S. Irreducibility implies that there exist m,n so that p(m)
ij > 0 and p(n)

ji > 0.
Let d be a common divisor of T (i). Then

∀ k ∈ T (j) : p
(m+k+n)
ii ≥ p(m)

ij p
(k)
jj p

(n)
ji > 0⇒ m+ k + n ∈ T (i)

⇒ d divides {m+ n+ k : k ∈ T (j)}, but m+ n ∈ T (i) so d divides m+ n ⇒ d must divide k ⇒ d
must divide T (j)⇒ d(i) ≤ d(j), where d(i) is the greatest common divisor of i. Do reverse and get
d(i) = d(j).

Remark A chain is aperiodic if the period of all states is 1.

Now we need to de�ne what we mean by "convergence to the stationary distribution".

De�nition 4.4.4 Let p1 and p2 be probability distributions on S. The total variation distance
between p1 and p2 is ∥∥p1 − p2

∥∥
TV

= max
A⊂S

∣∣p1(A)− p2(A)
∣∣ .

Proposition 4.4.1 ∥∥p1 − p2
∥∥
TV

=
1

2

∑
i∈S

∣∣p1
i − p2

i

∣∣ .
Proof Let B =

{
i : p1

i > p2
i

}
. A ⊂ S any Event. Now,

p1(A)− p2(A) ≤ p1(A ∩B)− p2(A ∩B) ≤ p1(B)− p2(B).

46 CHAPTER 4. MARKOV CHAINS

Likewise,
p2(A)− p1(A) ≤ p2(Bc)− p1(Bc).

And [
p2(Bc)− p1(Bc)

]
−
[
p1(B)− p2(B)

]
= 1− p2(B)− 1 + p1(B)− p1(B) + p2(B) = 0.

⇒ p1(B)− p2(B) = p2(Bc)− p1(Bc).

Now

max
A⊂S

∣∣p1(A)− p2(A)
∣∣ = max

A⊂S
max

{
p1(A)− p2(A), p2(A)− p1(A)

}
=

1

2

[
p1(B)− p2(B) + p2(Bc)− p1(Bc)

]
=

1

2

∑
i∈S

∣∣p1
i − p2

i

∣∣

Theorem 4.4.5 (The main result) Let P be a irreducible, aperiodic and positive recurrent. Then

lim
n→∞

‖µPn − π‖TV = 0

for all µ, where π is the unique stationary distribution.

4.4.4 Reversibility and Detailed Balance

Remark (Reversibility) A Markov chain run backwards is also a Markov chain. Of particular
interest to us, is the behavior of such Markov chains at stationarity.

Theorem 4.4.6 Let P be irreducible with invariant distribution π. Suppose (Xn)0≤n≤N is Markov

(π, P). Set Yn = XN−n. Then (Xn)0≤n≤N is Markov (π, P̂). Where P̂ is given by

πj p̂ji = πipij. ∀ i, j ∈ S.

P̂ is also irreducible with the invariant distribution π.

De�nition 4.4.5 (Detailed Balance) A matrix P and a measure ν are in detailed balance if

νipij = νjpji. ∀ i, j ∈ S.

De�nition 4.4.6 (Reversible) Let (Xn)n≥0 be Markov (λ, P), with P irreducible. (Xn)n≥0 is
reversible if, for all N ≥ 1, (XN−n)0≤n≤N is also Markov (λ, P).

Theorem 4.4.7 Let (Xn)n≥0 be Markov (λ, P). It is reversible ⇐⇒ P and λ are in detailed
balance.

Theorem 4.4.8 If λ and P are in detailed balance, then λ is invariant

Proof
(λP)i =

∑
j∈S

λjpji =
∑
j∈S

λipij = λi

Chapter 5

Markov Chain Monte Carlo

So far, we have tried to �nd the stationary distribution, π, of a given Markov Chain. In Monte
Carlo, we are usually interested in the inverse problem. Given a distribution π, we wish to construct
a Markov chain with stationary distribution π. The methods for doing this are called Markov Chain
Monte Carlo (MCMC) methods.

5.1 The Metropolis-Hastings Algorithm for Countable State
Spaces

5.1.1 The Metropolis Algorithm

The basic idea of many MCMC methods is to use detailed balance to construct a Markov chain
with the desired stationary distribution. That is, given π, we need to �nd a transition matrix P ,
such that πipij = πjpji. Nicholas Metropolis suggested the �rst method of doing this. His idea is
the following.

1. Given the chain is in state i, a possible state to jump to, j, is proposed according to the
transition matrix Q, where qij = qji (that is, Q is symmetric). Q needs to be positive
recurrent and irreducible on S for everything to work.

2. With probability α = min
{

1,
πj

πi

}
the chain jumps to j. Otherwise, it stays in i.

This gives a Markov chain with transition probabilities pij = qij min
{

1,
πj

πi

}
.

Theorem 5.1.1 The transition matrix described above is in detailed balance with π (and thus π
is its stationary distribution).

Proof That is, we need to show πipij = πjpji, i.e., πiqij min
{

1,
πj

πi

}
= πjqji min

{
1, πi

πj

}
.

47

48 CHAPTER 5. MARKOV CHAIN MONTE CARLO

Cases

• πj > πi:

πiqij min

{
1,
πj
πi

}
= πiqij = πiqij

πj
πj

= πjqji min

{
πi
πj
, 1

}
.

• πi ≥ πj :

πiqij min

{
1,
πj
πi

}
= πiqij

πj
πi

= πjqji = πjqji min

{
πi
πj
, 1

}
.

5.1.2 The Metropolis-Hastings Algorithm

Hastings modi�ed the algoritm to include the case where qij 6= qji (that is, Q is not symmetric).
He did this by using a di�erent acceptance probabiltity:

α = πiqij min

{
1,
πjqji
πiqij

}
Theorem 5.1.2 The transition matrix described above is in detailed balance with π (and thus π
is its stationary distribution).

Proof The proof is more or less the same as the proof for Theorem 5.1.1.

Cases

• πjqji > πiqij :

πiqij min

{
1,
πjqji
πiqij

}
= πiqij = πiqij

πjqji
πjqji

= πjqji min

{
πiqij
πjqji

, 1

}
.

• πiqij ≥ πjqji:

πiqij min

{
1,
πjqji
πiqij

}
= πiqij

πjqji
πiqij

= πjqji = πjqji min

{
πiqij
πjqji

, 1

}
.

5.1. THE METROPOLIS-HASTINGS ALGORITHM FOR COUNTABLE STATE SPACES 49

5.1.3 A Classical Setting for the Metropolis-Hastings Algorithm

Consider a collection of objects {xi}i∈S , indexed by i and in some state space S. Let X be a random
variable, taking on values according to

πi = P (X = xi) =
1

ZT
exp

{
− 1

T
E(xi)

}
, (5.1)

where ZT is called the partition function and E is called the energy function. The partition function
is the normalizing constant of this distribution. That is,

ZT =
∑
i∈S

exp

{
− 1

T
E(xi)

}
In this setting, we are often interested in quite complicated objects (e.g. random graphs, random
�elds etc). A reasonably simple example is �xed graphs with each vertex assigned -1 or 1. For
example, the following.

2 × 2 square lattice 3 × 3 square lattice

· · · · · ·

Even in such simple settings |S|, the number of possible values of X, is very large. For an N ×N
square lattice we have 2N×N combinations. So, for example, when N = 5, there are 225 = 33554432
possible values. As you can see, for a more interesting object, a 100×100 lattice for example (which
could model a 100× 100 pixel black and white image), the size of the state space is enormous. This
means

ZT =
∑
i∈S

exp

{
− 1

T
E(xi)

}
can be very di�cult to calculate if E is complicated.

Markov Chains Monte Carlo methods such as the Metropolis-Hastings algorithm allow us to draw
samples according to the distribution given in (5.1). Using these samples, and standard Monte
Carlo estimators, we can estimate things like expected values of functionals (that we could not
calculate otherwise in the absence of a normalizing constant).

The reason for this is that we do not need to know the normalizing constant of a distribution in
order to use MCMC. Let π be a distribution with πi ∝ λi, where

∑
i∈S λi is unknown, then

πj
πi

=

λj/
∑
k∈S

λk

λi/
∑
k∈S

λk
=
λj
λi
.

50 CHAPTER 5. MARKOV CHAIN MONTE CARLO

That is, we do not need to know the normalizing constant in order to calculate α (and thus generate
a chain with the desired stationary distribution).

Example 5.1.1

Consider an extremely simple graph model, with only two vertices which can be marked 1 (white)
or −1 (black). The possible states are:

1 2 3 4

We wish to sample from a distribution of the form (5.1) with T = 1 and E(x) = − log (# black in x+ 1).
Because this is a very simple model, we can compute the distribution exactly.

π1 ∝ exp (−(− log 1)) = 1, π2 ∝ 2, π3 ∝ 2, π4 ∝ 3. This means that ZT = 8, so π1 = 1/8, π2 =
1/4, π3 = 1/4 and π4 = 3/8.

However, we want to try to use MCMC methods to sample from this, pretending we do not know
the normalizing constants (which would be true if the model had, say, 200 vertices).

We choose our Q matrix so that it �ips the value of one circle at random.

Q =


0 1

2
1
2 0

1
2 0 0 1

2
1
2 0 0 1

2
0 1

2
1
2 0

 ,

We can then work out the transition matrix of the Metropolis sampler (the Q matrix is symmetric).
For example,

The transition probability from 1 to 2 is

p12 = q12 ×min

{
π2

π1
, 1

}
=

1

2
×min

{
2

1
, 1

}
=

1

2
.

The transition probability from 2 to 1 is

p21 = q21 ×min

{
π1

π2
, 1

}
=

1

2
×min

{
1

2
, 1

}
=

1

4
.

The transition probability from 2 to 4 is

p24 = q24 ×min

{
π4

π2
, 1

}
=

1

2
×min

{
2

2
, 1

}
=

1

2
.

5.1. THE METROPOLIS-HASTINGS ALGORITHM FOR COUNTABLE STATE SPACES 51

Continuing in this fashion, we get

P =


0 1

2
1
2 0

1
4

1
4 0 1

2
1
4 0 1

4
1
2

0 1
3

1
3

1
3


We can check this P matrix gives the desired stationary distribution.

1 =
1

4
· 2 +

1

4
· 2 = 1

2 =
1

2
· 1 +

1

4
· 2 +

1

3
· 3 = 2

2 =
1

2
· 1 +

1

4
· 2 +

1

3
· 3 = 2

3 =
1

2
· 2 +

1

2
· 2 +

1

3
· 3 = 3.

The sampler is straightforward to implement.

Listing 5.1: Matlab Code

1 N = 10^5; X = zeros(N,2);

2 X_0 = [0 0];

3 flips[0 1;1 0];

4 X(1,:) = xor(X_0,flips(ceil(2*rand),:));

5 for i = 1:n

6 Y = xor(X(i-1),:),flips(ceil(2*rand),:));

7 U = rand;

8 alpha = (sum(Y)+1)/(sum(X(i-1,:))+1);

9 if U < alpha

10 X(i,:) = Y;

11 else

12 X(i,:) = X(i-1,:);

13 end

14 end

5.1.4 Using the Metropolis-Hastings Sampler

An important result when using the MCMC sampler is the following.

Theorem 5.1.3 (Ergodic Theorem) If P is irreducible, positive recurrent and (Xn)n≥0 is Markov
(µ, P). Then, for any bounded function ϕ : S → R

P

(
1

n

n−1∑
k=0

ϕ(xk) −→ ϕ as n→∞

)
= 1.

Where ϕ =
∑
i∈S πiϕ(xi).

52 CHAPTER 5. MARKOV CHAIN MONTE CARLO

This tells us that we can estimate the expected values of functionals of random variables using
MCMC methods. We still need to be careful though, as the (Xn)n≥0 are not iid. This means that
we might now have a central limit theorem (or any other results for calculating the error of our
estimator).

As we have seen, MCMC gives us a way to sample from complicated probability distributions,
even when we do not know their normalizing constants. Acceptance-rejection also doesn't need
a normalizing constant. However, as we have discussed, acceptance-rejection does not work well
in higher dimensions. In some sense, the Metropolis-Hastings algorithm can be thought of as a
`smarter' acceptance-rejection method.

5.1.5 Applications

Markov Chain Monte Carlo can be used in

• physics/statistical mechanics,

• drawing from complicated densities,

• drawing from conditional densities. E.g.

f (x|x ∈ A) =
f(x)1 (x ∈ A)∫

A
f(u)du

.

where we don't know the normalizing constant.

• Bayesian statistics

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

.

Usually the integral in the denominator is very hard to compute.

5.2 Markov Chains with General State Spaces

In order to extend the MCMC approach to work with possibly uncountable (general) state spaces,
we need to generalize the concept of a transition matrix, P = (pij)i,j∈S .

De�nition 5.2.1 (Transition Kernel) A transition kernel is a function K on S × B(S) so that

1. ∀ x ∈ S, K(x, ·) is a probability measure on B(S).

2. ∀ A ∈ B(S), K(·, A) is measurable.

We say a sequence (Xn)n∈N with transition kernel K is a Markov chain if

P (Xn ∈ A|X0 = x0, . . . , Xn−1 = xn−1) = P (Xn ∈ A|Xn−1 = xn−1) =

∫
A

K(xn−1,dy).

5.2. MARKOV CHAINS WITH GENERAL STATE SPACES 53

The kernel for n transitions is given by

Kn(x,A) =

∫
S

Kn−1(y,A)K(x, dy).

Example 5.2.1 (AR(1) model) Let Xn = θXn−1 + εn, where the (εn)n∈N and iid N (0, σ2) and
θ ∈ R. Here,

K(x,A) =
1√

2πσ2

∫
A

exp

(
− (y − θx)2

2σ2

)
dy.

We want to extend the concept of irreducibility to general state space models. Recall that, for
countable state spaces, irreducibility means that there exists an n > 0 so that P (Xn = y|X0 =
x) > 0. This no longer makes sense. Returning to the same point will often have probability 0.
Instead, we use the concept of ϕ-irreducibility.

De�nition 5.2.2 (ϕ-irreducibility) Given a measure ϕ, (Xn)n≥0 is said to be ϕ-irreducible if,
for every A ∈ B(S) > 0 with ϕ(A) > 0, there exists an n so that Kn(x,A) > 0 ∀x ∈ S.

As it turns out, the measure chosen does not really matter. `Irreducibility' is an intrinsic property
of the chain. We generalize recurrence in a similar way.

De�nition 5.2.3 (Recurrence) A Markov Chain (Xn)n≥0 is recurrent if

(i) there exists a measure ψ so that (Xn)n≥0 is ψ-irreducible, and

(ii) ∀A ∈ B(S) so that ψ(A) > 0. EX(ηA) =∞.
Where EX(ηA) is the expected number of visits to A when starting in X.

Now that we have generalizations of recurrence and irreducibility, we can discuss stationary distri-
butions.

De�nition 5.2.4 (Stationarity) A σ-�nite measure π is invariant for the transition kernel K(·, ·)
if

π(B) =

∫
S

K(x,B)π(dx). ∀B ∈ B(S).

Recurrence gives a unique (up to scaling) invariant measure. Finiteness comes from an additional
technical condition. In a general state space, we also have the detailed balance equations (which
we will use, again, to show that Metropolis-Hastings works).

De�nition 5.2.5 (Detailed Balance) A Markov chain with transition kernel K satis�es the detailed
balance equations if there exists a function f satisfying

K(y, x)f(y) = K(x, y)f(x). ∀(x, y) ∈ S × S.

Lemma 5.2.1 Suppose a Markov chain with transition kernel K satis�es the datailed balance
conditions with π, a pdf, then

54 CHAPTER 5. MARKOV CHAIN MONTE CARLO

1. The density π is the invariant density of the chain.

2. The chain is reversible.

Proof of 1 ∫
S

K(y,B)π(y)dy =

∫∫
SB

K(y, x)π(y)dxdy =

∫∫
SB

K(x, y)π(x)dxdy

=

∫∫
BS

K(x, y)π(x)dydx =

∫
B

π(x)dx.

5.3 Metropolis-Hastings in General State Spaces

Using the machinery for general state spaces, the Metropolis-Hastings algorithm can now be used
to sample from an arbitrary density f .

Algorithm 5.3.1 (Metropolis-Hastings in general state spaces) Given an objective (target)
density f and a proposal density q(y|x).

1. Given Xn, generate Yn ∼ q(y|Xn).

2. Let

α(x, y) = min

{
f(y)

f(x)

q(x|y)

q(y|x)
, 1

}
.

Set Xn+1 = Yn with probability α(Xn, Yn) and Xn+1 = Xn otherwise.

The transition kernel of the Metropolis-Hastings sampler is given by

K(x, y) = α(x, y)q(y|x) + P (reject)δx(y),

where the probability of not accepting the proposed new state is

P (reject) = 1−
∫
S

α(x, y)q(y|x)dy = 1− α∗(x, y).

Thus, K(x, y) = α(x, y)q(y|x) + (1− α∗(x, y))δx(y).

Theorem 5.3.1 The transition kernel described above is in detailed balance with f (and thus f is
its stationary distribution).

Proof We need to show that K(x, y)f(x) = K(y, x)f(y). We break this into two parts

1. (1− α∗(x, y)) δx(y)f(x) = (1− α∗(y, x)) δy(x)f(y).

5.3. METROPOLIS-HASTINGS IN GENERAL STATE SPACES 55

2. α(x, y)q(y|x)f(x) = α(y, x)q(x|y)f(y)

Part 1 is easy. Both sides will be 0 except when y = x, in which case equality also clearly holds.
For part 2, we consider cases.

• f(y)q(x|y) > f(x)q(y|x):

α(x, y)q(y|x)f(x) = q(y|x)f(x) = q(x|y)f(y)
q(y|x)f(x)

q(x|y)f(y)
= q(x|y)f(y)α(y, x).

• f(x)q(y|x) ≥ f(y)q(x|y):

α(x, y)q(y|x)f(x) = q(y|x)f(x)
f(y)q(x|y)

f(x)q(y|x)
= f(y)q(x|y) = f(y)q(x|y)α(y, x).

5.3.1 Types of Metropolis-Hastings Samplers

There is a lot of freedom in the choice of the proposal density q(y|x) for the Metropolis-Hastings
sampler. Di�erent choices give quite di�erent algorithms.

Independence Sampler

The idea of the independence sampler is that the choice of the proposed next state, Y , does not
dependent on the current location. That is, q(y|x) = g(y). This gives an acceptance probability of
the form

α(x, y) = min

{
f(y)g(x)

f(x)g(y)
, 1

}
.

In some ways, the independence sampler seems almost identical to the acceptance-rejection method.
However, it turns out to be more e�cient. Recall that the acceptance rate of the acceptance-rejection
method is 1/C.

Lemma 5.3.1 If there exists a C > 0 so that f(x) ≤ Cg(x), then the acceptance rate of the
independence sampler is at least 1/C.

Proof For U ∼ U(0, 1):

P (U ≤ α(X,Y)) =

∫∫
min

{
f(y)g(x)

f(x)g(y)
, 1

}
f(x)g(y) dxdy

=

∫∫
1 {f(y)g(x) ≥ f(x)g(y)} f(x)g(y) dx dy +

∫∫
1 {f(x)g(y) ≥ f(y)g(x)} f(x)g(y) dx dy

= 2

∫∫
1 {f(y)g(x) ≥ f(x)g(y)} f(x)g(y) dxdy

≥ 2

∫∫
1 {f(y)g(x) ≥ f(x)g(y)} f(x)

f(y)

C
dxdy

=
2

C
P (f(Y)g(X) ≥ f(X)g(Y)) =

2

C
· 1

2
=

1

C

56 CHAPTER 5. MARKOV CHAIN MONTE CARLO

Although the independence sampler seems superior to the acceptance-rejection method, it does
have a major disadvantage, which is that the samples are not iid.

Random Walker Sampler

The idea of a random walk sampler is that it `walks' around the support of the target pdf, with
steps to high probability regions more likely. The form of the proposal density is

q(y|x) = g(|y − x|).

Where g is a symmetric distribution (g(−x) = g(x)). Note q(x|y) = q(y|x) so α(x, y) = min
{
f(y)
f(x) , 1

}
.

An example proposal density is the standard normal distribution with mean x, i.e.,

q(y|x) = ψ(y − x) =
1√
2π

exp

(
− (y − x)2

2

)
That is, we walk around the support of our target density with normally distributed step sizes
(though these are not always accepted).

5.3.2 An example

We can compare the independence sampler and random walk sampler in the following example.

Example 5.3.1 (Sampling from a bimodal density) Consider the density

f(x) =
1

2

1√
2π

exp

(
− (x− 2)2

2

)
+

1

2

1√
2π

exp

(
− (x+ 2)2

2

)

x

y

g(x)

An example approach, using the independence sampler (with proposals having density N (0, 2)), is
the following.

5.3. METROPOLIS-HASTINGS IN GENERAL STATE SPACES 57

Listing 5.2: Independence Sampler Matlab Code

1 N = 10^5; X = zeros(N,1);

2 x_0 = 0; X(1) = X_0;

3

4 for i = 2:N

5 Y = sqrt(2)*randn; U = rand;

6 f_Y = 1/2*normpdf(Y,2,1)+1/2*normpdf(Y,-2,1);

7 f_X = 1/2*normpdf(X(i-1),2,1)+1/2*normpdf(X(i-1)-2,1);

8 g_Y = normpdf(Y,0,sqrt(2));

9 g_X = normpdf(X(i),0,sqrt(2));

10 alpha = (f_Y*g_X)/(f_X*g_Y);

11 if U < alpha

12 X(i) = Y;

13 else

14 X(i) = X(i-1);

15 end

16 end

An example approach, using the random walker sampler, with steps drawn from the N (0, 1
2) dis-

tribution, is

Listing 5.3: Matlab Code

1 N = 10^5; X = zeros(N,1);

2 x_0 = 0; X(1) = X_0;

3

4 for i = 2:N

5 Y = X(i-1)+sqrt(1/2)*randn; U = rand;

6 f_Y = 1/2*normpdf(Y,2,1)+1/2*normpdf(Y,-2,1);

7 f_X = 1/2*normpdf(X(i-1),2,1)+1/2*normpdf(X(i-1)-2,1);

8 alpha = f_Y/f_X;

9 if U < alpha

10 X(i) = Y;

11 else

12 X(i) = X(i-1);

13 end

14 end

5.3.3 Burn-In

When using MCMC, we often do not know very much about f , the density we wish to sample from.
This means that sometimes we start our Markov chain far from the stationary distribution. In this
case, it can take a very long time to reach stationarity and the early values of our chain will not be
"typical" of the desired distribution. One solution is to discard the early values. For example, we
could throw away the �rst 1000 steps of our chain. The steps are then called the "Burn-In" period.

58 CHAPTER 5. MARKOV CHAIN MONTE CARLO

The level sets of the denstiy f

Figure 5.1: Here, the chain starts a long way from the high probability region of the density f . The
�rst steps are not at all typical draws from the density.

5.3.4 The Ideal Acceptance Rate

Look at the typical acceptance rate (that is, the typical value of α) is a good way to get information
about the e�ciency of an MCMC sampler and to `tune' it. However, the optimal acceptance rate
varies depending on the type of MCMC sampler you are using. For the independence sampler, the
higher the acceptance rate, the better (as we are proposing points from anywhere in the support
of f). However, for the random walk sampler, a too high acceptance rate can mean we are not
exploring the state space quickly enough (after all, we will tend to accept points not too far from
our current point, whereas it is often unlikely we will accept points far away).

5.4 The Slice Sampler

Another type of MCMC algorithm is the slice sampler. We wont say too much about this, other
than to give the basic algorithm.

Algorithm 5.4.1 (Slice Sampler)

1. Draw Un+1 ∼ U(0, f(Xn)).

2. Draw Xn+1 ∼ U(An+1), An+1 = {x : f(x) ≥ Un+1}.

5.5. THE GIBBS SAMPLER 59

x

y

(X1, U1)

(X1, U2)

(X2, U2)

5.4.1 The Slice Sampler in Higher Dimensions

Algorithm 5.4.2 (Slice Sampler in higher dimensions)

Decompose Density in f(x) ∝
k∏
i=1

fi(x).

1. U1
n+1 ∼ U(0, f1(xn)).

2. U2
n+1 ∼ U(0, f2(xn)).

...

k. Ukn+1 ∼ U(0, fk(xn)).

(k + 1). Xn+1 ∼ UAn+1 , An+1 = {x : fi(x) ≥ Un+1 i = 1, . . . , k}.

Obviously, �nding k can be very di�cult.

5.5 The Gibbs Sampler

The other very important class of MCMC samplers are known as Gibbs samplers. These samplers
can be used when we wish to sample a random vector X = (X, . . . ,XD), where we know all the
conditional densities of the form

Xi|X1, . . . , Xi−1, Xi+1, . . . , XD ∼ fi (xi|x1, . . . , xi−1, xi+1, . . . , xd)

60 CHAPTER 5. MARKOV CHAIN MONTE CARLO

Algorithm 5.5.1 (Gibbs Sampler) Given Xn = (Xn
1 , . . . , X

n
D).

• 1: Generate Xn+1
1 ∼ f1 (x1|Xn

2 , . . . , X
n
D).

• 2: Generate Xn+1
2 ∼ f2

(
x2

∣∣Xn+1
1 , Xn

3 , . . . , X
n
D

)
.

...

• D: Generate Xn+1
D ∼ fD

(
xD
∣∣Xn+1

1 , . . . , Xn+1
D−1

)
.

Example 5.5.1 (Drawing from a multivariate normal density)
Let X ∼ N (µ,Σ), where

Σ =

(
4 .2× 2× 3

.2× 2× 3 9

)
. and µ =

(
1
1

)
.

Recall that a variance-covariance matrix has the general form

Σ =

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
.

This joint density of the X is

f(x) =
1

2π|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

and the two conditional densities are given by

X1|X2 = x2 ∼ N
(
µ1 +

σ1

σ2
ρ(x2 − µ2),

(
1− ρ2

)
σ2

1

)
and

X2|X1 = x1 ∼ N
(
µ2 +

σ2

σ1
ρ(x1 − µ1),

(
1− ρ2

)
σ2

2

)
.

Implementing this in Matlab is straightforward.

Listing 5.4: Matlab Code

1 N = 10^5; X = zeros(N,2);

2 mu = [1 -1]; sigma = [2 3]; rho = .2;

3 for i = 2:N

4 X1_mu = mu(1) + sigma(1)/sigma(2)*rho*(X(i-1,2)-mu(2));

5 X1_sigma = sqrt(1-rho^2)*sigma(1);

6 X(i,1) =X1_mu +X1_sigma * randn;

7 X2_mu = mu(2) + sigma(2)/sigma(1)*rho*(X(i,1)-mu(1));

8 X2_sigma = sqrt(1-rho^2)*sigma(2);

9 X(i,2) = X2_mu +X2_sigma * randn;

10 end

5.5. THE GIBBS SAMPLER 61

5.5.1 Justi�cation of the Gibbs Sampler

In order to show the Gibbs sampler works, we introduce the following notation / terminology. We
de�ne a transition from x to y (updating from 1 to n) as

K1→n(y|x) =

D∏
i=1

f(yi|y1, . . . , yi−1, xi+1, . . . xD)

and a transition from y to x (updating from n to 1) as

Kn→1(x|y) =

D∏
i=1

f(xi|y1, . . . , yi−1, xi+1, . . . xD)

We use the following theorem to show the Gibbs sampler works.

Theorem 5.5.1 (Hammersley-Cli�ord) Let f(xi) be the ith marginal density of f(x). Suppose
f(x) satis�es the positivity condition

y ∈ {x : f(xi) > 0, i = 1, . . . , n} ⇒ f(y) > 0.

Then

f(y)Kn→1(x|y) = f(x)K1→n(y|x).

Note this is not the same as the detailed balance conditions. The Hammersley-Cli�ord theorem
leads directly to the following.

Theorem 5.5.2 Under the conditions given for Theorem 5.5.1 to hold, the Gibbs sampler produces
a Markov chain with the desired stationary distribution, f .

Proof ∫
f(y)Kn→1(x|y)dx =

∫
f(x)K1→n(y|x)dx⇒ f(y) =

∫
f(x)K1→n(y|x)dx.

This shows f is stationary with respect to the transition kernel of the Gibbs sampler.

5.5.2 Finding the Conditional Densities

The Gibbs sampler may appear a bit di�cult to use in practice, as it requires knowledge of all the
conditional densities. However, these conditional densities are often straightforward to determine.
Observe that

f(x|y) =
f(x, y)

f(y)
∝ f(x, y).

So, we can determine the density (at least up to its constant proportionality) by looking only at
the parts of f(x, y) that involve x, and treating y as if it were constant.

62 CHAPTER 5. MARKOV CHAIN MONTE CARLO

Example 5.5.2
Consider the joint density of X and Y , which are both Exp(λ), conditioned on X + Y > a.

f(x, y) ∝ e−λxe−λy1 {x+ y > a}.

So
f(x|y) ∝ e−λx1 {x > a− y}.

This approach works very well for the complicated densities often found in Bayesian statistics.

Example 5.5.3
For example, consider the complicated density

f(x, r, λ, p) ∝ baλa−1e−bλ

Γ(a)
e−λ

∑n
i=1 rip

∑n
i=1 ri(1− p)n−

∑n
i=1 riλ

∑n
i=1 xi

n∏
i=1

rxi
i

(xi)!
.

We can see that
f(p|x, r, λ) ∝ p

∑n
i=1 ri(1− p)n−

∑n
i=1 ri

To �nd the normalizing constant, we try to �nd a pdf that looks like what we have above. A Beta
pdf is of the form

f(x) =
xα−1(1− x)β−1

B(α, β)
, where B(α, β) =

Γ(α+ β)

Γ(α)Γ(β)

This looks identical when we set α =
n∑
i=1

ri + 1 and β = n−
n∑
i=1

ri + 1. Thus, we have

f(p|x, r, λ) =
p
∑n

i=1 ri(1− p)n−
∑n

i=1 ri

B (
∑n
i=1 ri + 1, n−

∑n
i=1 ri + 1)

5.6 Further Reading

A very good book on Markov Chain Monte Carlo is [16]. A less theoretically orientated book is [5].

Chapter 6

Variance Reduction

The aim of the following chapter is to describe ways to develop Monte Carlo estimators that are
very accurate, even when the sample size is small. The reason for doing this is pretty obvious. The
more accurate a Monte Carlo estimator is, the less samples we need to get a good estimate and,
thus, the less computer time we need.

It is often the case that we want to estimate a value of the form

` = EH(X),

where X ∼ f . Examples include EX, E f(X) and E (1 (X ∈ A)) = P (A). The standard Monte
Carlo estimator (often called the Crude Monte Carlo (CMC) estimator) is

̂̀
CMC =

1

N

N∑
i=1

H(Xi),

where the Xi are iid draws from f . The variance of this estimator is

Var
(̂̀

CMC

)
= Var

(
1

N

N∑
i=1

H(Xi)

)
=

1

N2
·N ·Var(H(X)) =

1

N
Var(H(X)). (6.1)

We usually measure the error of a Monte Carlo estimator by its standard deviation. Here, this is

1√
N

√
Var(H(X)).

Unfortunately, we cannot improve upon the denominator,
√
N (it would be nicer, for example, if

it were N or N2). However, we can often make an estimator with smaller variance than the Crude
Monte Carlo estimator.

6.1 Antithetic Sampling

The idea of antithetic sampling (sometimes called antithetic variates) is that, instead of generating a
stream of iid random variables, we generate pairs of correlated random variables (Z1, Z2), (Z3, Z4),

63

64 CHAPTER 6. VARIANCE REDUCTION

The marginal densities of the Zi are the same as the density of H(X). So, EZ1 = EZ2 = EH(X),
but Cov(Z2i, Z2i−1) 6= 0. The antithetic variate estimator is

̂̀
A =

1

N/2

N/2∑
i=1

Z2i−1 + Z2i

2
.

It is easy to check the estimator is unbiased, i.e., E ̂̀A = EH(X). Now, Cov(Z1, Z2) = ρσZ1σZ2 =
ρVar(H(X)), so

Var
(̂̀

A

)
= Var

 1

N/2

N/2∑
i=1

Z2i−1 + Z2

2

 =
4

N2

N

2
Var

(
Z1 + Z2i

2

)

=
1

2N
(Var(Z1) + Var(Z2) + 2Cov(Z1, Z2))

=
1

2N
2(1 + ρ)Var(H(X))

=
1

N
(1 + ρ)Var(H(X)),

This will be smaller than the variance of the CMC estimator, given in (6.1), if ρ < 0 (that is, if
Z2i−1 and Z2i are negatively correlated).

In order to implement antithetic sampling e�ectively, we need to �nd a way to generate two variables
X and Y which both have the correct marginal density but are also negatively correlated. If we use
the inverse transform machine, this is quite straightforward. If X = F−1(U), where U ∼ U(0, 1)
and F is the cdf of the desired distribution, then Y = F−1(1 − U) will also have the marginal
distribution F and will be negatively correlated with X.

Example 6.1.1 (Exponentially Distributed Random Variables)
If we wish to make X ∼ Exp(1) and Y ∼ Exp(1), with Cov(X,Y) < 0, we can generate X =
− log(U) and Y = − log(1− U), where U ∼ U(0, 1).

Example 6.1.2 (Bridge Network)
Consider the following bridge network.

A B

X1

X2

X3

X4

X5

Figure 6.1: Bridge Network

6.2. CONDITIONAL MONTE CARLO 65

where X = (X1, X2, X3, X4, X5), with the Xi iid U(0, 1). We want to estimate the expected length
of the shortest path from A to B, which we can write as ` = EH(X), where

H(X) = min{X1 +X4, X1 +X3 +X5, X2 +X3 +X4, X2 +X5}.

We can estimate this using the CMC approach:

1. Generate iid vectors X1, . . . ,XN .

2. Calculate ̂̀CMC = 1
N

N∑
i=1

H
(
Xi
)
.

Using the antithetic variates approach, we note that H is monotone increasing in all its components,
so H(X) and H(1−X) will be negatively correlated.

1. Generate X1, . . . ,XN/2.

2. Set Z1 = H
(
X1
)
, . . . , ZN/2 = H

(
XN/2

)
.

Set Z∗1 = H
(
1−X1

)
, . . . , Z∗N/2 = H

(
1−XN/2

)
.

3. Compute ̂̀A = 1
N/2

N/2∑
i=1

Zi+Z
∗
i

2 .

Note that, in order to estimate the variance of this estimator, we need to estimate Cov(Z1, Z
∗
1).

6.2 Conditional Monte Carlo

Conditional expectation can be a bit tricky (particularly if you are thinking about it rigorously).
If you are unsure about anything, [9] has a good review of the essentials.

The only things we really need to know are the following.

E (X|Y) = G(Y)

can be though of as an (otherwise deterministic) function of the random variable Y. A very
important property of conditional expectation is the tower property:

E (E (X|Y)) = EX

An important result about conditional expectation, that makes possible the variance reduction
achieved by the conditional Monte Carlo method is the following.

Theorem 6.2.1 (Law of Total Variance) Let X and Y be random variables on the same probability
space.

Var(X) = E (Var(X|Y)) + Var (E (X|Y)) .

66 CHAPTER 6. VARIANCE REDUCTION

Proof

Var(X) = EX2 − (EX)2 = E
(
E (X2|Y)

)
− (E (E (X|Y)))

2

= E (E (X2|Y))− E
(
E (X|Y)2

)
+ E

(
E (X|Y)2

)
− (E (E (X|Y)))

2

= E
(
E (X2|Y))− E (X|Y)2

)
+ Var(E (X|Y))

= E (Var(X|Y)) + Var(E (X|Y)).

This is important because it implies that Var(E (X|Y)) ≤ Var(X).

This leads to the following idea. Instead of estimating ` = H(X) directly, we can generate a
related random vector Y and estimate EG(Y) = E [E [H(X)|Y]] (provided G(Y) can be calculated
exactly).

Algorithm 6.2.1 (Conditional Monte Carlo)

1. Generate Y1, . . . ,YN .

2. Return the estimator

̂̀
Cond =

1

N

N∑
i=1

G (Yi) .

Example 6.2.1
Consider P (X1 +X2 > y), with X1 ∼ Exp(λ1) and X2 ∼ Exp(λ2). Here

l = P (X1 +X2 > y) = E1 {X1 +X2 > y}.
⇒ H(X) = 1 {X1 +X2 > y}.

If we condition on X2, we get the following

G(X2) = E (1 {X1 +X2 > y}|X2)

= E (1 {X1 > y −X2}|X2)

=

{
1 if y −X2 < 0.

e−λ1(y−X2) otherwise

This gives the following algorithm:

1. Generate X1
2 , . . . , X

N
2

iid∼ Exp (λ2)

2. Return

1

N

N∑
i=1

(
e−λ1(y−Xi

2) · 1 {y −Xi
2 ≥ 0}+ 1 {y −Xi

2 < 0}
)

6.3. CONTROL VARIATES 67

6.3 Control Variates

The idea of the control variate approach is to write EH(X) in the following form.

EH(X) = E (H(X)− αS(X) + αS(X)) = E (H(X)− αS(X)) + αE (S(X))

= E (H(X)− αS(X)) + αs,

where s = ES(X) is known in closed form. Hopefully, S and α can be chosen so that

Var(H(X)− αS(X)) < Var(H(X))

This gives the following algorithm.

Algorithm 6.3.1 (Control Variates)

1. Draw X1, . . . ,XN .

2. Return 1
N

∑N
i=1

(
H(Xi)− αS(Xi)

)
+ αs.

In order for this to work, we need to choose the α that minimizes the variance of

̂̀
Cont = Var (H(X)− αS(X) + αs) = Var (H(X)) + α2Var (S(X))− 2αCov (H(X), S(X))

Taking the derivative with respect to α and setting to 0, we get

2αVar (S(X)) = 2Cov (H(X), S(X))⇒ α∗ =
Cov(H(X), S(X))

Var (S(X))
.

Checking the second order condition, we have

2Var(S(X)) > 0,

so α∗ is a minimizer. Although we generally do not know α∗ exactly, we can easily estimate it using
standard estimators for the variance and covariance (see the example code below).

Using α∗, the optimal choice of α, the estimator's variance is given by

Var(H(X)) + (α∗)2Var(S(X))− 2α∗Cov(H(X), S(X))

=Var(H(X)) +
Cov(H(X), S(X))2

Var(S(X))2
Var(S(X))− 2

Cov(H(X), S(X))

Var(S(X))
Cov(H(X), S(X))

=Var(H(X))− Cov(H(X), S(X))2

Var(S(X))
= Var(H(X))− ρ2Var(H(X))Var(S(X))

Var(S(X))

=(1− ρ2)Var(H(X)),

which will give variance reduction so long as ρ, the correlation between S(X) and H(X), is greater
than 0.

68 CHAPTER 6. VARIANCE REDUCTION

Example 6.3.1
We wish to estimate

` =

∫ 1

0

e−x
2

dx ≈ 0.7468.

We use the control variate S(X) = e−X , where X ∼ U(0, 1).

s = ES(X) =

∫ 1

0

e−xdx = −e−x
∣∣1
0

= 1− 1

e
.

Listing 6.1: Matlab Code

1 N = 10^4; X = rand(N,1);

2 H_X = exp(-X.^2); S_X = exp(-X);

3 cov_mat = cov(H_X,S_X);

4 alpha_hat = cov_mat(1,2)/cov_mat(2,2);

5

6 ell_hat_CMC = sum(H_X)/N

7 std_CMC = std(H_X)/sqrt(N)

8

9 ell_hat_CONT = sum(H_X-alpha_hat*S_X)/N+alpha_hat*(1-1/exp(1))

10 std_CONT = std(H_X-alpha_hat*S_X)/sqrt(N)

Listing 6.2: Example Output

1 ell_hat_CMC =

2 0.7466

3 std_CMC =

4 0.0020

5 ell_hat_CONT =

6 0.7475

7 std_CONT =

8 5.4539e-004

The standard deviation of the control variates estimator is roughly 1/4 of the standard deviation of
the CMC estimator. In order to get an equivalent standard deviation using CMC, we would need
about 16 times the current sample size.

6.4 Importance Sampling

We want to estimate ` = E fH(X), where E f means the expectation when X ∼ f , where f is some
density. We can write out the expectation of this estimator as

E fH(X) =

∫
H(x)f(x)dx =

∫
H(x)f(x)

g(x)
g(x)dx = E g

(
H(x)f(x)

g(x)

)
,

provided we choose g so that, g(x) = 0⇒ H(x)f(x) = 0.

6.4. IMPORTANCE SAMPLING 69

The motivation for doing this is that, often, some values of X are more important for calculating
EH(X) than others. The idea is to choose a density, g, so that these important values occur more
often.

Example 6.4.1
Suppose we wish to estimate P (X > 5), where X ∼ N (0, 1). The problem is then to estimate
EH(X) = E I{X > 5}. In general it is rare that a realization of X will be bigger than 5, so this
quantity will be very di�cult to estimate. However, if we choose g to be the pdf of a normal density
with mean 5, then values of X greater than 5 will occur quite often. The importance sampling
estimator is unbiased, so this estimator will give an unbiased estimate of P (X > 5) which (we can
show) has a much lower variance than the CMC version.

Algorithm 6.4.1 (Importance Sampling)

1. Draw X1, . . . , XN ∼ g.

2. Return ̂̀IS = 1
N

∑N
i=1

f(Xi)
g(Xi)

H(Xi).

Recall the the variance of the CMC estimator is

Var
(̂̀

CMC

)
=

1

N
Varf (H(X)) =

1

N

[
E fH(X)2 − (E fH(X))

2
]
.

The variance of the importance sampling estimator is

Var
(̂̀

IS

)
=

1

N
Varg

(
H(X)f(X)

g(X)

)
=

1

N
E g

(
H(X)f(X)

g(X)

)2

−
(
E g

H(X)f(X)

g(X)

)2

=
1

N

[
E g

(
H(X)f(X)

g(X)

)2

− (E fH(X))
2

]
.

Now,

E g

(
H(X)f(X)

g(X)

)2

=

∫
H(x)2f(x)2

g(x)2
g(x) dx =

∫
H(x)2f(x)

g(x)
f(x) dx = E f

(
H(X)2f(X)

g(X)

)
.

So, we get variance reduction if

E f

(
H(X)2f(X)

g(X)

)
≤ E fH(X).

6.4.1 The Minimum Variance Density

Theorem 6.4.1 The variance of the importance sampling estimator is minimized by the density
g∗ given by

g∗ =
|H(x)|

E f |H(X)|
f(x).

70 CHAPTER 6. VARIANCE REDUCTION

Proof We need to show

E g∗

(
f(X)

g∗(X)
H(X)

)2

≤ E g

(
f(X)

g(X)
H(X)

)2

.

for any g such that H(x)f(x) = 0⇒ g(x) = 0. Now

E g∗

(
f(X)

g∗(X)
H(X)

)2

= E f
H(X)2f(X)

g∗(X)
= E f

(
H(X)2f(X)

|H(X)|f(X)

)
Ef |H(X)|

= (E f |H(X)|)2
=

(
E g

f(X)

g(X)
|H(X)|

)2

≤ E g

(
f(X)

g(X)
|H(X)|

)2

= E g

(
f(X)

g(X)
H(X)

)2

where the inequality is obtained, for example, using Jensen's inequality.

If H(x) > 0 ∀x or H(x) < 0 ∀x, we get an even stronger result, which is that the minimum
variance density actually results in an estimator with zero variance (that is, an estimator that gives
the exact answer every time!). Here, we have

g∗ =
H(x)

EH(x)
f(x),

so

Var
(̂̀

IS

)
=

1

N
Varg∗

(
f(X)

g∗(X)
H(X)

)
=

1

N
Varg∗

(
H(X)f(X)

H(X)f(X)
EH(X)

)
= Varg∗(EH(X)) = 0.

Unfortunately we cannot really use the zero-variance / minimum variance densities because EH(X)
and E |H(X)| are unknown (they involve knowledge of the very thing we are trying to estimate).
However, the fact that it is often theoretically possible to �nd an estimator with zero-variance
illustrates the power of importance sampling as a variance reduction technique.

In practice, we usually choose g from a parametric family of densities, {g(x;θ),θ ∈ Θ}, indexed by
a parameter vector θ.

A standard way to come up with such a family of densities is to exponentially twist f . That is,
we set

g(x;θ) = exp (θᵀx− k(θ)) f(x),

where k(θ) = logE eθᵀx. In order for this to work, we need θ ∈ Θ, where Θ = {θ : E exp (θᵀx) <∞}.
Note that g(x; 0) = f(x).

We then try to choose a good parameter vectors, θ. An obvious approach is called the variance
minimization approach. We set

θVM = argmin
θ∈Θ

E f
f(X)

g(X;θ)
H(X)2.

6.4. IMPORTANCE SAMPLING 71

Unfortunately, it is usually very di�cult to solve this equation. An alternative method is theCross-
Entropy Method, where we choose θ to minimize the `distance' between g(x;θ) and g∗(x), where
as a measure of distance we use Kullback-Leibler divergence, which is de�ned as

D(g, f) = E g log
g(x)

f(x)
.

Note: This is not a metric as it is not symmetric.

Now we choose θ to minimize D(g∗, g). That is,

θCE = argmin
θ∈Θ

E g∗ log
g∗(X)

g(X;θ)
= argmin

θ∈Θ
{E g∗g

∗(X)− E g∗ log g(X;θ)}

= argmax
θ∈Θ

E g∗ log g(X;θ)

72 CHAPTER 6. VARIANCE REDUCTION

Chapter 7

Derivative Estimation

It is often the case that we wish to calculate the gradient of a function with respect to a vector of
parameters θ. This is particularly di�cult when the function itself needs to be estimated. We can
write such functions, in a very general form, as

`(θ) = E g(θ2)H(X;θ1) =

∫
H(X;θ1)g(x;θ2) dx,

where θ = (θ1,θ2).

In derivative estimation, we wish to estimate

∇θ`(θ) = ∇θE g(θ2)H(X;θ1).

There are a number of reasons why we might want to do this. Two of the most important are:

1. Sensitivity Analysis E.g., How does the value of `(θ) change when θ changes?

2. Optimization E.g., for solving ∇θ`(θ) = 0.

7.1 Di�erence Estimators

Hopefully, most of you are familiar with the de�nition of a derivative:

f ′(θ) = lim
h→0

f(θ + h)− f(θ)

h
= lim
h→0

f(θ + h/2)− f(θ − h/2)

h
.

provided these limits exist at θ. There is an obvious extension to partial derivatives.

This de�nition leads directly to the �rst two derivative estimators. Let ei be a vector that is
composed entirely of 0s except for the ith element, which is 1. E.g., e1 = (1, 0, . . . , 0)ᵀ, e2 =
(0, 1, 0, . . . , 0)ᵀ, etc.

73

74 CHAPTER 7. DERIVATIVE ESTIMATION

• The forward di�erence estimator of the ith partial derivative:

F̂Di =
̂̀(θ + hei)− ̂̀(θ)

h
.

• The central di�erence estimator of the ith partial derivative:

ĈDi =
̂̀(θ + h

2 ei)− ̂̀(θ − h
2 ei)

h
.

One important question about these estimators is whether they are biased or not. We can check
this in the one dimensional case. Taking Taylor expansions, the forward di�erence estimator can
be written as

f(θ + h)− f(θ)

h
= f ′(θ) +

h

2
f ′′(θ) +O(h2)︸ ︷︷ ︸

bias

and the central di�erence estimator as

f(θ + h/2)− f(θ − h/2)

h
= f ′(θ) +

h2

24
f ′′′(θ) +O(h4)︸ ︷︷ ︸

bias

.

From this, we see that both estimators are biased. However, the bias of the central di�erence
estimator is smaller than the bias of the forward di�erence estimator. From now on, we will just
discuss the central di�erence estimator.

7.1.1 The Variance-Bias Tradeo�

A biased estimator is not necessarily a bad one. One way to evaluate how good a biased estimator
is, is to consider its mean squared error (MSE).

MSE(̂̀) = E (̂̀− `)2 = Var(̂̀) + Bias(̂̀)2.

Arguably, the estimator with the lowest MSE is the best.

A classic issue with biased estimators is the variance-bias tradeo�. Often a more biased estimator
will have a lower variance, and a less biased estimator will have a higher variance. This is an issue
for us.

The bias of the central di�erence estimator gets smaller as h→ 0. However,

Var

(̂̀(θ + h/2e)− ̂̀(θ − h/2e)

h

)
=

1

h2
Var

(̂̀(θ + h/2e)− ̂̀(θ − h/2e)
)

can get bigger as h→ 0.

The following result is an example of a rule for choosing the relationship between h and N to
minimize the MSE of the central di�erence estimator.

7.2. INTERCHANGING DIFFERENTIATION AND INTEGRATION 75

Proposition 7.1.1 Consider the simple case where

l(θ) = EH(X, θ) = EH(θ)︸ ︷︷ ︸
suppressing X

.

with θ a scalar. Let ̂̀(θ+ h) and ̂̀(θ) be estimators using N samples each. Then the mean squared

error of ĈD is asymptotically minimized by setting.

h =
1

N1/6

(576Var(H(θ)))
1/6

|l′′′(θ)|1/3
.

7.2 Interchanging Di�erentiation and Integration

The next two methods of estimating derivatives work by interchanging di�erentiation and integra-
tion. This cannot always be done. However, in many situations, there is a technical result that
justi�es this operation. An example is the following.

Theorem 7.2.1 Let g(x,θ) be di�erentiable at θ0 ∈ Rk with gradient ∇θg(x,θ0). Assume this
gradient is integrable as function of x. If there exists a neighborhood Θ of θ0 and an integrable
function M(x;θ0) such that for all θ ∈ Θ

|g(x;θ)− g(x;θ0)|
‖θ − θ0‖

≤M(x;θ0).

Then

∇θ

∫
g(x;θ)dx

∣∣∣∣
θ=θ0

=

∫
∇θg(x;θ0)dx.

7.3 In�nitesimal Perturbation Analysis (IPA)

Consider the case where `(θ) = E g(θ2)H(X;θ1) can be written as E fG(X;θ). That is, the pa-
rameters of interest only appear in the function G and not in the density f . If we can exchange
expectation and di�erentiation, then

∇θ`(θ) = ∇θE fG(X;θ) = E∇θG(X;θ).

We can estimate this using the obvious estimator

∇̂θ`(θ) =

N∑
i=1

∇θG(Xi;θ),

where X1, . . . ,XN are iid draws from f .

A signi�cant advantage of this method over the �nite di�erence estimators is that the estimator is
unbiased.

76 CHAPTER 7. DERIVATIVE ESTIMATION

Sometimes E g(θ2)H(X;θ1) is is not already in the form E fG(X;θ). In this case, we need to �nd a
way to rewrite E g(θ2)H(X;θ1) in the appropriate form. A situation where this is easy to do is when
we generate one dimensional draws from a density g(x;θ2) using the inverse transform method. In
this case, X = F−1

g(θ2)(U), where Fg(θ2) is the cdf of g(x;θ2) and U ∼ U(0, 1). Thus, we can write

E g(θ2)H(X;θ1) = E f

[
H
(
F−1
g(θ2)(U);θ1

)]
.

where f is the density of the uniform (0, 1) density. It is not hard to extend this approach to
random vectors.

7.4 Score Function Method

Using the IPA approach, there are many situations where the exchange of expectation and di�eren-
tiation is not allowed. An alternative approach, where this exchange is less problematic, is the score
function method. In contrast to IPA, we now want to write `(θ) = E g(θ2)H(X;θ1) as E f(θ)G(X),
so that the parameters only appear in the density.

Exchanging integration and di�erentiation, we have

∇θ`(θ) = ∇θ

∫
G(x)f(x;θ)dx =

∫
G(x)∇θf(x;θ)dx

=

∫
G(x)

∇θf(x;θ)

f(x;θ)
f(x;θ)dx = E f(θ)G(X)S(θ; X),

where
S(θ; x) = ∇θ log f(x;θ).

In statistics, S(θ; x) is sometimes known as the score function of f .

Like the IPA approach, this gives an unbiased estimator.

Example 7.4.1
Let X ∼ N (θ, 1). We want to calculate ∂

∂θEX
2 at θ0. In this simple example, we can calculate the

right answer as EX2 = 1 + θ2 so ∂
∂θEX

2 = 2θ. In order to implement the score function method,
we �rst calculate S(θ;x):

S(θ;x) =
∂

∂θ
log f(x; θ) =

∂

∂θ

(
log

(
1√
2π

)
− 1

2
(x− θ)2

)
=

∂

∂θ

(
−x

2

2
+

2xθ

2
− θ2

2

)
= x− θ

So, we wish to estimate
E f(θ)X

2(X − θ)

For θ0 = 1.

7.4. SCORE FUNCTION METHOD 77

Listing 7.1: Matlab Code

1 N = 10^5; theta = 1;

2 X = theta + randn(N,1);

3 H_X = X.^2;

4 S_X = X-theta;

5 deriv_est = mean(S_X.*H_X)

6 error_est = std(S_X.*H_X) / sqrt(N)

78 CHAPTER 7. DERIVATIVE ESTIMATION

Chapter 8

Optimization

Monte Carlo is a powerful tool for solving optimization problems. In this chapter, we consider
problems of the general form

min
θ∈Θ

S(θ),

where Θ is a feasible set.

Example 8.0.1 (Some Example Optimization Problems)

1. min θ2, Θ = {θ ∈ R}.

2. min θ2, Θ = {θ ∈ R : |θ| ≥ 2}.

3. maxEXθ = min−EXθ, Θ = {θ ∈ R : 1 ≤ θ ≤ 4}.

4. max{θ1 + θ2} = min{−(θ1 + θ2)},
Θ = {(θ1, θ2) : θ1, θ2 ∈ Z, θ1, θ2 ≥ 0, θ1 + 2θ2 ≤ 6, θ2 + 2θ1 = 6}.

Optimization problems can be noisy, e.g., S(θ) or ∇θS(θ) may need to be estimated.

Optimization problems can involve discrete variables, continuous variables, or a mixture of
both.

Optimization problems can involve constraints or be unconstrained.

8.1 Stochastic Approximation

In the stochastic optimization setting, S(θ) is noisy. That is, S(θ) = E g(θ2)H(X;θ1). In addition,
θ is assumed to be a vector of continuous variables. For example, θ ∈ Rd.
Because S(θ) is noisy, it can be only estimated. We cannot just solve ∇θS(θ) = 0.

The idea of the stochastic approximation algorithm is to set up a sequence θ1,θ2, . . . that converges
to the optimal θ∗. The algorithm does this using the idea of gradient descent. That is, at each θn,
it estimates ∇θS(θ) (evaluated at θn) and moves in the direction of the negative gradient (which
is the direction of steepest descent).

79

80 CHAPTER 8. OPTIMIZATION

8.1.1 The Unconstrained Case

In the unconstrained case, the sequence is of the form

θn+1 = θn − εn ̂∇θS(θn),

where ̂∇θS(θn) is a gradient estimator and (εn)n≥1 is a sequence of step sizes.

Example 8.1.1 (A simple example)

Looking at a non-noisy problem, we can get an idea of how the algorithm behaves.

Let S(θ) = θ2. We can see (because the problem is not noisy) that ∇θS(θ) = 2θ. As step sizes, we
choose εn = 1

n . We state at θ1 = 2.

θ2 = θ1 − ε1∇S(θ1) = 2− 2(2) = −2

θ3 = θ2 − ε2∇S(θ2) = −2− 1

2
(−4) = −2 + 2 = 0

θ4 = θ3 − ε3∇S(θ3) = 0− 1

3
(0) = 0. . . .

The algorithm jumps around for a few steps, but ultimately converges to the minimum (and stays
there).

8.1.2 The Constrained Case

The extension to the constrained case is straightforward. We simply take the sequence

θn+1 = ΠΘ

(
θn − εn∇̂S(θn)

)
,

where ΠΘ is a projection operator onto Θ. This might sound complicated, but usually it is not.
ΠΘ(·) just returns the closest point in Θ. Usually, we use the Euclidean norm, so

ΠΘ(θ) = argmin
ξ∈Θ

‖ξ − θ‖.

8.1.3 Choice of Parameters

The stochastic approximation algorithm has a lot of restrictions. It only really works for convex
functions on convex sets. Otherwise, the algorithm tends to get trapped in local minima. In
addition, the parameters of the algorithm have to be chosen carefully to ensure that it converges
to the global minimum.

We need to be able to converge to θ∗, no matter how far away we start (which means we might
need to take an in�nite number of non-zero steps), so we require

∞∑
n=0

εn =∞.

However, we also want θn+1 − θ → 0, so we require that εn → 0. Typical choices are εn = n−α,
with 0 < α ≤ 1, or ε = c/n for some some constant c.

8.2. RANDOMIZED OPTIMIZATION 81

8.1.4 The Two Main Types of Stochastic Approximation Algorithms

There are two main approaches to stochastic approximation. These di�er only in their choice of
gradient estimator (though, this has a number of consequences for the mathematical analysis of

these algorithms). The Kiefer-Wolfowitz algorithm uses �nite di�erences to estimate ∇̂θS(θ).
The Robbins-Monro algorithm does not use �nite di�erences. Instead, it usually uses IPA or the
score function method.

For convergence results (which tend to have a lot of technical conditions) see Dirk Kroese's lecture
notes.

8.2 Randomized Optimization

Two major disadvantages of stochastic approximation algorithms are

1. They need gradients to exist (so, for example, discrete problems cannot be solved).

2. They tend to get trapped in local minima.

An alternative is a large number of algorithms based on randomly (but intelligently) searching for
solutions. These algorithms include:

• Simulated Annealing

• Cross Entropy

• Genetic algorithms

8.2.1 Simulated Annealing

We will focus on the simulated annealing algorithm, which is one of the most popular randomized
optimization algorithms. The idea behind simulated annealing comes from materials science, where
a metal is heated then slowly cooled in such a way that its molecules jump around until they �nd
better positions. In randomized optimization, our guess of the optimal solution is a stochastic
process that jumps around the state space. It jumps more when it is `hotter' and jumps less as it
cools.

NOTE!!! I've change notation in this section (to make some things clearer). Now, we
write the problem as

min
x∈Θ

S(x).

The basic idea is to choose random guesses X1,X2, . . . , of the optimal value of x from a sequence
of distributions that converge to a `degenerate' distribution that assigns probability 1 to the global
minimum, x∗, (for ease of explanation, let's assume it is unique).

To do this, we use an approach similar to MCMC. We create a random process that slowly converges
to the right distribution, which is the one that assigns all of its probability mass to the global
minimum. The distributions used by simulated annealing are the following.

82 CHAPTER 8. OPTIMIZATION

• Discrete:

P (X(T) = x) =
e−S(x)/T∑

y∈Θ e
−S(y)/T

∝ e−S(x)/T . (8.1)

• Continuous:

fT (x) =
e−S(x)/T∫

Θ
e−S(y)/Tdy

∝ e−S(x)/T . (8.2)

These distributions are indexed by T , the `temperature' parameter. As T → 0, these densities
assign probability 1 to x∗. This can be shown, for example, in the discrete case as follows.

Proposition 8.2.1 Assume that there exists an x∗ ∈ Θ, where Θ is discrete and �nite, so that
a < b, where a = S(x∗) and b = min

x6=x∗
S(x). Then

P (X(T) = x∗) −→ 1 as T → 0

Proof

P (X(T) = x) =
e−S(x)/T∑

y∈Θ e
−S(y)/T

≥ e−a/T

e−a/T + (|Θ| − 1)e−b/T

=
1

1 + (|Θ| − 1)e−(b−a)/T
→ 1.

The immediate limitation to using simulated annealing is that sampling directly from (8.1) or (8.2)
is not usually possible (we discussed problems related to this in the MCMC chapter).

Note also, that to ensure that we draw the global minimum, T → 0 is needed. For �xed T , we do
not draw x∗ with probability 1.

This suggests that we use the following approach. We use Markov Chain Monte Carlo (for example,
the Metropolis Hastings random walk sampler) to sample from (8.1) or (8.2), while slowly reducing
T .

Algorithm 8.2.1 (Simulated Annealing)
Given a cooling sequence (Tn)n≥1.

1. Start at X0. Set n = 1.

2. Generate a candidate state Y from the proposal density q(Y|Xn), where q(Y|Xn) = q(Xn|Y).

3. Compute the acceptance probability

α(Xn,Y) = min

{
exp

(
−S(Y)− S(Xn)

Tn

)
, 1

}
Generate U ∼ U(0, 1) and set

Xn+1 =

{
Y , if U ≤ α(Xn,Y)
Xn , if U > α(Xn,Y)

.

4. Set n = n+ 1 and repeat from step 2 onto stopping criterion.

8.2. RANDOMIZED OPTIMIZATION 83

8.2.2 Choosing (Tn)n≥1

Usually we do not change T at each step, but rather let the Markov Chain Monte Carlo algorithm
run for long enough to sample approximately from the desired density before we update T again.
For example, we might choose T1, . . . , T106 = 1 and T106 , . . . , T2·106 = 1

2 . In order to guarantee
convergence, it is often necessary to let the intervals between updates of T get bigger and bigger as
T gets smaller. For example,

Tn = T (k), nk ≤ n < nk+1. With nk+1 − nk →∞.

If Θ is �nite, it can be shown that the following choice of cooling schedule ensures convergence (in
probability) to x∗:

Tn ≥
1

log n
|Θ|
(

max
x∈Θ

S(x)−min
x∈Θ

S(x)

)
.

The problem is, in practice, slow cooling is often much slower than necessary and, as a result, very
ine�cient (having to wait a practically in�nite time in order to get an answer is not very useful).

8.2.3 Dealing with Constraints

We have not yet discussed how we build constraints into the simulated annealing algorithm. One
way to deal with constraints is to sample in such a way that the constraints are not violated (i.e.,
include the constraints in our choice of q(Y|Xn)). An alternative is to change the cost function, S,
so that it includes the constraints. Consider the following.

Example 8.2.1 min
x
x2

1 + x2
2 subject to the constraint that x1 + x2 ≤ 1. The cost function is

S(x) = x2
1 + x2

2.

We can incorporate the constraints by changing the cost function to

Sc(x) = x2
1 + x2

2 + 1000 · 1 {x1 + x2 > 1}.

Example 8.2.2 In this example, we want to minimize (without constraints)

x2 + (3− x)2.

We use a Metropolis-Hastings random walk sampler with a normal proposal density and geometric
cooling. That is, Ti+1 = βTi, β ∈ (0, 1).

Listing 8.1: Matlab Code

1 N = 10^5; beta = 0.99;

2 T = 10; X_0 = 2; X=X_0;

3 cost = X^2 +(3-X)^2;

4 for i = 1:N

5 X_proposal = X+.5*randn;

6 proposal_cost = X_proposal^2+(3-X_proposal)^2;

7 alpha = exp(-1/T*(proposal_cost-cost));

84 CHAPTER 8. OPTIMIZATION

8 if rand < alpha

9 X = X_proposal;

10 cost = proposal_cost;

11 end

12 T = beta*T;

13 end

Note We don't have a stopping condition here, we just run the algorithm for a �xed amount of
time.

Example 8.2.3 (The N -Queens Problems) We want to put N queens on a N × N chessboard
so that no queen is on the same row, column or diagonal as another queen. E.g. on a 4× 4 board
one solution is

Q
Q

Q
Q

This problem can be solved by randomizing optimization.

• Step 1: Find a cost function.
Here, I use the cost function = # rows with more than one queen.
+ # columns with more than one queen.
+ # diagonals with more than one queen.

• Step 2: Find a way to update a con�guration. Our approach is to represent the chessboard
as a matrix with ones for queen and zeros for empty spaces. We can update this by randomly
swapping two cells. Note pij = pji so if we use the Metropolis-Hastings Algorithm

α(x, y) = min

{
exp(−S(y))

exp(−S(x))
, 1

}
.

Note Neither the cost function nor updating rule are very smart. If you think about it (and want
to spend some time programming), you could come up with better ones. For example, we often
swap empty cells with empty cells. A smarter way, that requires more work, would be to move only
the queens. A much worse way would be to generate a whole random con�guration each time.

Listing 8.2: Matlab Code

1 X_0 = [1 1 1 1 1;0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0];

2 T = 10; N = size(X_0,1);

3 X = X_0; current_cost = 10000;

4 while current_cost ~= 0

5 new_X = X;

6 randcoords_1 =[ceil(N*rand),ceil(N*rand)];

7 randcoords_2 =[ceil(N*rand),ceil(N*rand)];

8 new_X(randcoords_1(1),randcoords_1(2)) = X(randcoords_2(1),randcoords_2(2));

9 new_X(randcoords_2(1),randcoords_2(2)) = X(randcoords_1(1),randcoords_1(2));

8.2. RANDOMIZED OPTIMIZATION 85

10 col_cost = sum(sum(new_X)>1);

11 row_cost = sum(sum(new_X')>1);

12 diag_cost = 0;

13 for i = 1:N

14 diag_sum = 0;

15 for j = 1:N-i+1

16 diag_sum = diag_sum+new_X(i+j-1,j);

17 end

18 diag_cost = diag_cost + (diag_sum>1);

19 end

20 for j = 2:N

21 diag_sum = 0;

22 for i = 1:N-j+1

23 diag_sum = diag_sum+new_X(i,i+j-1);

24 end

25 diag_cost = diag_cost + (diag_sum>1);

26 end

27 for i = 1:N

28 diag_sum = 0;

29 for j = 1:N-i+1

30 diag_sum = diag_sum + new_X(i+j-1,N-j+1);

31 end

32 diag_cost = diag_cost + (diag_sum>1);

33 end

34 for j = 1:N-1

35 diag_sum = 0;

36 for i = 1:j

37 diag_sum = diag_sum + new_X(i,j-i+1);

38 end

39 diag_cost = diag_cost + (diag_sum>1);

40 end

41 proposal_cost = row_cost+col_cost+diag_cost;

42 T = T*.9999;

43 alpha = exp(-(proposal_cost-current_cost)/T);

44 if rand <= alpha

45 X = new_X; current_cost = proposal_cost;

46 end

47 end

Note This does not always converge (we could simply terminate it after enough steps, however).

86 CHAPTER 8. OPTIMIZATION

Bibliography

[1] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis. Springer-
Verlag, New York, 2007.

[2] P. Bremaud. Markov Chains, Gibbs Fields, Monte Carlo Simulations and Queues. Springer-
Verlag, New York, 1999.

[3] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York, 1986.

[4] G. S. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer-Verlag, New
York, 1996.

[5] D. Gamerman and H. F. Lopes. Markov Chain Monte Carlo: Stochastic Simulation for
Bayesian Inference. Chapman and Hall / CRC, Boca Raton, 2006.

[6] J. E. Gentle. Random Number Generation and Monte Carlo Methods. Springer-Verlag, New
York, second edition, 2003.

[7] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York,
2004.

[8] C. Graham and D. Talay. Stochastic Simulation and Monte Carlo Methods: Mathematical
Foundations of Stochastic Simulation. Springer, Heidelberg, 2013.

[9] J. Jacod and P. Protter. Probability Essentials. Springer-Verlag, Berlin, 2000.

[10] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo Methods. John Wiley &
Sons, New York, 2011.

[11] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer, New York, 2009.

[12] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times. American
Mathematical Society, Providence, 2009.

[13] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM,
Philadelphia, 1992.

[14] J. Norris. Markov Chains. Cambridge University Press, Cambridge, 1997.

[15] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, New York,
second edition, 2004.

87

88 BIBLIOGRAPHY

[16] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, New York,
2004.

[17] S. Ross. Simulation. Academic Press, San Diego, �fth edition, 2013.

[18] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. John Wiley &
Sons, New York, second edition, 2007.

[19] D. W. Stroock. An Introduction to Markov Processes. Graduate Texts in Mathematics.
Springer-Verlag, Berlin, 2005.

