Methods of Monte Carlo Simulation Problem Sheet 1

Deadline: October 29, 2015 at 4 pm before the exercises
Please email your code to lisa.handl@uni-ulm.de AND hand in a printed copy of the code!

Exercise 1 (programming) (3 points)

The gray region in the following plot is the intersection of two circles with centers $\left(0, \frac{1}{2}\right)$ and ($1, \frac{1}{2}$). Calculate the radii of these circles and write a Matlab program to estimate the surface area of the gray region by throwing $10^{2}, 10^{3}$ and 10^{5} points randomly onto the unit square.

Exercise 2 (programming) (3 points)
Write a Matlab program which generates $N=10^{4}$ pseudo-random numbers $\widetilde{U}_{1}, \ldots, \widetilde{U}_{N}$ using the uniform random generator RANDU. This is a linear congruential generator with parameters $a=2^{16}+3, c=0$ and $m=2^{31}$. Produce the following plots:
a) the sequence of pseudo-random numbers itself,
b) the points $\left(\widetilde{U}_{i}, \widetilde{U}_{i+1}\right)$ in a 2 D scatter plot,
c) the points $\left(\widetilde{U}_{i}, \widetilde{U}_{i+1}, \widetilde{U}_{i+2}\right)$ in a 3 D scatter plot.

Can you see a problem with any of the plots?
Hint: You might need the Matlab statements plot(x), scatter (x, y) and scatter3(x, y, z).

Note: RANDU was used by IBM in the 60 s and 70 s .

Exercise 3 (programming) (4 points)

Implement the random generator MRG32k3a and use it to approximately evaluate the integral

$$
\iiint_{[0,1]^{3}} \cos \left(x_{1} x_{2}\right) \cdot \sin \left(\cos \left(x_{3} x_{1}\right)\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}
$$

based on $N=10^{4}$ random points in $(0,1)^{3}$.

Please register at SLC for this lecture: http://slc.mathematik.uni-ulm.de This is required to receive points for your problem sheets.

