ulm university universität

Winter Term 2015/16

Dr. Tim Brereton Lisa Handl

> Methods of Monte Carlo Simulation Problem Sheet 3

Deadline: November 26, 2015 at 4 pm before the exercises

Please email your code to lisa.handl@uni-ulm.de AND hand in a printed copy of the code!

Exercise 1 (programming) (3 + 2 + 1 points)

- a) Write a Matlab program to sample from the binomial distribution with parameters n = 10 and p = 0.2 using acceptance rejection and the following proposal distributions.
 - (i) The uniform distribution on $\{0, \ldots, 10\}$.
 - (ii) The geometric distribution with parameter q = 0.3, i.e., $P(X = k) = (1 q)^k q$. *Hint:* You can sample from Geo(q) by drawing from an exponential distribution with parameter $\lambda = -\log(1 - q)$ and rounding off.
- b) Draw at least $N = 10^4$ times from this distribution using (i) and (ii) and plot histograms of the sampled values (relative frequencies), as well as of the desired binomial distribution.

Hint: You might want to use N = hist(Y,X) and bar for the histograms.

c) Which of the two proposal distributions should be preferred and why?

Exercise 2 (theory) (2+3+1 points)

Consider a random variable X with density

$$f(x) = \frac{\alpha \ x_m^{\alpha}}{x^{\alpha+1}} \ \mathbb{I}\{x \ge x_m\},$$

where $x_m, \alpha > 0$.

- a) Calculate the cumulative distribution function of X.
- b) Explain how you can sample from the distribution of X conditional on $X \ge 2x_m$, assuming your computer can only generate standard uniformly distributed random numbers. Use a combination of the inverse-transform method and acceptance-rejection.
- c) Calculate the acceptance probability of your algorithm.

Exercise 3 (programming) (3 points)

Write a Matlab program to sample uniformly from the torus

$$\left\{ (x,y,z) \in \mathbb{R}^3 : \left(R - \sqrt{x^2 + y^2} \right)^2 + z^2 \le r^2 \right\},\$$

where R = 5 and r = 2, using acceptance-rejection. Draw at least $N = 10^4$ points, plot them in 3D and estimate the acceptance probability of your algorithm.

Hint: You can use the Matlab function plot3 for plotting.

Exercise 4 (theory) (3 points)

Find the order of the following functions, i.e., for each $i \in \{1, 2, 3\}$ find $g_i \colon \mathbb{N} \to \mathbb{R}$, such that $f_i(n) = O(g_i(n))$.

a) $f_1(n) = (35+n)\log n$.

b)
$$f_2(n) = e^n + n^2$$
.

c) $f_3(n) = f_1(n) \times f_2(n)$, where $f_1(n)$ and $f_2(n)$ are as above.

Make sure you perform the necessary calculations (show $|f(x)| \leq Cg(x)$ for $x \geq x_0$).

Exercise 5 (theory) (2 points)

Show that the family of Cauchy distributions with densities

$$f(x; x_0, \gamma) = \frac{1}{\pi \gamma} \left(\frac{\gamma^2}{(x - x_0)^2 + \gamma^2} \right),$$

where $x_0 \in \mathbb{R}$ and $\gamma > 0$, is a location-scale family.

Exercise 6 (programming) (2 + 1 points)

- a) Implement the Box-Muller algorithm to sample from the standard normal distribution. Plot a histogram of $N = 10^5$ values simulated with your algorithm and add the density of the standard normal distribution to your plot.
- b) Using a), draw $N = 10^5$ times from N(20, 100), i.e., from the normal distribution with mean $\mu = 20$ and variance $\sigma^2 = 100$, and plot a histogram of the values you obtain.